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Abstract—Stealth addresses represent an approach to enhanc-
ing privacy within public and distributed blockchains, such
as Ethereum and Bitcoin. Stealth address protocols employ a
distinct, randomly generated address for the recipient, thereby
concealing interactions between entities. In this study, we intro-
duce BaseSAP, an autonomous base-layer protocol for embedding
stealth addresses within the application layer of programmable
blockchains. BaseSAP expands upon previous research to develop
a modular protocol for executing unlinkable transactions on
public blockchains. BaseSAP allows for the development of
additional stealth address layers using different cryptographic
algorithms on top of the primary implementation, capitalizing on
its modularity. To demonstrate the effectiveness of our proposed
protocol, we present simulations of an advanced Secp256k1-based
dual-key stealth address protocol. This protocol is developed on
top of BaseSAP and deployed on the Ethereum test network
as the first prototype implementation. Furthermore, we provide
cost analyses and underscore potential security ramifications and
attack vectors that could affect the privacy of stealth addresses.
Our study highlights the flexibility of the BaseSAP protocol and
provides insights into the broader implications of stealth address
technology in the realm of blockchain privacy.

Index Terms—Blockchain, Privacy, Security, Confidentiality,
Ethereum, Stealth Address

I. INTRODUCTION

STEALTH addresses have gained importance in blockchain
technology due to their potential to improve confidential-

ity and privacy in transactions on blockchains. In the context
of public blockchains, all transactions are recorded transpar-
ently, making it possible to track the transaction history of
a particular pseudonymous user. This traceability could occur
unintentionally, as the parties involved in a transaction may
not have consciously aimed to establish a linkable record.
Nonetheless, since blockchains like Bitcoin and Ethereum are
transparent and publicly accessible, third parties can analyze
the data and potentially identify the participants in a particular
transaction.
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Stealth address protocols (SAPs) offer a solution to the pri-
vacy challenges faced on public blockchains by enabling users
to interact confidentially without allowing external observers
to link the parties involved in a transaction. At their core, SAPs
empower the shielding of recipient information in peer-to-peer
(P2P) transactions [1], [2].

Stealth addresses can have numerous applications, including
but not limited to donations and payroll payments. They can
be used in any P2P interaction where privacy concerns demand
concealing the connection between two parties. Users can
transfer funds using SAPs while protecting the recipient’s
identity.

The first stealth addresses were initially introduced in
the Bitcoin ecosystem and have since undergone continuous
refinement. In 2013, Nicolas van Saberhagen described the
CryptoNote protocol, which utilized stealth addresses to en-
hance the privacy of blockchain transactions [1]. Peter Todd
subsequently built upon this concept in 2014 and further
improved it [2]. Ultimately, stealth addresses were integrated
into the Monero blockchain when it launched in 2014 [3].

On the Ethereum blockchain, stealth addresses can sig-
nificantly improve confidentiality. They allow users to au-
tonomously generate a unique, one-time address for each
transaction instead of relying on a static, publicly identified
address. The programmable nature of the Ethereum blockchain
facilitates the development of SAPs on top of it, hence lever-
aging the decentralization and trust attributes of the underlying
blockchain [4].

While stealth addresses offer considerable potential, they
currently exhibit multiple limitations affecting their anticipated
implementation and effectiveness across various blockchain
platforms. In the context of privacy-focused blockchains
like Monero, stealth addresses are inherently incorporated
within the core protocol. Conversely, popular programmable
blockchains, notably Ethereum, lack inherent, comprehensive
privacy protections at the base protocol level, thereby requiring
additional measures at the application layer to achieve similar
levels of privacy assurance [3].

The potential for SAPs on blockchains such as Ethereum
becomes evident within this context. They can introduce
innovative privacy features by leveraging the Turing-complete
environment of Ethereum and the modularity of the base
blockchain protocol. This interoperability could be advanta-
geously employed in various applications, including Smart
Contract wallets, public goods funding, Decentralized Finance
(DeFi) systems, or the Non-Fungible Token (NFT) landscape,
thereby broadening the potential application areas for these
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protocols.
However, it is crucial to address the scalability challenges

inherent in conventional SAPs. These must be resolved to
facilitate the mainstream acceptance of stealth addresses while
guaranteeing a secure user experience.

To overcome the aforementioned challenges, we developed
BaseSAP. BaseSAP is a fully open and reusable SAP that
can reliably offer stealth addresses at the application layer
of programmable blockchains like Ethereum. The protocol
aims to provide a lightweight mechanism for users to generate
stealth addresses, maintaining complete backward compati-
bility and requiring no modifications to the core blockchain.
Our proposed base protocol is agnostic towards various cryp-
tographic schemes and holds the potential to substantially
improve user interactions with stealth addresses in the context
of programmable blockchains. BaseSAP comprises a founda-
tional implementation, which includes the reusable function-
ality required for most trustless SAPs.

We designed BaseSAP to be fully extendable, thereby
enabling the creation of unique SAPs based on particular cryp-
tographic schemes on top of it. Examples of such extensions
include stealth addresses derived from the Secp256k1 elliptic
curve, SAPs based on elliptic curve pairings [5]–[7] or gen-
erated using lattice-based cryptography [8], [9]. The protocol
design ensures compatibility and proactively accommodates
future quantum-resistant cryptographic schemes that require
larger key sizes.

Beyond the base protocol contribution, we create the first
practical implementation on top of BaseSAP. We implement
an improved dual-key protocol that relies on the Secp256k1
elliptic curve and employs “view tags” to improve parsing
efficiency compared to conventional Dual-Key Stealth Address
Protocols (DKSAPs). The key contributions of this work are:

• We present a detailed analysis of the current state of
research and deployment of stealth address technology,
examining its application and development across diverse
blockchains.

• We identify and address substantial challenges associated
with interoperable SAPs, emphasizing privacy concerns
and Denial-of-Service (DoS) attack vulnerabilities.

• We design and develop BaseSAP as a fully open,
cohesive, and extendable SAP to be integrated into
Ethereum [10] in active collaboration with the Ethereum
development community.

• We illustrate the inherent modularity of our protocol,
accentuating the significant potential of such approaches
when implemented at the application layer of pro-
grammable blockchains.

• We develop a preliminary stealth address prototype that
leverages the Secp256k1 elliptic curve and exhibits supe-
rior performance in terms of parsing time when compared
to existing SAPs [11].

We publish the code base created for this work under
an open-source license to ensure reproducibility and trans-
parency [11]. Additionally, we propose the described protocol
as an ERC (Ethereum Request for Comment) [10] to facili-
tate the adoption of stealth addresses on programmable and
decentralized blockchains.

II. RELATED WORK

Prior research has established the basis for the development
of the proposed protocol. This section focuses on the most
relevant literature and provides an overview of the current state
of the art concerning stealth addresses.

Stealth addresses were first introduced to the blockchain
domain by an anonymous entity dubbed “bytecoin” in April
2011 [12]. Subsequently, van Saberhagen and Todd put for-
ward more refined SAPs in 2013 and 2014, respectively [1],
[2]. These protocols formed the basis for the DKSAP imple-
mented in the Monero blockchain upon its launch in 2014 [3].
Since DKSAP’s inception, numerous researchers have sought
to extend the capabilities of this SAP by introducing additional
features and functionality.

Courtois and Mercer [13] provide an overview of the devel-
opment history of stealth addresses. Furthermore, the authors
introduce multiple different spending keys to the DKSAP,
improving its resistance to attacks such as the “bad random
attack” or compromised keys. Their proposed protocol comes
at the cost of requiring the users to manage multiple different
spending keys.

Fan [14] improves the DKSAP, enabling sender and receiver
pairs to use their generated Diffie-Hellman secret multiple
times with an increasing counter, enabling a faster parsing
process for users. This approach is based on a similar idea as
TLS and achieves performance gains of at least 50% compared
to the standard DKSAP.

Fan et al. [7] improve the DKSAP by halving the number
of required keys from two to one, significantly reducing
storage costs while employing bilinear mapping to preserve the
protocol’s desired properties. The authors demonstrate notable
efficiency gains through this reduction in stored key pairs.

Liu et al. [8] implement stealth addresses together with
ring signatures to define a confidential layer within a cryp-
tocurrency system. The authors use a lattice-based protocol to
fully shield the information about the sender and recipient of
a transaction.

