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Abstract—EEG-based biometric systems verify the identity of
a user by comparing the probe to a reference EEG template of
the claimed user enrolled in the system, or by classifying the
probe against a user verification model stored in the system.
These approaches are often referred to as template-based and
model-based methods, respectively. Compared with template-
based methods, model-based methods, especially those based on
deep learning models, tend to provide enhanced performance and
more flexible applications. However, there is no public research
report on the security and cancellability issue for model-based
approaches. This becomes a critical issue considering the growing
popularity of deep learning in EEG biometric applications. In this
study, we investigate the security issue of deep learning model-
based EEG biometric systems, and demonstrate that model
inversion attacks post a threat for such model-based systems.
That is to say, an adversary can produce synthetic data based on
the output and parameters of the user verification model to gain
unauthorized access by the system. We propose a cancellable deep
learning framework to defend against such attacks and protect
system security. The framework utilizes a generative adversarial
network to approximate a non-invertible transformation whose
parameters can be changed to produce different data distribu-
tions. A user verification model is then trained using output
generated from the generator model, while information about
the transformation is discarded. The proposed framework is able
to revoke compromised models to defend against hill climbing
attacks and model inversion attacks. Evaluation results show that
the proposed method, while being cancellable, achieves better
verification performance than the template-based methods and
state-of-the-art non-cancellable deep learning methods.

Index Terms—Cancellable biometrics, deep learning, EEG
biometrics, user verification, neural networks, biometric security.

I. INTRODUCTION

Brain biometrics based on electroencephalography (EEG)
have garnered increasing attention due to the potential secu-
rity benefits, e.g., enhanced robustness against circumvention
and support for intrinsic liveness detection [1]. EEG signals
generated by cerebral activity are internal traits that are hidden
from public access, and the acquisition of EEG biometrics
requires the conscious and cooperative engagement of the
user [2]. Therefore, it is highly unlikely to capture EEG
signals of a target user covertly or remotely without the user’s
awareness, making EEG biometrics less susceptible to sensor
spoofing attacks. Moreover, as many features of EEG signals
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are non-volitional [3], meaning they are beyond the control or
conscious apprehension of the user, it protects the biometric
identifiers from deliberate disclosure. In addition, EEG, as an
indicator of brain activity and liveness [3], naturally provides
liveness detection capabilities and reduces the possibility of
presentation attacks using spoofing artifacts or lifeless body
parts. These peculiarities offer potentials for more flexible
and secure biometric systems [4]. However, more efforts are
expected to bring these advantages to fruition.

EEG biometric systems generally comprise three main
components: a signal acquisition module, a feature extraction
module, and a template comparison or classification mod-
ule [3], [4], [5]. Recently, deep learning-based approaches are
fast-growing, where neural networks of different types, archi-
tectures, and schemes are developed to automatically learn
high-level representations of EEG from the data for biometric
identification and verification [1], [6]. We can categorize them
into template comparison-based approaches and model-based
approaches. Template-based methods store a biometric tem-
plate for each user during the enrollment phase and compare
the probe against the template stored for the claimed identity
during the verification phase to decide whether to accept
or reject the request. A model-based approach, instead of
storing a template, trains and saves a classification model
in the system during the enrollment phase and then uses
the model for predictions during verification. Fig. 1 depicts
the differences between the two types of EEG biometric
systems. The question is: is it secure to directly store biometric
templates or classification models in EEG biometric systems?

The answer is no for template-based approaches. Studies
have shown that raw EEG signals and EEG templates (fea-
tures) used for biometric applications reveal personal charac-
teristics of users, including age and gender, as well as sensitive
information related to drug intake, neurological disorders, and
cognitive and mental states [7]. Therefore, when the templates
stored in the system are stolen or obtained illegally by at-
tackers, there will be a serious risk of user privacy leakage.
To address this issue, various privacy-preserving mechanisms
were proposed to protect EEG templates, including crypto-
graphic schemes based on hash functions [8] and fuzzy com-
mitment [9]. However, these approaches are not cancellable,
meaning the system cannot cancel and revoke a compromised
template in case of a security breach. This revocability issue
was further addressed by recent studies [10], [11], which
proposed cancellable template design for EEG biometrics
by using non-invertible transformations. The transformation
converts a raw biometric template into an ‘encrypted’ template
to be stored in the system so that template comparison
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Fig. 1: Template-based systems (top) and model-based systems
(bottom).

is performed in the transformed (encrypted) domain. More
importantly, if the stored template is compromised in a security
breach, the system is able to revoke the compromised template
and issue a new one by changing the parameters (e.g., the key)
of the transformation.

For model-based approaches, the answer is not confirmatory.
Previous studies in EEG biometrics consider deep neural
network-based verification model a secure procedure. For
example, Bidgoly et al. [12] analogized deep learning model
as a ‘hashing’ process that hides the user’s private information
and protect user’s raw EEG signals. However, this may not be
true since recent studies in machine learning suggest that a
deep learning model can leak information about its training
data through its output and parameters [13]. An adversary can
produce synthetic data based on the output and parameters
of the user verification model and produce synthetic data to
gain unauthorized access by the system. This type of attack
is often referred to as model inversion attack [14], [15], [16].
Unfortunately, there is no public research report on the security
issue for model-based EEG biometric systems. This becomes
a critical issue considering the growing popularity of deep
learning in EEG biometric applications.

