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ABSTRACT
Novel AI-based code-writing Large Language Models (LLMs) such
as OpenAI’s Codex have demonstrated capabilities in many coding-
adjacent domains. In this work we consider how LLMs maybe
leveraged to automatically repair security-relevant bugs present
in hardware designs. We focus on bug repair in code written in
the Hardware Description Language Verilog. For this study we
build a corpus of domain-representative hardware security bugs.
We then design and implement a framework to quantitatively eval-
uate the performance of any LLM tasked with fixing the specified
bugs. The framework supports design space exploration of prompts
(i.e., prompt engineering) and identifying the best parameters for
the LLM. We show that an ensemble of LLMs can repair all ten of
our benchmarks. This ensemble outperforms the state-of-the-art
Cirfix hardware bug repair tool on its own suite of bugs. These
results show that LLMs can repair hardware security bugs and the
framework is an important step towards the ultimate goal of an
automated end-to-end bug repair framework.

CCS CONCEPTS
• Hardware → Hardware description languages and compi-
lation; • Security and privacy → Hardware security imple-
mentation; • Computing methodologies → Natural language
processing.

1 INTRODUCTION
‘Bugs’ are inevitable when writing large quantities of code. Fixing
them is laborious: automated tools are thus designed and employed
to both identify bugs and then patch and repair them [9, 23]. While
considerable effort has explored software repair, for Hardware De-
sign Languages (HDLs), the state of the art is less mature.
In this study, we focus on repairing security-relevant hardware

bugs.While linters [25, 49] and formal verification tools [2, 12] cover
a large proportion of functional bugs, fewer tools cover hardware
security bugs. Although formal verification tools like Synopsys FSV
can be used for security verification in the design process, they have
limited success [18]. Unlike software bugs, security bugs in hard-
ware are more problematic because they cannot be patched once the
chip is fabricated; this is especially concerning as hardware is typi-
cally the root of trust for a system [42]. With the ever-growing com-
plexity of modern processors, software-exploitable hardware bugs
are becoming common and pernicious [26, 28]. This has resulted in
the exploration of many techniques such as fuzzing [46, 48], infor-
mation flow tracking [7, 33, 52], unique program execution check-
ing [21] and static analysis [5, 11]. However, very few techniques
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Figure 1: LLMs can suggest repairs to designers.

address the automated repair of hardware bugs. The recently pro-
posed Cirfix [6] develops automatic repair of functional hardware
bugs and, to the best of our knowledge, is the only relevant effort
in this context thus far. Further efforts need to be made to support
the automated repair of functional and security bugs in hardware.

Large Language Models (LLMs) are neural networks trained over
millions of lines of text and code [13]. LLMs that are fine-tuned
over open-source code repositories can generate code, where a user
“prompts” the model with some text (e.g., code and comments) to
guide the code generation. In contrast to previously proposed code
repair techniques that involve mutation, repeated checks against
an “oracle,” or source code templates, we propose that an LLM
trained on code and natural language could potentially generate
fixes, given an appropriate prompt. As LLMs are exposed to a wide
variety of code examples during training, they should be able to
assist designers in fixing bugs in different types of hardware designs
and styles, with natural language guidance. In prior work [38, 45],
LLMs have been used to generate functional Verilog code. Machine
learning-based techniques such as Neural Machine Translation [47]
and pre-trained transformers [19] are explored in the software do-
main for bug fixes. Pearce et al. [37] use this approach to repair two
scenarios of security weaknesses in Verilog code.

Thus, in this work, we investigate the use of LLMs to gen-
erate repairs for hardware security bugs. We study the per-
formance of OpenAI Codex and CodeGen LLMs on instances of
hardware security bugs. We offer insights into how best to use
LLMs for successful repairs. An RTL designer can spot a security
weakness and the LLM can help to find a fix as shown in Figure 1.
Our contributions are as follows:

• Curating a benchmark of hardware security bugs and their
corresponding designs. These are open-sourced at [41].
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• Automated framework for using LLMs to generate repairs
and evaluate them. We make the framework and artifacts
produced in this study available [41].