Feng et al. [15] propose a SAP that does not require
additional information to be published with every stealth
address transaction, allowing such transactions to look like
common blockchain transactions. The authors use the number
of transactions between certain peers instead of generating
a Diffie-Hellman secret for the stealth address generation
process. This comes with the requirement for users to parse
every transaction recorded on the blockchain.

Lee and Song [16] use a SAP and ring signatures to
implement confidential transactions on an Ethereum private
network. The authors focus on the exchange of healthcare
information and further analyze the security of their protocol
using threat models.

AbdulKader and Kumar [17] build on top of the protocol
of [15] and use the transaction ID of the most recent P2P
transaction between two entities instead of the number of
transactions in the stealth address generation process. The
authors argue that without the need to attach information to
the stealth address transaction, related protocols become more
censorship-resistant and lightweight.
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TABLE I
SUMMARY OF RELATED WORK ON STEALTH ADDRESSES AND COMPATIBILITY WITH BASESAP

Author Year Technique Nr. of
Keys

Extra Data
Requirement

BaseSAP
Compatible

Bytecoin [12] 2011 Elliptic Curve Diffie-Hellman key exchange
(ECDH)

One Yes Yes

Van Saberhagen [1] 2013 ECDH + Dual-Key Stealth Address Protocol
(DKSAP)

Two Yes Yes

Todd [2] 2014 ECDH One Yes Yes
Monero [3] 2014 ECDH + DKSAP Two Yes Yes
Courtois and Mercer [13] 2017 ECDH + DKSAP with multiple key pairs Multiple Yes Yes
Fan [14] 2018 ECDH + DKSAP with improved parsing Two Yes Yes
Fan et al. [7] 2019 Bilinear Mapping One No N/A
Liu et al. [8] 2019 Lattice-based SAP Two No N/A
Feng et al. [15] 2020 ECDH + DKSAP with improved parsing Two No N/A
Lee and Song [16] 2021 ECDH One Yes Yes
Feng et al. [5] 2021 Bilinear Mapping Two Yes Yes
Mohideen and Kumar [17] 2022 ECDH + DKSAP with improved parsing Two No N/A

In summary, previous research underscores a substantial
acceptance of the DKSAP. Several studies focused on reducing
parsing time for recipients by introducing efficient strategies,
such as deterministic rules that dictate the computation of
stealth addresses between two parties based on an initially
generated Diffie-Hellman secret or adopt sophisticated cryp-
tographic algorithms such as bilinear mappings [7], [14].

Furthermore, mitigating the problem of detectability in
stealth address transactions can be achieved by refraining
from publishing any extra information alongside stealth ad-
dress transactions. However, this approach entails a significant
drawback for blockchains that handle a large volume of
transactions, in addition to stealth address transactions, as it
requires parsing each transaction recorded.

In Table I, we provide an overview of existing SAPs, focus-
ing on two key aspects: the use of multiple keys (commonly
known as scanning and spending keys) and the requirement
to publish supplementary information with a stealth address
transaction. Protocols such as [7], [15], and [17] don’t re-
quire the publication of additional data, enabling enhanced pri-
vacy. These stealth address transactions blend seamlessly with
regular transactions, making them indistinguishable. However,
these protocols have a major limitation: users have to scan
every single transaction on the blockchain. This is because
any transaction could potentially be related to a stealth address.
This requirement makes such protocols less practical and rele-
vant for blockchains such as Ethereum. Protocols that do not
require additional information for stealth address transactions
are unsuitable for integration with the BaseSAP framework.
While this extra information makes stealth address transactions
detectable, it offers a significant advantage in parsing. It
narrows down the number of transactions that recipients need
to scrutinize, thereby streamlining the identification of relevant
stealth address transactions.

III. BACKGROUND ON BLOCKCHAIN PRIVACY

Privacy remains a primary concern within the realm of
public blockchains. The inherent transparency of these systems
may jeopardize users’ privacy when conducting financial trans-
actions or other sensitive interactions. To address this issue,

blockchain developers have attempted to develop privacy-
enhancing protocols that provide unlinkability and untrace-
ability or focus exclusively on the former. In this context,
we adhere to the definitions established in the CryptoNote
whitepaper to define “unlinkability” and “untraceability.” Per
this reference, unlinkability is characterized as the inability to
verify that two outgoing transactions are directed to the same
recipient. Untraceability, on the other hand, is the inability to
pinpoint the sender of a transaction from a group of potential
senders [1].

ZK-SNARKs. There have been numerous efforts to bring
confidential transactions to public ledgers such as Bitcoin
and Ethereum, including the use of ZK-SNARKs (”Zero-
Knowledge Succinct Non-Interactive Argument of Knowl-
edge”) [18]–[21]. ZK-SNARKs enable a user to prove certain
information without disclosing that information, which allows
for the possibility of depositing funds into a Smart Contract
using one pseudonym and then withdrawing those funds by
proving the deposit under a different pseudonym without
disclosing which deposit was referenced for the withdrawal. In
addition to promoting enhanced scalability in the blockchain,
this technology is implemented on Ethereum through privacy-
enhancing tools like Tornado Cash or Privacy Pools and in
Zero-Knowledge rollup platforms such as Aztec. This tech-
nology ensures both untraceability and unlinkability, thereby
offering a robust means of preserving privacy. [22]–[24].

CoinJoin. Chaumian CoinJoin is a privacy-enhancing
technology used on UTXO-based blockchains that ensures
the untraceability and unlinkability of transactions. CoinJoin
is a process in which multiple users combine their unspent
transaction outputs (UTXOs) into a single, larger transaction.
This consolidation complicates the task of an external observer
who tries to correlate input addresses (the senders) with output
addresses (the recipients) [25], [26]. CoinJoins have been
implemented in applications such as Wasabi Wallet, Samurai
Wallet, and JoinMarket [27]. Blind signatures are employed
to guarantee that the central coordinator cannot link the input
and output addresses of the participants. Applied correctly,
CoinJoins prevent the central coordinator or any other third
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party from tracing the flow of funds and de-anonymizing
users [28].

Stealth Addresses. Stealth addresses are a privacy-
enhancing solution that hides the recipient of a transaction,
thereby preventing third parties from linking the interacting
parties. By enabling senders to create a new stealth address for
the recipient in a non-interactive manner, such protocols can
provide unlinkability. While stealth addresses can be imple-
mented on the application layer of programmable blockchains,
some projects, such as Monero [3], opted to integrate them
into the core protocol. Furthermore, stealth addresses can be
employed on UTXO and account-based blockchain protocols.
One key difference between stealth addresses and ZK-
SNARK-based solutions is the extent of privacy that can be
achieved. ZK-SNARK-based privacy applications are com-
monly used to prove ownership of an asset without necessarily
possessing that asset at the time. This allows for commingling
funds with those of other users and consequently eliminating
discernible on-chain traces. Stealth addresses obfuscate the
recipient’s ownership within a transaction by employing newly
generated pseudonymous addresses. The funds remain trace-
able as funds are not commingled with those of third parties.
This distinction is essential to consider when evaluating the
suitability of these privacy-enhancing solutions for different
use cases.
Another distinction is the computational overhead: by the time
of writing, ZK-SNARKs typically have a more significant
overhead regarding computational resources and setup, while
stealth addresses can be implemented with minimal impact
using existing tools that modern blockchain platforms already
provide.
Unlike CoinJoins or mixing pools, stealth addresses do not
aim to obfuscate the on-chain visible flow of funds but instead
hide the interaction between an identified sender and recipient.
Consequently, external observers can trace the flow of funds to
specific stealth addresses. However, observers cannot identify
the individual or entity behind those recipient addresses. In
contrast, CoinJoins provide an additional privacy layer by
allowing users to conceal their identities within an anonymous
group of CoinJoin participants. Therefore, CoinJoins offer
more comprehensive anonymity than stealth addresses but rely
on more user interaction and coordination.
Despite the mentioned variations, we assert that employing
stealth addresses through elliptic curve mathematics offers
a more lightweight and interoperable approach, making it
accessible to a larger audience. Additionally, the inherent de-
centralization of stealth addresses contributes to the protocol’s
robustness and further promotes the principles of autonomy
and user privacy. This can potentially enhance the adoption
of privacy features on public blockchains. Numerous appli-
cations, such as donations or payroll transactions, may not
demand the high anonymity offered by notable ZK-SNARK-
based tools or CoinJoin wallets. In particular, in situations
that require Know Your Customer (KYC) procedures, stealth
addresses present a more suitable solution. Moreover, the lack
of commingling funds means that users do not inadvertently
help malicious parties anonymize ill-gotten assets by con-

tributing to an extended anonymity set. This property makes
stealth addresses particularly suitable for interactions where it
is desired to refrain from helping malicious parties.