In this study, we investigate the security issue of deep
learning model-based EEG biometric systems. Specially, we
launch the model inversion attack in a black-box setting [13],
[17], which assumes the attacker can submit queries to the
model and get the corresponding confidence scores but do not
have any available data from the users. This assumption is ap-
plicable because the authentication system is usually deployed
in the user device, which can be stolen and compromised
by an attacker to gain access to the target model [18], [19].
Model inversion attacks under black-box settings and more
aggressive white-box settings have been widely discussed in
biometric systems based on face recognition [14], [13], [15].
Our experimental results demonstrate that model inversion
attacks also post a threat for deep learning model-based EEG
biometric systems, i.e., an adversary can launch such attacks

to generate synthetic data to gain unauthorized access to the
system. As a synthetic sample that allows false acceptance will
compromise the whole system, it is insecure to directly train
a user verification model and store the model in the authenti-
cation system without a protection mechanism. Therefore, in
this paper, we propose a cancellable deep learning framework
to protect EEG biometric systems and offer revocability capa-
bilities to the classification model. This paper is a pioneering
study on cancellable biometric design for deep learning-based
approaches and provides insights for future research in this
direction. Our contributions can be summarized as follows:

• Previous studies consider deep learning model-based ap-
proaches secure for EEG-based biometric systems. We
launch model inversion attacks and demonstrate that
model-based systems are vulnerable to such attacks; thus,
additional security mechanisms are needed.

• We propose a novel concept of biometric cancellability:
distribution cancellability, which alters the raw EEG
data distribution through cancellable transformation be-
fore training a predictive model so that the model can
be revoked. Based on the concept, a cancellable deep
learning framework is proposed for EEG biometrics. The
framework is able to revoke compromised models in the
event of a security breach and issue new models to restore
normal functionality for user authentication.

• Technically, the framework utilizes a GAN model to
approximate a non-invertible transformation whose pa-
rameters can be changed to produce different distribution
transforms. A classifier is then trained for user verifi-
cation using data generated from the generator, while
information about the transformation is discarded. Only
the generator and classifier are saved in the system. When
the stored model is compromised, we can change the
transformation parameters to derive a new model for the
user.

The remaining content of this paper is organized as follows:
Section II reviews related works on EEG biometrics, relevant
attacks, and the security developments; Section III presents the
threat model and evaluation results of existing deep learning-
based EEG biometric verification models under the attack;
Section IV elaborates the proposed cancellable deep learning
framework for EEG biometric authentication, followed by
experiments and evaluation results in Section V. Section VI
concludes the study and discusses future research directions.

II. RELATED WORK

A. EEG Biometrics

Existing research on EEG biometrics mainly focuses on
the optimization of signal acquisition protocols, feature ex-
traction methods, and classification algorithms to improve
biometric performance. Popular signal acquisition protocols
been investigated include the resting state [20], motor imagery
tasks [21], event-related potential tasks [3], visual stimulation-
based protocols, and user-defined tasks such as the pass-
thoughts [22]. In terms of feature extraction, many EEG
features are extracted from the time, frequency, phase and
coherence domains, including parameters of autoregressive
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models [23], entropy measures [24], coefficients of Mel-
frequency cepstrum, connectivity features [25], [5], and EEG
spectral features derived from fast Fourier analysis [23], [26],
wavelet packet decomposition [6] and other time-frequency
analysis [4]. These features are combined into a biometric
template for template comparison, where a distance or sim-
ilarity measure (e.g. Manhattan distance [23]) is adopted to
calculate a matching score that is compared with a threshold
to decide whether to accept or reject the probe. Alternatively,
classification models can be established to make predictions.
In such cases, a training set (of raw EEG signals or features) is
created during the enrollment phase and used to train a model
for classification. Various algorithms have been proposed for
classification based on linear discriminant analysis [6], support
vector machines and neural networks [1], [27]. In particular,
as data collection becomes more accessible, deep learning
models are having an increasing impact on EEG biometrics
due to their dramatic improvements in classification accuracy.
Popular models include multilayer perceptron (MLP), con-
volutional neural networks (CNNs), long-short-term-memory
(LSTM) models, graph neural networks [1], [6]. These models
can capture high-level representations of EEG signals re-
lated to identity-bearing information, thus improving biometric
performance. However, both template-based and model-based
methods have security risks, and are potentially vulnerable to
model inversion attacks and hill-climbing attacks [18], [28].

B. Model Inversion Attacks and Hill Climbing Attacks for
Biometrics

In EEG biometrics, existing studies often consider deep
neural network a secure procedure. For example, Bidgoly et
al. [12] analogized deep learning model as a hashing process
and considered that it is safe to directly store deep learning
model in the verification system. However, this may not be
true because the resulting models may be used by attacker to
gain unauthorized access to the system.

Model inversion attacks aim to exploit the correlation be-
tween the input data and the model output to reconstruct
sensitive features of the training data [16]. This is typically
done by formulating an optimization problem to find the input
values that maximize the likelihood under the target model. So
far, effective model inversion attacks have been demonstrated
on simple models such as linear regression, but remain chal-
lenging on deep neural networks due to the intractable and
ill-conditioned nature of the underlying attack optimization
problem [14]. For a deep neural network, the input to be
recovered lies in a high-dimensional and continuous data
space and directly optimizing over the high-dimensional space
without constraints will fail to obtain true input. Currently,
most of the studies on model inversion related to biometrics
target shallow to medium-scale neural networks in the context
of face recognition [16]. However, the performance of such
attacks are not satisfactory because the recovered face images
are often blurry, unrealistic or unrecognizable. Meanwhile, the
reconstruction quality dramatically degrades with increasing
complexity of the model architecture. To improve model
inversion performance, additional constraints drawn from se-
mantic information and auxiliary knowledge are applied in the

optimization procedure [14], and generative models such as
generative adversarial networks (GANs) and the variants are
used for face image generation [15]. Although model inversion
attacks have been discussed in face recognition [14], [15] and
speaker recognition [19], there is so far no report on evaluation
of model inversion attacks for EEG biometrics.

Hill climbing attack is a closely related but different concept
from model inversion attack in biometrics. In a hill-climbing
attack, the adversary exploit the confidence scores produced
by the system with the goal of generating synthetic data that
can allow a false acceptance [18]. It has been identified as a
security threat to EEG biometric systems, especially template-
based approaches [28]. To defend, cancellable template design
based on non-invertible transformation has been proposed [10],
[11].