• Automated end-to-end solution to detect, repair and evalu-
ate repairs for certain bugs utilizing static analysis scanners
from prior related work [5].

• Exploration of different LLMs and their parameters to sug-
gest how best to use LLMs in hardware bug repair. These are
posed as research questions answered in Section 5.

2 BACKGROUND AND RELATEDWORK
Our work borrows ideas from software domain and applies them
to the area of hardware design. Since this is not very common, in
this section we present some over-arching concepts that better help
understand our implementation.

2.1 Code Repair
Software code repair techniques continue to evolve (interested read-
ers can see the living review by Monperrus [32], which contains
an ever-growing list of automated repair tools and techniques).
Generally, techniques try to fix errors through the use of program
mutations and repair templates paired with tests to validate any
changes [27, 50, 51]. Feedback loops are constructed with a refer-
ence implementation to guide the repair process [30, 43]. Other
domain-specific tools may also be built to deal with particular areas
like build scripts, web, software models, etc.

Security bugs are critical bug types that can lead to vulnerable sys-
tems. They can be more difficult to detect and repair than functional
bugs, which can be detected by classical testing. Proving the pres-
ence or absence of a security bug is challenging. This has led tomore
‘creative’ kinds of bug repair, including AI-based machine-learning
techniques such as neural transfer learning [14] and example-
based approaches [31, 53]. ML-based approaches involve memoriza-
tion and generalization capabilities of neural networks, allowing
a greater ability to suggest repairs for “unseen” code. The example-
based approaches start off with a dataset consisting of pairs of bugs
and their repairs. Then, matching algorithms are applied to spot
the best repair candidate from the dataset. Efforts in repair are also
explored in other domains like recompilable decompiled code [40].
For digital hardware design, the recently proposed CirFix [6]

attempts to localize bugs in RTL designs and then repair them. The
researchers provide the benchmarks they develop for their study,
allowing us to apply our methods to compare results. While it is
the closest work, there are some fundamental differences in the
approaches which limit direct comparisons. These differences are
described in Table 1. CirFix performs both localization/identifica-
tion of the bug and the repair. These two parts can be examined
independently, e.g., Tarsel [52] uses hardware-specific timing in-
formation and the program spectrum and captures the changes of
executed statements to locate faults effectively. Tarsel outperforms
CirFix on CirFix’s benchmarks as a fault localizer. In our work, we
focus on the repair aspect. Our repair approach has the advantage
that an oracle is not needed. While CirFix instruments an oracle
to use the correct outputs to guide repairs, LLMs rely on the many
examples of RTL code from training to produce a correct version

of the buggy code. We compare our framework’s performance with
CirFix and discuss it in Section 5.6.

Table 1: Comparison with CirFix’s approach

CirFix [6] LLMs (e.g., this study)
Localization and repair Repair only (assumes location)
Oracle-guided No oracle needed
Uses repair templates
and operators Uses instructions

Iterative process One shot

2.2 Bugs in Register Transfer Level design
Register Transfer Level (RTL) designs, typically coded in Hardware
Description Languages (HDLs) such as Verilog, are high-level be-
havioral descriptions of hardware circuits specifying how data is
transformed, transferred, and stored. RTL logic features two types
of elements, sequential and combinational. Sequential elements (e.g.,
registers, counters, RAMs) tend to synchronize the circuit according
to clock edges and retain values using memory components. Com-
binational logic (e.g., simple combinations of gates) change their
outputs instantaneously according to the inputs. Whereas software
code describes programs that will be executed from beginning to
end, RTL specified in HDL describes hardware designs to be imple-
mented. As hardware, components run independently in parallel.
Like software, hardware designs have security bugs. By defini-

tion, RTL is insecure if the security objectives of the circuit are
unmet. These may include confidentiality and integrity require-
ments [39]. Confidentiality is violated if data that should not be
seen/read under certain conditions is exposed. For example, im-
proper memory protection allows encryption keys to be read by
user code. Integrity is violated if data that should not be modifiable
under certain conditions is modifiable. For example, user code can
write into registers that specify the access control policy. Secure
computation is a concern, and the synthesis and optimization of
secure circuits starts with the description of designs with HDLs [16].
Verisketch [8] defines a synthesis language to implement timing-
sensitive information flow properties to generate secure RTL.