IV. DEFINITION

The following sections outline the various components of
our proposed protocol, BaseSAP. Given that our first imple-
mentation is based on elliptic curve (EC) cryptography, we
introduce the foundational principles of elliptic curves. We
then define our SAP, divided into address generation and
parsing sections.

A. Elliptic Curve Cryptography

We define an elliptic curve E over a finite field Fp where
p is a 256-bit prime and present it in Weierstrass form as

y2 = x3 + ax+ b | x, y ∈ Fp

with a and b representing constants that determine the shape
and position of the respective curve. The coordinates (x, y)
are points on the elliptic curve that can take any value within
Fp and form an Abelian group. This group structure allows us,
given two points, e.g., P and Q to solve for R by performing
a binary operation called point addition, such that R = P+Q.
For any points P and Q on the curve, we know P +Q must
also be on the curve.

We denote lower and uppercase letters to scalars and points
on the curve, respectively. The scalars p and q are random
integers of size n, such that p, q ∈ {0, 1}n. It is common
for private keys, such as those used in the Secp256k1 curve,
to have a size of 256 bits [29]. An EC multiplication of the
point P by the scalar n can be done by repeatedly performing
additions of the point along the curve, such that n × P =
Pi+. . . Pi+n. Another property of the point addition operation
on an EC group is that it is commutative, meaning for all
points, e.g., P and Q, Q+P = P+Q. The EC has a generator
point G, representing a fixed curve point. A public key can
be derived by multiplying a scalar with the generator point,
P = p×G.

We denote the “point at infinity” O as the identity element
of the EC arithmetic, such that O +O = O and P +O = P .
Finally, for every point P on the elliptic curve, there exists an
inverse point such that (−P ) + P = O.

The Standards for Efficient Cryptography (SEC) is a set of
standardized elliptic curves proposed for use in cryptography.
These curves are designated as “SEC curves” and are intended
to provide a standard set of curves for use in various crypto-
graphic applications.

One of the most well-known SEC curves is Secp256k1,
which is defined by the equation y2 = x3+7 (mod p), where
p = 2256 − 232 − 977. This curve has a prime order n of
approximately 2256, and it is used as the basis for the Bitcoin
Elliptic Curve Digital Signature Algorithm (ECDSA) [29].

Secp256k1 has several attractive properties, including a
large prime order and efficient arithmetic, making it well-
suited for use in cryptocurrencies. It has been widely adopted
in various applications, including blockchain technologies,
IoT, and secure communication protocols [30]–[32].
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Our proposed stealth addresses protocol is designed to be
agnostic towards the specific elliptic curve employed, although
the initial implementation utilizes the Secp256k1 curve from
the SEC set.

B. Stealth Address Protocol

The following section is divided into different parts. First,
we detail how users generate a stealth address using the
Improved Stealth Address Protocol (ISAP), described by
Todd [2], when they want to perform a transaction. Second, we
cover the DKSAP, described by van Saberhagen [1], primarily
focusing on the parsing process that the receiver or third-party
parsing providers can perform.

Stealth Address Generation. For the stealth address gen-
eration, we define two independent parties, the sender C
(cf. caller) and the recipient R, who both have access to
a cryptographic key pair, (p, P ) and (r,R). We assume the
public key of the recipient R is published and known to the
respective sender. Furthermore, it is important to note that the
sender uses an ephemeral key pair, (p, P ), randomly generated
for each transaction using the SAP instead of using a key pair
with a public key directly linked to their identity.
The sender generates a shared secret using the Elliptic Curve
Diffie-Hellman (ECDH) protocol to derive a stealth address for
interaction with the recipient. A stealth address is generated by
adding the point obtained from multiplying the Diffie-Hellman
(DH) secret with the generator point to the recipient’s public
key. The sender performs the following steps for this process:

1) Generate an ephemeral key pair (p, P ) and publish the
coordinates P .

2) Multiply the randomly generated ephemeral private key with
the recipient’s public key: k = p×R. This creates the DH
secret, such that k = r × P = p×R = r × p×G.

3) Hash the shared DH secret kh = h(k), where h represents
a cryptographic hash function. In this context, let k denote
the input domain of h, which consists of an EC point
representing the DH secret between the sender and recipient.
The output domain, represented as kh, is a scalar value. This
transformation from k to kh is crucial as it enables further
cryptographic operations by converting the EC point into a
scalar.

4) Multiply the hashed shared secret with the generator point
of the elliptic curve Kh = kh ×G.

5) Add the result of (4) to the recipient’s public key:
Rst = Kh +R.

Let Rst ∈ E(F ) denote the point which party C uses as a
stealth address for R. It is important to note that there is no
direct link between the R and the derived stealth address, and
to external observers, it appears as if C is interacting with
a random account unrelated to R. Furthermore, the protocol
ensures that only the owner of r can access Rst by deriving
the private key rst through parsing.

Stealth Address Parsing. The stealth address parsing
process allows potential transaction recipients to locate their
stealth address and obtain the private key required to access it.

  R
SC, RSP

  

  ETH  

s = p × RSC
Sh = h(s) × G

Rst = Sh + RSP

2

s = rSC × P
Sh = h(s) × G

Rst = Sh + RSP
rst = h(s) + rSP

  P  

1

3

4

Sender C

Recipient R

Recipient Rst

Fig. 1. ISAP + DKSAP: (1) sender obtains public keys of the recipient, (2)
generates the stealth address, and (3) sends to the stealth address and publishes
an announcement; (4) recipient uses the announcement to derive the private
key that unlocks the stealth address.

This procedure requires that every potential recipient conduct
parsing across the complete set of published ephemeral public
keys, denoted by A = {Pi, . . . , Pn}. The total number of
unique stealth addresses generated via the protocol is repre-
sented by |A|. To execute parsing, a potential recipient must
first gather the set of all existing ephemeral public keys and
then perform the subsequent steps on each P ∈ A:

1) Multiply P with the private key r: k = r × P .

2) Hash the derived shared secret kh = h(k).

3) Add the result of (2) to the own private key: rst = kh + r.

4) Multiply the result of (3) with the generator point to derive
the stealth public key: Rst = rst ×G.

5) Hash the stealth public key and take the least sig-
nificant 20 bytes to derive the Ethereum address:
Raddr

st = h(Rst)[-20 : ].
Upon deriving the point Rst, the recipient can determine
whether Raddr

st has been the recipient of the transaction or
whether Raddr

st received any assets. If the check is successful,
the recipient may store the private key rst.
To conclude, the protocol leverages the fact that kh×G+P =
(kh+p)×G. This allows for deriving a stealth address through
two different paths, while only the recipient can generate the
private key for the stealth address.

Dual-key scheme. Stealth addresses on Ethereum require
the recipient to use their private key r during the process.
This has important implications for both security and user
experience. First, users may encounter situations where they
must use their private keys for operations outside of their
cold storage, which poses significant security risks. Second,
users cannot delegate the parsing process to a third-party
service as it involves sharing the private key and compromising
its confidentiality. Therefore, users must perform the parsing
process themselves in a local environment.
Researchers have developed a solution to these issues, the
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DKSAP, which improves both the user experience and se-
curity [13]–[15]. The DKSAP is an extension of the ISAP
and introduces an additional key pair exclusively used
for the parsing process. Recipients have two key pairs
— scanning and spending keys — represented as (rSC , RSC)
and (rSP , RSP), respectively. Equipping the recipient with
two separate key pairs, the scanning key pair, which is still
used in the DH secret generation, can be partially separated
from the stealth address generation. To use the DKSAP, the
sender needs to follow these steps:

1) Multiply the randomly generated ephemeral private key with
the scanning public key of the recipient: k = p×RSC .