C. Security Mechanisms

For template based EEG biometric systems, researchers
have proposed security-enhancing algorithms based on hash
functions, fuzzy commitment and error-correcting codes to
protect the raw biometric templates. In these work, EEG
features are extracted and then encrypted by hash functions
(e.g., the fast Johnson-Lindenstrauss algorithm [8]) or hidden
through cryptographic schemes (e.g., a fuzzy commitment
construct [9]). Moreover, deep neural network were used to
generate EEG templates and such feature extraction process
are analogized as a hashing process that hides users’ private
information [12]. Another method [29] applies turbo codes and
modulation constellations to generate codewords and binds
EEG features with the codeword to derive a template. The
binding operator reveal no information about its arguments,
thus protecting EEG data. These methods, although privacy-
preserving, are not cancellable, and thus cannot resist hill-
climbing attacks and secondary attacks. With a synthetic
sample obtained through hill-climbing attacks, the whole
system is comprised. To defend, the system needs to be
privacy-preserving as well as cancellable, which means: 1) the
stored templates should not reveal any sensitive information
about the raw biometrics; and 2) the system should be able
to revoke compromised templates and issue new templates.
Recent studies proposed cancellable template designs for EEG
biometrics based on non-invertible transformations, e.g., the
multivariate polynomial functions [10], [11]. Specially, the
algorithms transform a biometric template (EEG features)
into an ‘encrypted’ template that preserves EEG privacy.
The transformation is non-invertible, thus recovering the raw
biometric template from the transformed template is infea-
sible. Moreover, uncorrelated templates can be derived from
the same biometric template by changing the parameter of
the transformation. Therefore, the algorithm can revoke and
replace a compromised template with a new one. However, so
far, there has been no related work providing a cancellability
function for model-based EEG biometric systems.

III. THREAT MODEL

This session introduces the threat model of model inversion
attacks for biometric systems and the evaluation results of ex-
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isting deep learning-based EEG biometric verification models
under such attacks.

A. Threat Model

In EEG-based biometric authentication, private data of
the user is used to train a deep learning model for user
verification. The model inversion attack is a representative
attack on machine learning models, which infers the training
data of a model by accessing the model. Depending on
the knowledge and capacity of the attacker, model inversion
attacks can be launched in three settings, which are the white-
box setting where all parameters of the model are accessible
to the attacker, black-box setting where attacker can access
soft inference output consisting of confidence scores [17],
and label-only setting where only inference results in hard
label forms are available. In terms of the threat model and
experimental setup, model inversion attacks with black-box
settings share similarities with the hill-climbing attacks [18]
as both of them aim to obtain synthetic input of the verification
model to gain false acceptance by exploiting the confidence
scores of the model. We refer to the verification model subject
to attacks as the target model, and focus on the black-box
setting which is a reasonable and applicable condition for EEG
biometrics that has been discussed in previous studies [28],
[18].

Adversary’s goal. Let T denote the target verification
model trained with a private dataset D, where T : x →
{s0, s1}, s ∈ [0, 1], is the established mapping from an EEG
input x ∈ Rd to a class, either 1 (user class) or 0 (non-
user/impostor class). The goal of the model inversion attacks
is to reconstruct representative data of the user class from the
target model T .

Adversary’s power. Adversaries are aware of the purpose
of the target model, as information on the task of the target
model can be easily inferred from the application or classes
of the model output [17], [30]. They can submit queries q
to the model and access the corresponding confidence scores
s ← T (q). This setting is similar to the one used in the hill-
climbing attack in biometrics [18].

B. Invasion Model

We implement the model inversion attack using a generative
model-based approach [14]. Fig. 2 illustrates the implemented
attack. Specifically, an invasion model is designed to gen-
erate synthetic data q from white noise n derived from a
Gaussian distribution. The invasion model consists of several
2D transposed convolution layers which apply fractionally-
strided convolution operation on the input to derive a pseudo
deconvolution of the input. It takes in the white noise signal n
and outputs a synthetic signal q of the same dimension as the
true EEG signal. The generated data q is then submitted to
the target user verification model to obtain the corresponding
confidence score s. A loss function comparing s to 1 (the
user class label) is utilized to optimize the parameters of the
invasion model. After the training process, the attacker can
obtain an invasion model that generates synthetic data to pass
the user verification model.

Fig. 2: Model inversion attack on deep learning based EEG
biometric system.

C. Evaluation of EEG Verification Model Under Attack

We investigate the security of the state-of-the-art deep
learning-based user verification model for EEG biometrics,
SOTA-DL, under the implemented attack on two databases,
SEED and BED. Details of the databases and signal prepro-
cessing procedures are presented in Section V. The imple-
mentation of the SOTA-DL user verification model follows
a convolutional neural network architecture which has been
demonstrated effective in extracting highly-distinctive features
from EEG signals for biometric recognition. Table VI in
the Appendix provides the network configuration details of
the SOTA-DL user verification model. Note that the network
configuration needs to fit the number of channels and sampling
rate of the data, therefore, adjustment applies for different
databases. The training adopts the ADAM optimizer with a
learning rate of 0.0001, batch size of 16, training epochs of
600, and a dropout rate of 0.2.

For each subject, we train a SOTA-DL verification model
as the target model subject to attacks. Then an invasion model
is trained to attack the target model. The neural network
configuration for the invasion model is summarized in Ta-
ble VII in the Appendix. We train the invasion model with 1000
epochs, 100 batches per epoch and 100 samples per batch.
After the model converged, we generate 1000 test samples
using the invasion model to test whether these samples can
pass the target user verification model. The success rate is
calculated as the number of samples accepted divided by the
total number of test samples (1000). Table I summarizes the
attack success rate for each subject in the two databases. The
results show that the EEG user authentication system based
on SOTA-DL is vulnerable to model inversion attack, that is,
an attacker can launch such attacks to obtain synthetic data to
gain unauthorized access to the system, thereby compromising
the entire system.