2.3 Static Analysis
Static Analysis of code involves breaking down the code into its syn-
tactic and lexical elements and exploring this information without
simulating/compiling the code. This gives a lot of useful informa-
tion, primarily in the form of an Abstract Syntax Tree (AST), which
contains the variables, signals, operators, keywords, function def-
initions, parameters, and many other elements. Many tools have
utilized static techniques in repair [10, 20]. Static analysis is helpful
for bug detection and repair as it can be done in the early stages
of development. This is particularly beneficial in the hardware do-
main as once the RTL is synthesized and fabricated into a circuit
in silicon, patches are not possible, and the cost of fixing the issue
increases exponentially.
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2.4 CommonWeakness Enumerations
MITRE [15] is a not-for-profit that works with academia and in-
dustry to come up with a list of Common Weakness Enumerations
(CWEs) that represent categories of vulnerabilities in hardware and
software. A weakness is an element in a digital product’s software,
firmware, hardware, or service that can be exploited for malicious
purposes. The CWE list provides a general taxonomy and catego-
rization of these elements that allow a common language to be used
for discussion. It helps developers and researchers search for the
existence of these weaknesses in their designs and compare various
tools they use to detect vulnerabilities in their designs and products.
In this work, we address a few CWEs that our designs contain. We
identify a CWE that best describes the bug.

1234: Hardware Internal or Debug Modes Allow Override of Locks.
System configuration controls, e.g., memory protection is set after
a power reset and then locked to prevent modification. This is done
using a lock-bit signal. If the system allows debugging operations
and the lock-bit can be overridden in a debug mode, the system
configuration controls are not properly protected.

1271: Uninitialized Value on Reset for Registers Holding Security
Settings. Security-critical information stored in registers should
have a known value when being brought out of reset. If that is not
the case, these registers may have unknown values that put the
system in a vulnerable state.

1280: Access Control Check Implemented After Asset is Accessed.
Access control checks are required in hardware before security-
sensitive assets like keys are accessed. If this check is implemented
after the access, then the check is clearly useless.

1276: Hardware Child Block Incorrectly Connected to Parent System.
Hardware blocks are connected to a parent system that controls
their inputs. If an input is incorrectly connected, affecting security
attributes like resets while maintaining correct functionality; the
integrity of the data of the child block can be violated.

1245: Improper Finite State Machines (FSMs) in Hardware Logic.
FSMs are used in hardware to carry out different functionality ac-
cording to different states. When FSMs are used in modules that
control the level of security a system is in, it becomes important
that the FSM does not have any undefined states. These undefined
states may allow an adversary to carry out functionality that re-
quires higher privileges. An improper FSM can present itself as
unreachable states, FSM deadlock, or missing states.

2.5 Prompt Engineering
Prompt engineering is crucial to the performance of an LLM. Careful
prompt engineering outperforms the baseline LLM performances
in natural language tasks [44, 54]. A study exploring the use of
Copilot [22] to solve CS1 level coding assignments has shown that
tweaks to the prompt improve the performance from around 50%
to 60% [17]. Prompt variations are also important in improving
the results of text-to-image generation tasks[29, 36]. Thus prompt
engineering is crucial when using LLMs for code repair.

3 DESIGNS AND BUGS
To explore the idea of using LLMs to fix HW security bugs, we first
collate and prepare a set of benchmark designs, coming up with
ten hardware security bugs from three sources. The sources are
CWE descriptions on the MITRE website [15], OpenTitan System-
on-Chip (SoC) [1] and the Hack@DAC 2021 SoC [24]. Each bug is
represented in a design, as described in Table 2.

3.1 MITRE’s CWEs
We use examples provided in MITRE’s hardware design list to come
up with simple designs that may represent CWE(s). The bugs and
corresponding fixes for this source are shown in Figure 2.