2) Hash the shared secret kh = h(k) and multiply the result
with the generator point Kh = kh ×G.

3) Add the result of (2) to the recipient’s spending public key:
Rst = Kh +RSP .

Henceforth, the recipient has two options for deriving the
respective stealth address public key Rst. First, the recipient
can compute the DH secret by multiplying the scanning private
key rSC with the ephemeral public key P ∈ A. Having the
DH secret, the recipient can derive the stealth address public
key by hashing it, multiplying the result with the generator
point, and adding the result to the spending public key. Second,
the recipient can add the hashed DH secret to the spending
private key and multiply the result with the generator point
for deriving the stealth address public key Rst:

RSP + h(rSC × P )×G = (rSP + h(rSC × P ))×G.

It is important to note that the recipient can share the scanning
private key rSC with a third-party parsing provider without
compromising the spending private key. Using the scanning
key, the parsing provider can take on the parsing task and
notify users when an incoming stealth address transaction
occurs. However, without access to the spending private key
rSP , parsing providers cannot access the stealth address.

V. BASESAP PROTOCOL

In the following, we describe our proposed SAP in detail.
This involves on-chain key management solutions, stealth ad-
dress transaction routing, and specific efficiency improvements
we propose to the DKSAP.

Our protocol is designed to operate on the application layer
of programmable blockchains such as Ethereum and does not
require integration with the core protocol layer of a blockchain.
After deployment, BaseSAP operates autonomously, eliminat-
ing the possibility of user interference or censorship of any
party.

The proposed protocol can serve as a foundation for various
implementations to build upon it and leverage the modu-
lar basis. BaseSAP comprises a single singleton contract,
the Announcer contract, which enables users to publish the
ephemeral public keys at a central place.

For the initial implementation of an improved version of
a DKSAP, built on top of BaseSAP, we propose a Registry
contract that serves as a central repository for “stealth meta-
addresses” associated with registered users.

BaseSAP (Announcer contract)
Registry contract (optional)

SECP
256k1
+ view
tags DKSAP

EC
Pairing based
cf. EDKSAP

Lattice
based

schemes ...

Fig. 2. Modular property: BaseSAP enables different stealth address schemes
to build on top of it and leverage the underlying foundational protocol’s
modularity, interoperability, and trust.

We practically implement our proposed protocol on both
the Ethereum Goerli and Sepolia testnets to analyze the per-
formance of the proposed protocol under practical conditions
and enable the community to engage with it.

A. BaseSAP Announcer contract

To interact with a user’s stealth address, the sender must first
obtain the recipient’s public key and then generate a stealth
address. This process involves the sender using their own
randomly generated ephemeral private key and the recipient’s
public key.

To enable recipients to detect their stealth addresses, senders
must publicly announce their ephemeral public keys. Ad-
versaries cannot exploit this announcement to compromise a
recipient’s privacy, as they cannot recreate the necessary DH
secret for generating the stealth address.

The Announcer contract emits announcements from a cen-
tral location to which users can subscribe. Unlike [15], where
the objective was to have stealth address transactions mimic
regular transactions, providing additional information — par-
ticularly the ephemeral public key — in conjunction with
each stealth address transaction is necessary. Without attaching
additional information to a stealth address interaction, the
protocol would require users to parse the entire ledger [15].
However, by emitting events containing that information,
users can utilize the existing Bloom filters on the Ethereum
blockchain to identify the set of transactions related to stealth
address interactions.

The Announcer contract is designed to be agnostic towards
the cryptographic scheme used, enabling different implemen-
tations of various cryptographic schemes to share the same
source of event emissions. This means that the same An-
nouncer contract can be used for multiple distinct imple-
mentations without needing modification or adjustment. This
essential characteristic is illustrated in Figure 2.

Announcements. Employing BaseSAP, the asset transfer
transaction serves a dual purpose. It transfers assets and
broadcasts an announcement containing the ephemeral public
key to the public, thus making this information accessible to
the recipient. To facilitate this feature, a lightweight Announcer
contract is used (refer to Listing 1). The Announcer contract
can be called by anyone to emit additional information along
with a transaction.
External Owned Accounts (EOAs) can call the Announcer
contract using regular transactions, while contracts can interact
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with the Announcer through internal calls to execute the
announce function. As shown in Listing 1, the caller can
provide four parameters to the function:

1) Scheme ID — to specify the cryptographic scheme that
was used. In BaseSAP, the Secp256k1 implementation is
assigned the identifier number 1. An incrementing number
is assigned for subsequent implementations.

2) Stealth address — the address of the transaction recipient.

3) Ephemeral public key — compressed public key derived
from the randomly generated ephemeral private key.

4) Metadata — arbitrary information that may be helpful to the
recipient in identifying the particular interaction between
the sender and the stealth address. For ERC-20 tokens, the
metadata field may include the four most significant bytes of
the Method ID, 20 bytes for the (token) contract address,
and 32 bytes carrying the amount transferred. For ERC-
721/ERC-1155 contracts, the metadata field may include the
token ID instead of the amount transferred. For regular ETH
transfers, the metadata field may remain empty.

Incorporating an extra metadata field within the announcement
enables recipients to verify receipt of an asset, including the
amount transferred and the specific token involved. Moreover,
by incorporating the Method ID in the metadata, recipients
can pinpoint the contract interaction involving their stealth
addresses. As a result, well-known interactions, such as token
approvals or mints that carry the right to execute on a certain
state, are compatible with stealth addresses. Consequently, the
recipient is not obligated to perform extra Remote Procedure
Calls (RPCs) to obtain information about the nature or quantity
of an asset or right received.
Considering the metadata field’s dynamic size, it can also
be employed to incorporate additional features for enhancing
parsing at a later stage or to include more information that
might be needed for future token standards.

Costs. Executing the announce function with the param-
eters used for an ERC-20 transfer consumes approximately
35,492 units of gas on the Ethereum blockchain. If the
metadata field is left empty, as it would be in the case of
Ether transfers, the gas usage is reduced to 34,057 units of gas.
Assuming a gas price of 10 gwei and a price for 1 Ether (ETH)
of 2,000 US dollars, with 1 ETH = 10e9 gwei = 10e18 wei,
the cost of calling the announce function for Ether transfers
is approximately 0.68 USD, or 0.00034057 ETH. On layer-2
rollup platforms such as Optimism1 or Arbitrum2, the costs
associated with the announcement are effectively negligible.
Compressing the ephemeral public key to 33 bytes can re-
duce the gas consumption to 35,064 units. Without using the
metadata field, the emission of the announcement consumes
33,629 units of gas. From these figures, we can deduce that
applying public key compression results in cost savings of
1.21% for non-empty metadata emissions and 1.26% for ETH
transactions that do not require metadata.

1https://www.optimism.io/
2https://arbitrum.io/

1 pragma solidity ˆ0.8.0;
2

3 /// @notice Announcer emitting the Announcement event.
4 interface BaseSAPAnnouncer {
5

6 /// @notice Emitted when interacting with a stealth
address.

7 event Announcement (
8 uint256 indexed schemeId,
9 address indexed stealthAddress,

10 address indexed caller,
11 bytes ephemeralPubKey,
12 bytes metadata
13 );
14

15 /// @notice To be called when interacting with a
stealth address.

16 function announce (
17 uint256 schemeId,
18 address stealthAddress,
19 bytes memory ephemeralPubKey,
20 bytes memory metadata
21 )
22 external
23 {
24 emit Announcement(
25 schemeId,
26 stealthAddress,
27 msg.sender,
28 ephemeralPubKey,
29 metadata
30 );
31 }
32 }

Listing 1. Announcer Contract Interface

B. Stealth Meta-Address Format

In the design of the DKSAP, the recipient has two separate
key pairs, the spending SP and the scanning keys SC. We
combine the two public keys to generate the “stealth meta-
address”, enabling a more intuitive way for users to interact
with each other. In Secp256k1, the public keys PKs can be
compressed to 33 bytes each, denoted as PKcomp. Conse-
quently, our proposed protocol uses the following format for
the stealth meta-address:

st : ⟨chainID⟩ : 0x⟨PKSP
comp⟩⟨PKSC

comp⟩

The “st” prefix indicates that the following address refers
to a stealth meta-address. The “chainID” parameter distin-
guishes blockchain-specific addresses with which the corre-
sponding recipient can interact via stealth addresses. Within
the Ethereum ecosystem, chain IDs have been formalized in
the ERC-3770.