However, having a synthetic data that can pass the authen-
tication model does not necessarily mean that the synthetic
data reflect the characteristics of the real raw data from the
user. We will refer to the synthetic data generated by invasion
model in the model inversion attack as the attack signal,
i.e., EEG attack. To investigate whether EEG attack is close
to the real signal EEG raw, we perform power spectrum
analysis and functional connectivity analysis on these signals
and compare their characteristics at the feature level. EEG
power and connectivity are two of the most important methods
for evaluating EEG signals, because the prominent features of
EEG are usually in the frequency domain and manifest as
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TABLE I: Success rate (%) of model inversion attacks on
SOTA-DL.

SEED (Movie) BED (Resting-mixed)
Subject Success Rate Subject Success Rate

1 100 1 100
2 100 2 100
3 100 3 100
4 100 4 100
5 100 5 100
6 100 6 100
7 100 7 100
8 100 8 100
9 100 9 100

10 100 10 100
11 100 11 100
12 100 12 100
13 100 13 100
14 100 14 100
15 100 15 100
– – 16 100
– – 17 100
– – 18 100
– – 19 100
– – 20 100
– – 21 100

interdependence of signals from different channels [26], [5].
Specifically, Fig. 3 visualizes the average band power of the
five canonical EEG frequency bands over the scalp, and Fig. 4
shows the beta band functional connectivity networks (FCNs)
computed by phase locking value (PLV). The example is from
Subject 2 under EO protocol on BED dataset. We can observe
different patterns for the real signal and synthetic attack signal,
indicating that the synthetic signal generated by the invasion
model cannot reflect the real characteristics of the user’s EEG
signal. That is to say, although the attack data obtained through
model inverse attack can pass through the system, it does not
necessarily follow the same data distribution as the private
user data. One possible explanation is that the optimization
process for the invasion model pushes the generated data to
have a confidence score close to 1, which may not always be
the case for the target verification model.

In summary, the experimental results demonstrate that
model inversion attacks can be utilized to obtain synthetic data
to gain unauthorized access to deep learning model-based EEG
biometric systems. However, this synthetic data may not reflect
the true characteristics of the user’s EEG at the feature level.
Similar results have been observed in the hill-climbing attack
for EEG biometrics with cancellable templates [10], [11],
where the attacker launched hill-climbing attacks to obtain
synthetic data which can fool the biometric system but is not
similar to the genuine user data. To defend against attackers
using synthetic data obtained from model inversion attacks to
gain unauthorized access, additional security mechanisms need
to be designed.

IV. PROPOSED METHOD

In this session, we present the design of the cancellable
deep learning framework that enhances the security of EEG

(a) Average band power - EEG raw

(b) Average band power - EEG attack

Fig. 3: Visualization of the average band power over the scalp
for raw EEG signal (top) and synthetic signal generated by
the invasion model in the model inversion attack (bottom)
for SOTA-DL. The five canonical EEG frequency bands are
considered.

Fig. 4: Visualization of the beta band functional connectivity
network using the phase locking value for raw EEG signal
(left) and synthetic signal generated by the invasion model in
the model inversion attack (right) for SOTA-DL.

biometrics, and elaborate the implementation of each compo-
nent.

A. Cancellable Deep Learning Framework

An overview of our framework is illustrated in Fig. 5. It
consists of four major components, including a non-invertible
transformation module, a generator, a discriminator and a
verification classifier.

During the enrollment stage, raw EEG signals are collected
from the user under a pre-defined acquisition protocol (e.g.,
resting state protocol), and then pre-processed to remove
noise and artifacts. Let x denote the pre-processed EEG
data. We convert x into y through a non-invertible transform
T (·, k) such that y = T (x, k), where k is a random key of
the transformation to revoke transforms. Changing the value
of k can produce different transforms. The non-invertibility
property of T guarantees that it is infeasible to invert a given y
and T to get x. Then we train a generative adversarial network
(GAN) to approximate the applied transform T . Specifically,
the generator takes in x and outputs z, and the discriminator
tries to discriminate the generated data z from the transformed
data y until they are no longer distinguishable. At this point,
we can consider the generator to have successfully replaced
the transform. We refer to the training of the generator and
discriminator as Phase 1 training, where the goal is to obtain
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Fig. 5: Proposed cancellable deep learning framework for EEG biometrics. At the end of the enrollment stage, the ‘Non-
invertible Transformation’ module and ‘Discriminator’ module (red box) are discarded. During the enrollment stage, Phase 1
training jointly updates the Generator and Discriminator, and Phase 2 training updates the Verification Classifier while freezing
the Generator obtained in Phase 1.

a generator that can replace the transformation. In Phase 2
training, a verification classifier is established using data pro-
duced from the generator and negative data samples. During
this process, the parameters of the generator model are frozen
and the optimization only updates the verification classifier.
The negative data samples are EEG signals from other users
or subjects, and can be collected from open EEG databases.
After training, a user model that consists of the generator
and verification classifier will be stored in the system, while
information about the transformation (including the random
key) and discriminator are discarded.

In the verification phase, EEG signals are collected and
preprocessed through the same procedures. Then preprocessed
data (a probe sample) is fed into the user model (generator and
verification classifier) to make a decision whether to accept or
reject the request. The framework offers cancellability to the
deep learning models stored in the system. If the user model
is compromised due to a security breach, we can revoke the
compromised model and replace it with a new one. To do
this, we randomly produce a new key to renew the transform
and repeat the training process to obtain a new user model.
The following content of this section will elaborate on each
component of the proposed framework.

B. Non-invertible Transformation

Non-invertible transformation is an effective way to achieve
cancellable templates to protect the raw biometrics. It is usu-
ally a many-to-one function designed to modify raw biometric
data into a new form within the feature or signal space.
Implementations of irreversible transformations include algo-
rithms based on random projections [31], [10] and polynomial

functions [32], [11]. In this study, we implemented the random
projection algorithm used in [10].

Let x be a EEG data sample, we have x ∈ RNc×Ns ,
where Nc and Ns denote the number of EEG channels and
the number of EEG time points, respectively. We initialize
a random seed k and generate a linear projection matrix M
through a random number generator, where M is of dimension
Ns × Nt (Nt is significantly smaller than Ns) and contains
random scalars drawn from the uniform distribution in the
interval (0, 1). Hence, we can transform the input signal into
an encoding via the linear projection matrix, i.e., y = x ·M
and y ∈ RNc×Nt . Since the projection matrix M forms an
under-determined system of equations, the transformation is
non-invertible. To generate a new transform, we only need to
change the random seed k and update the projection matrix
M .

The above projection process is a popular way to achieve
cancellable template designs, however, it only provides one-
time-pad security [31] and cannot resist the Attacks via Record
Multiplicity (ARM) [33]. The ARM attack is a well-known
attack that can retrieve raw biometrics data through com-
promising and correlating multiple templates. In our frame-
work, sensitive information such as transformed data and
non-invertible transformation parameter are not stored in the
system, therefore, ARM attack will be infeasible. It is also
worth noting that the proposed framework is not confined to
specific transformation. Completely different transformation
can be applied when revoking a compromised model.

C. Generative Model for Transformation Learning

We use a GAN model to approximate the transform de-
rived from the non-invertible transformation module. With
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adversarial play between two components, a generator and
a discriminator, the GAN learns a function approximation.
Specifically, the generator takes x and learns a distribution
of the target data y via exploiting the prior distribution of
its input p(x) and the generator function G(x;ΘG), where
ΘG is the parameter set of the G function. The discriminator
component learns a differentiable function D(y;ΘD), which
attempts to distinguish whether an input y is from the true
target distribution p(y) or the generator function G(x;ΘG).
The discriminator is trained through minimizing the mean
squared error between the predicted label and the true label
of each sample, while the generator is trained by minimizing
the function log(1 − D(G(z;ΘG)). Hence, the adversarial
optimization problem is formed as:

minGmaxDF (D,G) = Ey∼p(y)[logD(y;ΘD))] (1)
+ Ex∼p(x)[log(1−D(G(x;ΘG)))]

(2)

After training the GAN, the discriminator and transformation
components are discarded, and only the generator is retained
for training the verification classifier.

D. User Verification Model

The verification model adopts the state-of-the-art deep
learning model for EEG biometrics. It consists of several
convolutional blocks, followed by a fully connected layer to
aggregate features and output predictions. The verification
classifier is trained using the binary cross entropy loss as
follows:

Loss =
∑
i

−(yi ∗ log(pi) + (1− yi) ∗ log(1− pi)), (3)

where yi represents the actual class label and log(pi) is the
probability of that class.

V. EXPERIMENTAL EVALUATION

A. Database and Pre-Processing

EEG data used in our experiments are collected from two
databases, including the Biometric EEG dataset (BED) [34]
and the SJTU Emotion EEG Dataset (SEED) [35]. The two
databases contains EEG recordings of 19 and 15 subjects,
respectively. Different EEG elicitation protocols were adopted
for signal acquisition, and we select the resting states with
eye-open (EO) and eye-closed (EC) from BED since resting
states have been demonstrated to be effective and convenient
protocols for EEG biometrics [36]. The SEED is an emotion
database that focuses on the EEG of subjects watching movie
clips, where the movie clips are designed to trigger positive,
negative and neutral emotions in the subjects. Considering that
emotion may have an impact on biometric recognition, we
select EEG under the neutral condition for our experiment.
Moreover, the two databases utilized different EEG acquisition
equipment, including a medical-grade system (NeuroScan) and
a consumer-grade device (Emotive EPOC+), hence the signal

quality, number of channels and signal sampling rate vary. In
addition, both databases provide three sessions of recordings,
allowing the evaluation of cross-session performance. Details
about the databases are summarized in Table II.

TABLE II: Databases

Datasets #Subj. #Ch. #Sess. SamplingRate Protocols Devices
BED 21 14 3 256 Hz EO EC EPOC+**
SEED 15 62 3 200 Hz Movie (neutral) NeuroScan*
*medical-grade **consumer-grade

Raw EEG signals collected from the sensors are usually
contaminated with noise and artifacts, hence we perform an au-
tomatic EEG signal pre-processing pipeline, the HAPPE [37],
for denoising and artifact removal. Specific pre-processing
steps include filtering (alpha and beta bands [38]), bad channel
interpolation, ICA and artifact component rejection (with the
MARA algorithm [39]), and re-referencing (common average
referencing). The signal is also downsampled to half its
original sampling rate for efficiency. Finally, the preprocessed
signal is segmented into two-second samples by a non-
overlapping moving window. Therefore, each sample contains
two seconds of EEG signals which are 14×256 and 62×200
time points for data in BED and SEED, respectively.

B. Comparison Methods and Evaluation Metrics

The proposed method is compared with the state-of-the-art
algorithms for EEG biometric verification, including:

• State-of-the-art template based method for EEG bio-
metrics (SOTA-Temp). The template consists of EEG
autoregressive features, power spectral features, fuzzy
entropy features, and graph features calculated from the
EEG functional connectivity networks [8], [5].

• Cancellable EEG template design (Cancellable-
Temp) [11]. This method transforms the EEG graph
features into the encrypted domain through a non-
invertible transformation based on polynomial equations.

• State-of-the-art deep learning model based on convo-
lutional neural networks for EEG biometrics (SOTA-
DL) [12].

For verification, we report the classification accuracy and
equal error rate (EER) which is the error rate when the
false match rate (FMR) is equal to the false non-match rate
(FNMR). A false match happens when a non-user sample is
misclassified as user by the verification model, and a false
non-match is when a user sample is incorrectly recognized
as impostor. In addition, the detection error trade-off (DET)
curves are used to show the tradeoff between FMR and FNMR.