To compress the public key, we store only the x-coordinate
of the public key point and prefix it with either 0x2 or 0x3,
depending on whether the y-coordinate is positive or negative,
respectively. The stealth meta-address can be shared through
off-chain communication channels or made publicly available
on the blockchain. This way, any individual can generate
stealth addresses on behalf of the user, thereby facilitating their
interaction.

The uncompressed public keys can be used instead for
cryptographic schemes where compressing the public key is
not feasible.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3364081

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

C. Secp256k1 Implementation

In the following, we propose efficiency improvements to
the DKSAP to make it more viable for implementation on
blockchain platforms like Ethereum. Our analysis of the ex-
isting protocols highlights two deficiencies that impede their
practical usage. First, we observe that the parsing process
required by potential recipients to decode every announcement
can be excessively time-consuming. Second, we note that the
announcement, which merely contains the ephemeral public
key, does not offer sufficient information for recipients to
identify the relevant assets and rights in a stealth interaction.

To remedy these limitations, we focus on enhancing the
efficiency and flexibility of the recipients by modifying the an-
nouncement and publication process and introducing a “view
tag” approach. We intend to enhance the overall function-
ality of the protocol, thereby facilitating its application in
blockchain environments.

Announcement. The set of announcements, denoted by
A | a ∈ A, contains information that enables prospective
recipients to identify themselves as the intended recipient of a
stealth address transaction and locate the corresponding stealth
address. Generally, the recipient utilizes the ephemeral public
key disclosed by the sender to compute the stealth address
and validate that it corresponds with the recipient address
of the transaction. This procedure allows users to confirm
that they are indeed the rightful recipients of the transaction.
This process involves two RPC requests — one for obtaining
the announcement and another for retrieving the transaction
recipient.
To refine the parsing process and enhance its flexibility,
we propose integrating the stealth address Raddr

st into the
announcement a that is emitted for every stealth address
transaction. This enables a direct comparison between the
derived stealth address Raddr

st and the address listed in the
announcement Raddr

st ’, enabling the recipient to determine if
they are the intended recipient without the need to initiate
supplementary RPC requests to obtain transaction recipients
or query balances for different assets on the derived stealth ad-
dress. The condition Raddr

st == Raddr
st ’ confirms whether the

parsing user is the intended recipient. By consolidating all the
vital information the recipient needs within the announcement,
we obviate the need for the recipient to initiate an extra RPC
call.

View Tag. View tags represent a technique employed
within the Monero blockchain protocol, allowing recipients
of stealth address transactions to bypass certain steps in the
parsing process under specific conditions [3], [33]. Rather than
computing the stealth address and comparing it to the address
in the announcement, the recipient can hash the DH secret
and compare the most significant n bytes with the view tag
documented in the announcement. In this case, n can be kept
very small, so setting n = 1 means that a full derivation
of the stealth address must only be attempted 1/256 of the
time at the cost of only a single-byte view tag. To construct
the view tag, senders use their ephemeral key pair (p, P ) to
compute the hashed DH secret kh = h(p × RSC) and select
the most significant n bytes of kh. The resulting view tag Q,

where Q = kh[:n], is disclosed alongside the stealth address
transaction.
The recipient, possessing the scanning key pair (rSC , RSC),
can also compute the view tag by following the same proce-
dure, Q′ = h(rSC × P )[:n], and compare it to the view tag
listed in the announcement, Q == Q′. If the view tags do not
match, the parsing user can omit every subsequent operation
for the current announcement and advance to the next one.
It is worth noting that exposing n bytes of the hashed DH
secret affects the users’ privacy, as attackers may attempt to
brute-force a user’s stealth address by applying the view tag
to potential recipients. Nevertheless, such attacks are likely to
be successful only for sufficiently large n.
The parsing process then involves the following steps on each
announcement (P,Raddr

st ,Q) ∈ a | ∀a ∈ A:
1) Multiply P with the scanning private key rSC :

k = rSC × P .

2) Hash the derived shared secret kh = h(k).

3) Derive the view tag Q’= kh[:n]

4) Compare the derived view tag with the one in the announce-
ment Q == Q′.

5) Only if the view tag matches, the recipient continues to
compute the stealth address and compare it to the address
logged Raddr

st ’= h((kh + rSP)×G)[-20 : ] = Raddr
st .

Like Monero, we use view tags that are 1 byte in size and
insert them into the metadata field, taking up the first byte.

D. Public Key Management

Considering the usage of dual-key mechanisms, we advocate
for integrating a key management solution that facilitates
blockchain users to store their stealth meta-addresses publicly
in a predefined location. Absent a dual-key configuration, a
central repository for storing public keys would not be neces-
sary. Users could alternatively derive another user’s public key
by extracting it from a transaction that the latter has signed.
It is crucial to mention that the SAP could still be employed
even without a central repository. Thus, any key management
solution can be built atop the fundamental protocol.

We design a fully autonomous and lightweight registry
contract to maintain a record of registered users and their
corresponding stealth meta-addresses. This contract predomi-
nantly consists of getter and setter methods that assist users in
registering their stealth meta-addresses on the blockchain or
retrieving those of others. Moreover, the registry permits users
to register a stealth meta-address on behalf of another user
by providing a valid signature from the respective registrant.
Finally, an event is broadcasted each time a user registers a
new stealth meta-address.

Our proposed registry contract includes dynamic size stor-
age slots for the stealth meta-address to ensure compatibility
with various elliptic curves and cryptographic schemes. This
allows for the construction of supplementary stealth address
implementations on top of the existing framework, capitalizing
on the benefits of a shared registry. Users can register distinct
stealth meta-addresses for different cryptographic schemes by
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1 pragma solidity ˆ0.8.0;
2

3 interface BaseSAPRegistry {
4

5 /// @dev Emitted when a registrant updates their
stealth meta-address.

6 event StealthMetaAddressSet(
7 bytes indexed registrant,
8 uint256 indexed scheme,
9 bytes stealthMetaAddress

10 );
11

12 /// @notice Maps a registrant's identifier to the
scheme to the stealth meta-address.

13 mapping(bytes => mapping(uint256 => bytes)) public;
14

15 /// @notice Sets the caller's stealth meta-address for
the given stealth address scheme.

16 function registerKeys(
17 uint256 scheme,
18 bytes memory stealthMetaAddress
19 ) external;
20

21 /// @notice Sets the `registrant`s stealth
meta-address for the given scheme.

22 function registerKeysOnBehalf(
23 address registrant,
24 uint256 scheme,
25 bytes memory signature,
26 bytes memory stealthMetaAddress
27 ) external;
28 }

Listing 2. Registry Contract Interface

specifying a scheme ID. For instance, a user could register
one stealth meta-address with an elliptic curve E(F ) and
another for the curve E(F ′) | F ̸= F ′, thus avoiding conflicts.
This provision ensures compatibility with future cryptographic
methods.

Algorithm 1 — Register Stealth Meta-Address
Input I: Scheme ID id

Input II Stealth Meta-Address SMA in byte-format
Input III: Caller/Signer C
Input IV: (optional): Signature sig

1: Rx
SC , R

x
SP ← parse compressed pubkeys(SMA)

2: Rpre
SC , R

pre
SP ← Rx

SC[0], Rx
SP [0]

3: Rx
SC , R

x
SP ← Rx

SC[1:], Rx
SP [1:]

4: assert Rpre
SP == (2|3) & Rpre

SC == (2|3)
5: assert on curve(Rx

SP , id) & on curve(Rx
SC , id)

6: if sig then
7: registerKeysOnBehalf(id, C, SMA, sig)
8: else
9: registerKeys(id, C, SMA)

The registerKeys function accepts the scheme ID, the stealth
meta-address, and, optionally, a signature. The stealth meta-
address includes a variable-sized field, allowing for manag-
ing diverse public key formats and sizes. As illustrated in
Algorithm 1, the registration process involves parsing the
stealth meta-address to confirm that the two public keys
are on the specified elliptic curve. This validation can be
performed off-chain, hence circumventing unnecessary on-
chain computations. For other cryptographic methods, other
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Fig. 3. System Model: A schematic representation showcasing the pivotal
Announcer contract and optional registration contract, surrounded by imple-
mentation contracts and auxiliary services enhancing protocol security and
efficiency.

validation methods can be used.
Our proposed registerKeys function registers the public keys

through a mapping that associates the scheme ID with the
stealth meta-address. This mapping is subsequently linked
to the registrant’s address in another mapping. Senders can
interact with the registry to retrieve the stealth meta-address
of another user by providing a scheme ID and the recipient’s
address.