C. Network and Training Configurations

As suggested by existing findings, the implementation of
neural network architectures should take into account the
characteristics of specific signals. We slightly adjust the neural
network configurations for signals from different databases
considering the number of channels and sampling rate. The
configuration details are summarized in Table VIII in the
Appendix. To have a fair comparison, the user verification
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TABLE III: Within-session verification accuracy (%) and EER (%) of the proposed method and comparison methods on two
databases.

Method Performance
BED SEED

EO EC Resting-mixed Movie (neutral)

SOTA-Temp
Acc 91.1 87.98 84.24 95.92
EER 8.94 12 15.78 4.03

Cancellable-Temp
Acc 87.31 87.65 81.59 95.3
EER 12.7 12.36 18.41 4.71

SOTA-DL
Acc 93.72 90.13 95.26 90.11
EER 6.28 9.87 4.74 9.89

Cancellable-DL (proposed)
Acc 95.87 96.86 97.04 97.88
EER 4.13 3.14 2.96 2.12

TABLE IV: Cross-session verification accuracy (%) and EER (%) of the proposed method and comparison methods on two
databases.

Method Performance
BED SEED

EO EC Resting-mixed Movie (neutral)

SOTA-Temp
Acc 62.63 64.49 59.21 61.03
EER 37.28 35.64 40.66 38.97

Cancellable-Temp
Acc 61.10 63.10 57.24 62.28
EER 38.94 37.91 42.83 37.71

SOTA-DL
Acc 65.52 73.31 70.47 64.87
EER 34.48 26.69 29.53 35.13

Cancellable-DL (proposed)
Acc 71.12 74.79 71.41 71.69
EER 28.88 25.21 28.59 28.31

model (classifier) in the proposed framework shares the same
architecture and settings as the SOTA-DL model. For train-
ing, the ADAM algorithm is adopted for stochastic gradient
optimization with a learning rate of 0.0001, batch size of 16,
training epochs of 600, and a dropout rate of 0.2.

We perform both within-session evaluation and cross-
session evaluation. In the within-session experiment, both the
training and testing are performed on session 1 data. To ensure
that no data from any test impostor can be seen by the model
during the training stage, we separate the importer set from the
user set. Specifically, for each user, we separate the subsequent
five consecutive subjects as the impostor test set. Then, 80%
of the user data and the same amount of data randomly drawn
from the other users are used for training the networks. During
the testing stage, the remaining 20% user data and all data
from the impostor set are used for testing the verification
performance. The cross-session evaluation follows a similar
procedure, except that the training uses session 1 and 2 data,
and the testing is performed on session 3 data. The source
code will be available online1.

D. Verification Performance

Table III presents the within-session verification perfor-
mance of the proposed method and comparison methods in
terms of classification accuracy and EER. We can see that
deep learning model-based methods achieved significantly bet-
ter performance compared to the template-based approaches
in most of the cases. This improvement demonstrates the
capability of deep neural network models in learning ef-
fective identity-bearing representations from the raw signals

1https://github.com/cancellableEEGDeepLearning

for accurate user verification. It also explains the increasing
popularity of deep learning methods in EEG classification
for brain-computer interfaces. Therefore, designing security
mechanisms for deep learning-based EEG verification systems
is an important topic worthy of studying. Comparing results of
SOTA-Temp and Cancellable-Temp, it can be seen that the use
of cancellable template design (non-invertible transformation)
degraded the verification performance to varying degrees. This
often happens because non-invertible transformation resets the
order or position of the feature set, enlarging intra-class varia-
tions hence weakening the discriminatory power of the trans-
formed features. In comparison, the proposed Cancellable-DL
achieved better performance than the corresponding SOTA-
DL which is non-cancellable. In other words, the proposed
framework grants cancelability without compromising the
verification performance. This is because the generator in
our framework is user-specific and only learns to transfer
data distribution of the genuine user, hence impostor data
transformed by the generator can be better differentiated from
the user data distribution.

The cross-session performance is provided in Table IV.
Due to the intra-person variation of EEG signals, all methods
show performance degradation in cross-session experiments.
Similarly, the proposed cancellable deep learning method
achieved better verification performance than template-based
approaches, including non-cancellable and cancellable ones.
It also outperformed the state-of-the-art deep learning model
based method, which is non-cancellable. Fig. 6 shows
the corresponding DET curves obtained by SOTA-DL and
Cancellable-DL in the within-session and cross-session evalu-
ation.

In addition, we also report the verification accuracy of
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(a) BED-EO (within-session) (b) BED-EC (within-session) (c) BED-mixed (within-session) (d) SEED (within-session)

(e) BED-EO (cross-session) (f) BED-EC (cross-session) (g) BED-mixed (cross-session) (h) SEED (cross-session)

Fig. 6: Comparison of DET curves obtained by SOTA-DL and Cancellable-DL (proposed) in within-session and cross-session
evaluation.

SOTA-DL and Cancellable-DL for each subject in Fig. 7. We
can notice that some subjects are difficult to verify due to the
considerable large variations of the signals. This observation
is consistent with previous studies and poses an interesting
question for the longitudinal analysis of EEG biometrics [40].
In summary, the proposed method provides cancellability to
verification models while providing better performance than
the state-of-the-art deep learning models for EEG user verifi-
cation.

E. Security under Model Inversion Attack

In Section III, we perform the model inversion attack
on SOTA-DL, and demonstrate that the state-of-the-art deep
learning-based EEG user verification model is vulnerable to
the attack, with 100% attack success rate for all subjects
in BED and SEED datasets. In this section, we investigate
whether the proposed cancellable deep learning framework
can resist the second attack by revoking the compromised
model. Fig. 8 depicts the second attack [10], which refers to
the use of data generated from the invasion model derived from
model inversion attacks to try to break into the system after
the system has revoked the compromised models. Note that
the second attack is a concept for cancellable biometrics. For
non-cancellable methods such as SOTA-DL, the entire system
is already compromised after the first attack.