E. Summarized System Model

In Figure 3, we illustrate the integration of the Announcer
contract in a comprehensive framework. Both senders and
recipients involved in stealth address transactions can directly
interact with the Announcer contract or engage through in-
termediary contracts. These intermediaries aim to enhance
aspects like user experience, security, or efficiency.

For senders, there are two pathways to publish their an-
nouncements: through the Announcer contract or via an aux-
iliary implementation contract. This latter option can offer
added security features, including the verification of user-
provided information such as the scheme ID, stealth address,
ephemeral public key, or metadata. Furthermore, intermedi-
ary contracts can streamline the process by combining the
announcement with the asset transfer into a single transaction.
This integration means users don’t need separate transactions
for transferring funds and conveying SAP-required informa-
tion.

The design of the Announcer contract is highly flexi-
ble, allowing various SAPs to connect with it. This feature
benefits these protocols by providing a centralized location
for announcement publication. The implementation contracts
designed for this purpose can be tailored specifically for
individual operators/companies or created in a generic manner
to cater to the fundamental requirements of multiple entities.

For recipients, there are two pathways to parse announce-
ments: they can either directly extract announcements from
the Announcer contract or potentially utilize intermediary
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Fig. 4. View tag improvements: Conventional parsing (without employing
view tags) versus an upgraded variant using view tags. In summary, the view
tags approach operates approx. 7.6 times more efficient concerning parsing
time than conventional parsing. Both algorithms have a complexity of O(n).

parsing providers. These providers may offer services ranging
from simple spam filtering to more sophisticated sorting for
efficiency enhancement. In some cases, equipped with view-
ing private keys, these intermediaries can completely handle
parsing, alerting users upon receiving funds.

Figure 3 also displays the role of the optional registry
contract, designed to serve as a centralized repository for
stealth meta-addresses used by senders in the transaction
process. The contract facilitates two main functions. First,
senders have the opportunity to query the registry contract to
retrieve the stealth meta-address of a specific user. This feature
streamlines the process for senders, providing easy access
to the necessary recipient details for initiating transactions.
Second, users have the option to register or update their
own stealth meta-address within this contract for different
cryptographic implementations. By doing so, they signal their
readiness to receive transactions via the registered stealth
address method. This aspect of the contract allows for dynamic
updating and maintenance of stealth meta-addresses, ensuring
users can manage their transaction-receiving capabilities ef-
fectively across different cryptographic SAP.

VI. EXPERIMENTS

Figure 4 presents simulations that juxtapose the efficiency
gains achieved by implementing view tags, as measured by
parsing time. We compare the view tag approach to the
conventional DKSAP method (cf. “legacy parsing”). The
experiments were carried out on a machine with a 10-core
CPU Apple M1 Max chip using Node.js/JavaScript, with the
elliptic.js3 and js-sha3.js4 libraries employed for EC operations
and hash functions, respectively. No efficiency improvements
through multiprocessing were leveraged.

3https://github.com/indutny/elliptic
4https://github.com/emn178/js-sha3

Legacy parsing requires the recipients to perform the fol-
lowing operations to ascertain if they were the recipients of
stealth address transactions:

• 2x ecMUL — DH secret & DH secret to EC point,
• 2x HASH — hash of DH secret & address derivation,
• 1x ecADD — deriving the stealth address
Adopting view tags significantly decreases parsing time by

approximately 86.84%. In most cases, users are only required
to perform a single EC multiplication operation (ecMUL) and
a single hash operation (HASH), thus eliminating the necessity
for an additional ecMUL, ecADD, and HASH. With a 1-byte
view tag, the likelihood that users can bypass the remaining
computations after hashing the shared secret is 255/256 . This
suggests that users can almost certainly bypass the aforemen-
tioned three operations for most announcements. The realized
reduction in parsing time comes with a significant positive
impact on the user experience. As displayed in Figure 4, for
80,000 announcements, view tags enable the reduction of the
parsing time from 37.56 to 4.89 seconds.

TABLE II
TIMING TEST RESULTS

Operation Sym. Iterations Time (ms)
privKey → pubKey ϕ 1,000 381.442
privKey × pubKey µ 1,000 816.732
pubKey + pubKey α 1,000 48.573
keccak256 κ 1,000 3.209

Table II shows the results of a series of performance tests
conducted to measure the time taken for different crypto-
graphic operations. These operations include converting a pri-
vate key to a public key, multiplying a private key with a public
key, adding two public keys, and executing the keccak256
hash function. Each operation was performed 1,000 times
to ensure measurement accuracy and consistency. The times,
presented in milliseconds, provide valuable insights into the
computational overhead of these fundamental cryptographic
operations required in most SAPs.

In the following comparison of SAPs, we focus on those
that enhance privacy by not requiring the publication of an
announcement with the transaction. Specifically, the protocol
by Feng et al. [15] generates the DH secret based on the
transaction count between two addresses, while the protocol
by Abdulkader and Kumar [17] utilizes the most recent
transaction ID for this purpose. Both approaches contrast with
protocols that need additional published information and are
thus compatible with BaseSAP. Our analysis compares these
with a basic DKSAP implementation, using the results from
Table II. We omit the pubkey to address operation, as it
remains consistent across all protocols and does not affect the
comparative analysis.

For practical insights, we examine “Umbra,” a stealth ad-
dress implementation operational on the Ethereum mainnet
since August 2021. By assessing Umbra, we estimate the
volume of stealth address transactions. This involves com-
paring the number of transactions involving announcement
publications within the Umbra contract against the total num-
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ber of Ethereum transactions within the same period. This
comparison helps understand the additional transaction load
a user would incur if stealth address transactions were not
filterable by specific Announcement events.

From September 1st to November 30th, 2023, Umbra
recorded 1,752 stealth address transactions, while Ethereum
logged 94,402,727 transactions in total. Consequently, the ratio
of non-stealth to stealth address transactions is approximately
53,883 to 1, translating to a stealth address transaction share
of 0.001856%.

Utilizing the time measurements from Table II, we analyze
the efficiency of the PDKSAP (described in [15]) compared
to the standard DKSAP. The PDKSAP requires users to parse
significantly more transactions (53,883 times more) than an
approach allowing event-based filtering of non-stealth transac-
tions. Standard DKSAP processing of a single announcement
requires µ+ϕ+α+2κ, while PDKSAP operates with ϕ+α+2κ
per transaction, saving one EC multiplication.

Considering a scenario of 5,000,000 total transactions,
which include approximately 93 stealth address transactions,
the parsing time for PDKSAP is calculated as 5∗106(ϕ+α+
2κ). In contrast, DKSAP requires 93(µ + ϕ + α + 2κ). This
translates to a parsing time of 2,182,165 ms (36.37 minutes)
for PDKSAP versus 116.544 ms (0.117 seconds) for standard
DKSAP, without factoring in potential efficiency gains from
employing view tags.

Next, we determine the upper limit for the share of stealth
address transactions sT , in relation to the total transactions T ,
for DKSAP to maintain higher efficiency over PDKSAP:

sT (µ+ ϕ+ α+ 2κ) > T (ϕ+ α+ 2κ)

Solving for s yields:

s >
ϕ+ α+ 2κ

ϕ+ µ+ α+ 2κ

Using the measurements of Table II, the share of stealth
address transactions must exceed 34,83% for PDKSAP to be-
come more efficient than DKSAP, excluding any optimizations
from employing view tags or the time required for PDKSAP
to derive the transaction count between two addresses, which
would require additional RPC requests.

VII. SECURITY IMPLICATIONS

In this section, we provide an overview of the security
implications of our proposed protocol. We focus on DoS
attack vectors and privacy implications, particularly user de-
anonymization risks.

Threat Model: Our threat model considers two attacks
that could potentially compromise the security, efficiency, and
privacy of the SAP. We address each threat by implementing
appropriate countermeasures:

• DoS Attacks via Announcement Spamming: Our pro-
tocol is susceptible to DoS attacks where malicious actors
could flood the network with excessive announcements,
leading to resource exhaustion in the parsing process. We
further analyze two primary mechanisms to mitigate these
DoS attacks: a toll system and a staking system.

• User De-Anonymization: The risk of de-anonymization
in our protocol stems from the potential linkage of stealth
addresses to users’ real identities. Our protocol counters
this by ensuring that each transaction uses a newly
generated address for the recipient, rendering transaction
linkability and user identification extremely challenging.

Adversarial Model: In general, we assume that an adver-
sary may either try to attack the parsing process by spamming
announcements or try to compromise the privacy of users by
establishing links between “doxxed” accounts and the stealth
address. An adversary can observe the network traffic and
might know the identity behind certain addresses already used
(e.g., an exchange with Know-Your-Customer processes in
place). However, we assume an adversary cannot deanonymize
users using the DH secret between sender and recipient based
on the hardness of the elliptic curve discrete log problem. Fur-
thermore, our threat model excludes consideration of metadata
such as IP addresses, RPC nodes used, and browser character-
istics. This exclusion is based on the assumption that such data
falls outside the scope of the blockchain protocol itself and is
typically addressed through complementary privacy-enhancing
technologies such as VPNs, Tor, mixnets, or private gateways.

Security and Privacy Properties: The primary goal of our
protocol is to ensure unlinkable interactions between users,
thereby anonymizing transaction recipients. Furthermore, the
parsing process for users must not introduce significant costs
for the user.

DoS and De-anonymization countermeasures: In the
following, we further elaborate on DoS attack vectors that
may compromise our protocol’s efficiency and introduce a
cost function to guide the selection of appropriate DoS attack
countermeasures. We focus on two DoS attack prevention
mechanisms: a toll system and a staking system. After that, we
focus on the privacy implications of the protocol, specifically
emphasizing the risks of user de-anonymization.

A. Stealth Addresses and DoS attacks

Minimizing the time and CPU resources required for the
parsing process is crucial. As noted earlier, this process
involves executing several EC operations off-chain, thereby
circumventing the gas costs associated with on-chain transac-
tions. However, this exposes the protocol to the risk of DoS
attacks. In such scenarios, attackers can flood the network with
announcements, compelling users to perform unnecessary and
resource-intensive EC operations on these spurious messages.
This not only leads to the wasteful consumption of computa-
tional resources but also creates an imbalance where the cost of
issuing an announcement may be significantly lower than the
cost of processing it. Such a discrepancy can cause operational
inefficiencies and degrade the user experience by extending the
duration of the parsing process.

It is worth mentioning that the dual-key setup of our pro-
posed SAP enables users to share their private scanning keys
with third-party entities specializing in the parsing process.
These parties can offer their services for a market price and
come equipped with defense measures against DoS attacks.
These measures can be based on specific heuristics that help
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identify spammers. As a result, third-party parsing providers
can provide additional protection against DoS attacks targeting
users, thereby ensuring the effectiveness and reliability of the
parsing process.

The subsequent section focuses on two different approaches
for mitigating DoS attacks. We will discuss the merits of
each and explain why a staking-based mechanism is more
compatible with our objectives, offering a more robust solution
for maintaining the integrity and efficiency of the parsing
process.

Toll. The DoS attack vector can be addressed by introduc-
ing a toll system, which accounts for the computational costs
incurred during the parsing process. In particular, the toll T
is designed to increase the expense associated with emitting
announcements and may be proportionate to the parsing costs
c, which are accrued until the hashed DH secret is derived.
These costs comprise an EC multiplication cmul ∈ c and a
hashing operation chash ∈ c. The toll can be attached to the
transaction and paid by the sender, who is responsible for
initiating announcements and thus contributing to the parsing
load. This strategy ensures that the parsing costs associated
with announcements are not exclusively shouldered by the
recipients but also shared by the senders.
For the toll, we assume that:

T ≥ cmul + chash,

while the costs without using view tags can be described as
2(cmul+chash)+cadd. To ensure that adversaries pay at least
for the effort imposed on a single stealth address recipient, the
SAP must charge a fee of up to T .
The keccak-256 opcode, used with a 64 bytes input, costs
42 gas and is therefore negligible. Taking the EIP-196 [34]
precompiled contracts for the alt bn128 curve as a reference
for the cost of EC operations, we assume a gas usage of 40,000
units for EC multiplications. Therefore, a toll of 40,000 gas
units might be suitable. Based on a gas price of 10 gwei, the
toll would amount to 0.0004 ETH.
The primary function of the toll within our system is to
create an economic deterrent against spam, aiming to render
spamming activities financially impractical. It is not designed
to offset the total costs incurred during the parsing process. As
such, we can significantly lower the toll and still effectively
discourage DoS attacks. The specific value of the toll should
be carefully determined based on various factors such as
prevailing network conditions, the overall cost structure of the
protocol, and the desired level of protection against spamming.
Striking the right balance is key to developing an economically
viable strategy that efficiently counters DoS attacks while also
ensuring that legitimate users are not burdened with undue
financial costs.
There are various ways to utilize the collected toll, but
ensuring it does not directly return to the originator is es-
sential to maintain the DoS attack protection. One option for
the proposed protocol is to send it to the coinbase address
of the respective block, which is the address of the block
proposer. This approach would distribute the toll among block
proposers, giving them an additional incentive to include

stealth address transactions in blocks. Proposers then have
an additional source of extractable value, encouraging them
to prioritize stealth address transactions in block creation.
However, the initiators of stealth address transactions may
offset the expenses associated with the toll by reducing the gas
price. Since block proposers are indifferent to whether the paid
fee originates from transaction fees or payments to a block’s
coinbase, this strategy would effectively impede the toll’s
spam prevention. In blockchain networks similar to Ethereum,
each transaction requires a minimum base fee. This fee is
fundamental for including transactions in a block and acts as a
safeguard against users’ total evasion of transaction costs. This
base fee ensures that the implementation of the toll system,
as described, does not lead to significant issues. However, an
alternate approach becomes necessary for blockchain networks
that lack such a minimum transaction fee requirement. In these
scenarios, redirecting the toll to a different beneficiary, like the
commonly used burn account at address(0), presents itself as
a more appropriate solution for handling these fees.
Additional research and analysis are essential to ascertain the
ideal value of the toll across diverse network conditions and
under various scenarios. This is equally true for determining
how to utilize the toll effectively without inadvertently intro-
ducing elements of trust or centralization.

Staking. A staking system can be implemented to provide
users and third-party parsing providers with an additional tool
for managing spam and Sybil attacks. The Announcer contract,
or implementation contracts interacting with the Announcer
contract, may permit users to stake an arbitrary amount of ETH
and lock it within the contract. Users or third-party parsing
providers can then confirm if the sender of a stealth address
transaction has staked the required minimum collateral. If not,
they can deprioritize the respective announcements of that
sender in the parsing process.
Analogous to the ERC-4337 standard, a MIN STAKE VALUE
and a MIN UNSTAKE DELAY variable are established. The
latter could be directly encoded into contracts communicating
with the Announcer contract and may be set to one day. The
MIN STAKE VALUE can be agreed upon by network partici-
pants off-chain and may change over time. Theoretically, every
parsing provider may independently set the minimum stake
required for prioritization.
We define the staking system as follows:
• Let A be the set of all announcements, where

A = {a1, a2, a3, . . . , an}.
• Let U be the set of all users, where

U = {u1, u2, u3, . . . , un}.
• For each user u ∈ U , let D(u) be the amount of ETH staked

by user u.

• Let F be the function that maps a prioritization factor PF
to users F : ui → PF .

We can define two priority factors, one based on the amount
of ETH staked (PF1) and the other based on the number of
announcements made by a user (PF2).
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1) PF1: Staking Priority Factor
For each user ui ∈ U and their corresponding staked ETH
amount D(ui), we can define the staking priority factor
(PF1) as:

PF1(ui) = min(D(ui), MIN STAKE VALUE).