Success rates of the model inversion attack and second
attack for each subject in SEED and BED are summarized in
Table V. We can see that the success rate of the model invasion
attack (first attack) is 100% for all subjects, meaning that the
adversary is able to find synthetic samples that can pass the

user verification model. This observation is consistent with the
one for SOTA-DL in Section III, showing that model inversion
attacks using generative networks poses a threat to model-
based EEG biometric systems. Specifically, an adversary can
optimize an invasion model and exploit the confidence scores
produced by the target model to generate a synthetic sample to
gain false acceptance, thereby compromising the target model.

Fig. 9 and Fig. 10 visualize the average band power over
the scalp and beta band PLV FCNs for raw EEG signal and
attack signal generated by the invasion model, respectively.
The example is from Subject 2 under EO protocol on BED
dataset. We can observe that the real EEG signals from the user
and the attack signals generated by the invasion model exhibit
different patterns in terms of power features and functional
connectivity features, indicating a clear dissimilarity between
the two signals. The finding is consistent with that from SOTA-
DL that the synthetic signal generated by the invasion model
cannot reflect the real characteristics of the user’s EEG signal.
That is to say, although the attack data obtained through
model inverse attack can pass through the system, it does not
necessarily follow the same data distribution as the private
user data.

In previous non-cancellable systems, once a synthetic data
sample is found for the target model, the entire user verifica-
tion system is compromised. Our proposed framework offers
cancellability competencies to the user verification model:
the compromised model can be revoked and a new one
can be issued by changing the transformation parameters.
Table V shows that the success rate of the second attack
drops significantly to zero for most users, indicating the
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(a) Acc. BED-EO (within-session) (b) Acc. BED-EC (within-session) (c) Acc. BED-mixed (within-session) (d) Acc. SEED (within-session)

(e) Acc. BED-EO (cross-session) (f) Acc. BED-EC (cross-session) (g) Acc. BED-mixed (cross-session) (h) Acc. SEED (cross-session)

Fig. 7: Verification accuracy of SOTA-DL and Cancellable-DL (proposed) for each subject in within-session and cross-session
evaluation.

Fig. 8: Model inversion attack and second attack.

effectiveness of the proposed method in enhancing system
security and re-usability. The second attack results also reflect
the discrepancies between the data distribution learned by the
invasion model and the real user data distribution.

Overall, the experimental results demonstrate that the pro-
posed cancellable deep learning framework significantly re-
duces the possibility of attackers exploiting synthetic data
obtained by model inversion attacks to gain unauthorized ac-
cess to EEG biometric systems. The cancellability mechanism
enhances the system security and re-usability. We also notice
that the second attack rate for certain subjects (e.g., subject 9,
14 in SEED and subject 2, 4, 8 in BED) is high. This may be an
issue related to intra-person variation [2], [4] and the trade-off
between prediction and security [14]. A recent finding reveals
a paradoxical relationship between a model’s predictive power
and its susceptibility to general model inversion attacks, that
is, models with stronger predictive power are more sensitive
to the inversion attacks [14]. We will dig into this issue in our

TABLE V: Success rate (%) of the model inversion attack and
second attack for the proposed method.

SEED (Movie) BED (Resting-mixed)

Subject
Attack Success Rate

Subject
Attack Success Rate

First Second First Second
1 100 0 1 100 0
2 100 0 2 100 100
3 100 0 3 100 0
4 100 6.4 4 100 99.8
5 100 0 5 100 0
6 100 0 6 100 0
7 100 0 7 100 0
8 100 0 8 100 0
9 100 100 9 100 100
10 100 0 10 100 0
11 100 0 11 100 0
12 100 0 12 100 0
13 100 0 13 100 0
14 100 73.7 14 100 0
15 100 0 15 100 0
– – – 16 100 0
– – – 17 100 0
– – – 18 100 0.2
– – – 19 100 0
– – – 20 100 0
– – – 21 100 0

future study.

VI. CONCLUSION

Deep learning-based EEG biometric systems train and
store a predictive model for each user in the system for
verification. We demonstrate that such deep learning model-
based biometric systems are vulnerable to malicious attacks to
gain unauthorized access. Our results show that it is feasible
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(a) Average band power - EEG raw

(b) Average band power - EEG attack

Fig. 9: Visualization of the average band power over the scalp
for raw EEG signal (top) and synthetic signal generated by
the invasion model in the model inversion attack (bottom) for
the proposed method Cancellable-DL. The five canonical EEG
frequency bands are considered.

Fig. 10: Visualization of the beta band functional connectivity
network using the phase locking value for raw EEG signal
(left) and synthetic signal generated by the invasion model in
the model inversion attack (right) for the proposed method
Cancellable-DL.

for an imposter to exploit a generative model to obtain
synthetic data to pass the biometric system. In such cases,
the verification model is compromised, and the corresponding
biometric system is no longer secure. In this paper, we present
a cancellable deep learning framework to protect deep learning
model-based EEG biometric systems. The framework consists
of a generator, a discriminator, a non-invertible transformation,
and a verification classifier. During the enrollment stage, EEG
data of the user are transformed through the non-invertible
transformation, and we jointly train the generator and discrim-
inator in a GAN structure to approximate the non-invertible
transformation. Then a verification classifier is established us-
ing data produced by the generator. After training, a predictive
model that consists of the generator and verification classifier
will be stored in the system, while information about the trans-
formation (including the random seed) and discriminator are
discarded. When a model is compromised by model inversion
attacks or hill-climbing attacks, the framework is able to issue
a new transformation and produce a new predictive model to
replace the compromised one. Our experimental results show
that our proposed method provides comparative verification
accuracy while offering model cancellability competency. In
our future study, we will look into the intra-subject variation
problem of EEG and aim to improve cross-session verification
performance, which is an open research question. In addition,

a deep learning-based EEG user verification model may leak
private information (signal characteristics or features) through
its hidden layers in a white-box setting, which means the
attacker can infer important physical traits of a user’s EEG
through the model. The proposed cancellable deep learning
framework can provide additional security capabilities to pro-
tect user privacy since models trained on transformed data
do not reflect physically interpretable features. The privacy
issue of deep learning-based EEG biometrics is still an open
research question, and we will investigate it in our future work.
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APPENDIX

Details about the neural network configuration used in the
experiments are summarized in Table VII and Table VIII.