Users staking more than the MIN STAKE VALUE
are assigned a first prioritization factor equaling the
MIN STAKE VALUE

2) PF2: Announcement Count Priority Factor
For each user ui ∈ U and the number of announcements
made by ui, the announcement count priority factor can be
defined as:

n(ui) = |{aj ∈ A : aj is made by ui}|
To discourage spamming, we want to assign a higher
priority to users who made fewer announcements. We can
define the announcement count priority factor (PF2) as:

PF2(ui) =
1

n(ui)

Higher values of PF2 indicate higher priority for a user’s
announcements.

Now, we can combine these two priority factors into a single
prioritization factor (PF ) for each user:

PF (ui) = w1 · PF1(ui) + w2 · PF2(ui)

where w1 and w2 are weights assigned to PF1 and PF2,
respectively, to balance their importance in determining the
overall priority. For example, if we want to prioritize ETH
staked over the number of announcements made, we could set
w1 > w2. Initially, w1 and w2 may be set to 1.
Finally, parsing providers can order the list of announcements
based on each user’s computed PF values, prioritizing an-
nouncements made by users with higher PF values.
The proposed mechanism guarantees that the announcements
from staking users are prioritized in the parsing process
over those from users who did not stake. Furthermore, an-
nouncements from users with fewer announcements are given
precedence.
It is worth noting that the staking-based DoS attack prevention
is implemented on the parsing side, allowing parsing users and
third-party parsing providers to manage spam more effectively.
Spamming users can be disregarded or deprioritized when
serving their announcements to parsing users. By requiring
a stake for prioritization, Sybil attacks become inefficient, and
the stake of known spammers can be traced. This prevents
spammers from switching addresses to evade deprioritization.
This method gives preference to users who engage in fewer
stealth address transactions, ranking those with a greater vol-
ume of such transactions lower in terms of priority. While this
might seem unfair, especially in the context of exchanges that
may handle a large number of stealth address transactions, it’s
important to note that exchanges are anticipated to establish
their own parsing systems. These dedicated systems will
likely incorporate advanced caching strategies and could be

designed to prioritize transactions involving the exchange’s
own addresses above others. This approach balances the needs
of individual users and large entities like exchanges, ensuring
an efficient and equitable system.
Beyond its role in thwarting spam through Sybil attacks,
the staking approach offers the advantage of not incurring
additional user costs. Users can lock the required minimum
stake directly in the contract that interacts with the Announcer
contract. This integration facilitates a smooth and uninter-
rupted user experience, aligning with the system’s overall
efficiency and user-friendliness.
Based on the reasons discussed, we deem the staking approach
superior for our specific case instead of requiring a toll for
every stealth address transaction.

B. Privacy Guarantees and De-anonymization

Stealth addresses offer an extra layer of privacy, enabling
users to engage with each other discreetly without public dis-
closure of their interactions. However, maintaining privacy as a
recipient of stealth addresses requires careful consideration of
several factors. Errors, such as the compromise of private keys,
can lead to de-anonymization or, worse, the loss of user funds.
Therefore, it is essential for users to be vigilant and well-
informed to safeguard their anonymity and assets effectively.

Commingled Funds. Ethereum de-anonymization studies
commonly employ various heuristics to cluster addresses based
on user activity [35]–[38]. The use of stealth addresses on
Ethereum has the potential to improve privacy by shielding the
identity of the recipient of funds. However, commingling these
funds, i.e., mixing them with other assets, poses a risk to this
privacy enhancement. Particularly, when stealth address funds
become intermingled with “doxxed” funds — assets already
associated with a specific individual or entity through public
records or other means — the initial privacy benefits are com-
promised. This intermingling can occur during transactions
involving withdrawals from a stealth address. Users who lack
a comprehensive understanding of the privacy enhancements
provided by stealth addresses may inadvertently transfer funds
from a stealth address to an identifiable, or “doxxed,” address.
This practice can effectively erode the anonymity of the stealth
recipient. Therefore, it is paramount for users to thoughtfully
assess the risks associated with commingling funds destined
for a stealth address to maintain the intended level of privacy.

Transaction fee funding. To manage the transaction fees
required for activities like spending an ERC-20 token or
executing approval rights on the Ethereum blockchain, re-
cipients need to supply their stealth addresses with a small
amount of ETH. This is essential to avoid reliance on a
publicly identifiable address. To address this, senders can
include a nominal amount of ETH with each stealth address
transaction, thereby equipping recipients with the necessary
funds to cover gas costs for on-chain actions. Alternatively,
recipients can fund their stealth addresses with anonymized
ETH retrieved through another privacy tool, such as Tornado
Cash, or acquired via a trusted centralized exchange.
Another solution to the recipient’s transaction fee funding
problem involves entrusting specialized transaction aggrega-
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tors, often known as “searchers” in the Miner Extractable
Value (MEV) context. These intermediaries can provide users
with the option of a one-time payment in exchange for a batch
of “tickets,” which are subsequently used to cover the on-
chain inclusion costs of transactions. When a user intends to
initiate a transaction from a stealth address, they present the
aggregator with one such ticket. This ticket is encoded using
a Chaumian blinding scheme, a protocol widely employed in
the privacy-focused e-cash systems first proposed by David
Chaum in 1983 [28]. Upon receipt of the ticket, the aggre-
gator funds the recipient’s account bundles the transaction
with others and includes it within a block. Given that the
funds involved in this process are minimal and exclusively
used for covering transaction fees, the trust prerequisites are
significantly lower than those associated with a full-scale
implementation of privacy-preserving e-cash. This approach
has significant potential to bridge the gap between privacy
and functionality of stealth addresses.

Stealth Address Detection. A critical balance between
privacy and detectability must be considered when addressing
stealth address transactions. A public on-chain announcement
is made within the proposed protocol whenever a stealth
address transaction occurs, potentially enabling blockchain
forensics to discern related transactions. To mitigate this issue,
it is possible to broadcast the announcement through channels
different from the stealth address transaction or via a separate
transaction, breaking the link between the announcements and
the actual transactions.
Detectability is not an issue exclusive to Ethereum-based
privacy tools. Prominent Bitcoin CoinJoin wallets, such as
Wasabi and Samurai Wallet, integrate techniques enabling
users to mix their funds and obscure their origins. Despite
efforts, the resulting transactions may still be identifiable
using certain heuristic techniques [26], [39], [40]. Similarly,
Tornado Cash, a popular privacy tool within the Ethereum
ecosystem, confronts a comparable challenge, as any deposit
and withdrawal can be identified through publicly available
event logs. However, it is crucial to recognize that external
observers cannot de-anonymize the recipient of a stealth
address interaction without access to the shared DH secret
between the sender and the recipient.

VIII. CONCLUSION

Stealth addresses have significant potential to enhance the
privacy of programmable blockchain interactions. This work
proposes BaseSAP as a blockchain-based foundation-layer
protocol for stealth addresses compatible with different cryp-
tographic schemes.

BaseSAP is designed to function entirely autonomously,
leveraging the immutable nature of Smart Contracts to de-
liver the required functionality for deploying interoperable
stealth addresses on programmable blockchains. Compared
to the previous solutions, the protocol’s modularity not only
encourages the evolution of cohesive auxiliary layers on top
of its core implementation but also underscores its flexibility
in supporting various user applications, such as programmable

wallets, public goods funding, Decentralized Finance (DeFi),
Non-Fungible Tokens (NFTs), and more.

Through the simulations of an optimized Secp256k1-based
stealth address protocol, we demonstrated the operational
effectiveness of BaseSAP, the results of which we validated
on the Goerli and Sepolia test networks via our preliminary
prototype implementations.

Additionally, we conducted thorough cost analyses and
identified potential security vulnerabilities and attack vectors
that could undermine the privacy offered by SAPs. These
insights underscore the critical need to address privacy issues
prevalent in public and distributed blockchains.

In conclusion, our research provides the basis for im-
plementing stealth address technology on programmable
blockchains. It effectively demonstrates the efficacy of
BaseSAP in augmenting the privacy of public blockchain
transactions. Furthermore, it underlines the significant po-
tential of such protocols, especially when applied on the
application layer of programmable blockchains, for boosting
interoperability across various aspects of blockchain tech-
nology. The code base created for this work is available
under an open-source license to ensure reproducibility and
transparency [11]. The described protocol is available as an
ERC (Ethereum Request for Comment) [10].
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