TABLE VI: User verification model (SOTA-DL) configuration.

SEED Database:

Classifier Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
Conv1 3× 3 128 [2,2] [1,1] [0, 0] Yes/ELU/Yes

Conv2 3× 3 256 [2,2] [1,1] [0, 1] Yes/ELU/Yes

Conv3 3× 3 512 [2,2] [1,1] [0, 1] Yes/ELU/Yes

Conv4 3× 3 1024 [2,2] [1,1] [0, 0] Yes/ELU/Yes

Conv5 2× 9 1024 nul [1,1] [0, 0] Yes/ELU/Yes

FL nul nul nul nul nul No/Sigmoid/No

BED Database:

Classifier Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
Conv1 3× 3 128 [2,2] [1,1] [0, 0] Yes/ELU/Yes

Conv2 3× 3 256 [2,2] [1,1] [0, 1] Yes/ELU/Yes

Conv3 2× 4 512 [1,4] [1,1] [0, 0] Yes/ELU/Yes

Conv4 1× 13 1024 nul [1,1] [0, 0] Yes/ELU/Yes

FL nul nul nul nul nul No/Sigmoid/No

BN: Batch normalization; AF: Activation function; DP: Dropout; FL: Fully connected layer

TABLE VII: Invasion model configuration

SEED Database:

Invasion Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
DeConv1 2× 5 1024 nul [1,1] [0, 0] Yes/ELU/Yes

DeConv2 2× 4 512 nul [2,2] [0, 1] Yes/ELU/Yes

DeConv3 2× 4 256 nul [2,2] [0, 1] Yes/ELU/Yes

DeConv4 3× 6 128 nul [2,1] [1, 0] Yes/ELU/Yes

DeConv5 2× 4 64 nul [2,2] [0, 1] Yes/ELU/Yes

DeConv6 2× 4 32 nul [2,2] [0, 1] Yes/ELU/Yes

DeConv7 3× 4 1 nul [1,2] [0, 1] No/No/No

BED Database:

Invasion Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
DeConv1 1× 4 1024 nul [1,1] [0, 0] Yes/ELU/Yes

DeConv2 2× 4 512 nul [2,2] [0, 1] Yes/ELU/Yes

DeConv3 2× 4 256 nul [2,2] [0, 1] Yes/ELU/Yes

DeConv4 2× 4 128 nul [2,2] [0, 1] Yes/ELU/Yes

DeConv5 2× 4 64 nul [2,2] [3, 1] Yes/ELU/Yes

DeConv6 3× 4 32 nul [1,2] [0, 1] Yes/ELU/Yes

DeConv7 3× 4 1 nul [1,2] [0, 1] No/No/No

BN: Batch normalization; AF: Activation function; DP: Dropout
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TABLE VIII: Model configuration for generator, discrimina-
tor and classifier of the proposed cancellable deep learning
framework.

SEED Database:
Generator Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP

Conv1 1× 9 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv2 1× 9 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv3 1× 9 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv4 1× 9 62 nul [1,1] [0, 0] Yes/No/No
Conv5 1× 1 1 nul [1,1] [0, 0] Yes/No/No

Discriminator Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
Conv1 1× 4 64 [1,2] [1,2] [0, 1] Yes/ELU/Yes
Conv2 1× 4 64 [1,2] [1,2] [0, 1] Yes/ELU/Yes
Conv3 1× 4 64 nul [1,2] [0, 1] Yes/ELU/Yes
Conv4 1× 5 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv5 62× 1 1 nul [1,1] [0, 0] No/Sigmoid/No

Classifier Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
Conv1 3× 3 128 [2,2] [1,1] [0, 0] Yes/ELU/Yes
Conv2 3× 3 256 [2,2] [1,1] [0, 1] Yes/ELU/Yes
Conv3 3× 3 512 [2,2] [1,1] [0, 1] Yes/ELU/Yes
Conv4 3× 3 1024 [2,2] [1,1] [0, 0] Yes/ELU/Yes
Conv5 2× 9 1024 nul [1,1] [0, 0] Yes/ELU/Yes

FL nul nul nul nul nul No/Sigmoid/No

BED Database:
Generator Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP

Conv1 1× 9 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv2 1× 9 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv3 1× 9 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv4 1× 9 14 nul [1,1] [0, 0] Yes/No/No
Conv5 1× 1 1 nul [1,1] [0, 0] Yes/No/No

Discriminator Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
Conv1 1× 4 64 [1,2] [1,2] [0, 1] Yes/ELU/Yes
Conv2 1× 4 64 [1,2] [1,2] [0, 1] Yes/ELU/Yes
Conv3 1× 4 64 nul [1,2] [0, 1] Yes/ELU/Yes
Conv4 1× 7 64 nul [1,1] [0, 0] Yes/ELU/Yes
Conv5 14× 1 1 nul [1,1] [0, 0] No/Sigmoid/No

Classifier Layers Kernel Size Out Ch. MaxPool Stride Padding BN/AF/DP
Conv1 3× 3 128 [2,2] [1,1] [0, 0] Yes/ELU/Yes
Conv2 3× 3 256 [2,2] [1,1] [0, 1] Yes/ELU/Yes
Conv3 2× 4 512 [1,4] [1,1] [0, 0] Yes/ELU/Yes
Conv4 1× 13 1024 nul [1,1] [0, 0] Yes/ELU/Yes

FL nul nul nul nul nul No/Sigmoid/No
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