3.1.1 Locked Register. This design has a register that is protected
by a lock bit. The contents of the register may only be changedwhen
the lock_status bit is low. In Figure 2(a), a debug_unlocked sig-
nal overrides the lock_status signal allowing the locked register
to be written into even if lock_status is asserted.

3.1.2 Lock on Reset. This design has a register that holds sensi-
tive information. This register should be assigned a known value
on reset. In Figure 2(b), the register locked should have a value
assigned under reset, but in this case, there is no reset block.

3.1.3 Grant Access. This design contains a register that should only
be modifiable if the usr_id input is correct. In Figure 2(c), the regis-
ter data_out is assigned a new value if the grant_access signal
is asserted. This should happen when usr_id is correct, but since
the check happens after writing into data_out in blocking assign-
ments, data_out may be modified when the usr_id is incorrect.

3.1.4 Trustzone Peripheral. This design contains a peripheral in-
stantiated in an SoC. To distinguish between trusted and untrusted
entities, a signal is used to assign the security level of the peripheral.
This is also described as a privilege bit used in Arm TrustZone to
define the security level of all connected IPs. In Figure 2(d), the
security level of the instantiated peripheral is grounded to zero,
which could lead to incorrect privilege escalation of all input data.

3.2 Google’s OpenTitan
OpenTitan is an open-source project designed to provide a sili-
con root of trust. It contains implementations of security measures
that make the SoC secure. We inject bugs by tweaking the RTL of
these security measures in different modules. The bugs and their
corresponding fixes for this source are shown in Figure 3.

3.2.1 ROM Control. This design contains a module that acts as an
interface between the ROMand the system bus. The ROMhas scram-
bled contents, and the controller descrambles the content for mem-
ory requests. We target the COMPARE.CTRL_FLOW.CONSISTENCY
security measure in the rom_ctrl_comparemodule. A part of this
measure is that the start_i signal should only be asserted in the
Waiting state, otherwise, an alert signal is asserted. In Figure 3(a),
because of our induced bug, the alert signal is incorrectly asserted
when start_i is high in any state other than Waiting.

3.2.2 OTP Control. This is a one-time programmable memory con-
troller that provides the programmability for the device’s life cycle.
It ensures that the correct life cycle transitions are implemented

3



1 module l o c k e d _ r e g i s t e r ( i npu t [ 1 5 : 0 ] Data_in ,
2 i npu t c lk , r e s e tn , wr i t e , l o c k _ s t a t u s , debug_unlocked ,
3 ou tpu t reg [ 1 5 : 0 ] Data_out ) ;
4 a lways @( posedge c l k or negedge r e s e t n ) beg in
5 i f ( ~ r e s e t n ) beg in
6 Data_out <= 16 ' h0000 ;
7 end
8 e l s e i f ( w r i t e &(~ l o c k _ s t a t u s | debug_unlocked ) ) beg in
9 e l s e i f ( w r i t e&~ l o c k _ s t a t u s ) beg in
10 Data_out <= Data_ in ;
11 end
12 e l s e i f ( ~ w r i t e ) beg in
13 Data_out <= Data_out ;
14 end
15 end
16 endmodule

(a) Locked Register: Bug - debug signal overrides lock status signal. Fix-
remove debug signal in condition.

1 module l o c k _ on _ r e s e t (
2 i npu t wire c lk , r e s e tn , unlock , d ,
3 ou tpu t reg l o cked ) ;
4 a lways @( posedge c l k or negedge r e s e t n ) beg in
5 i f ( un lock ) l o cked <= d ;
6 e l s e l o cked <= lo cked ;
7 i f ( ~ r e s e t n ) l o cked <= 0 ;
8 e l s e i f ( un lock ) l o cked <= d ;
9 e l s e l o cked <= lo cked ;
10 end
11 endmodule

(b) Lock on reset: Bug- register locked is not assigned a value under a
reset condition. Fix- locked register is assigned 0 at reset.

1 module
u s e r _ g r a n t _ a c c e s s ( da ta_out , u s r_ i d , da t a_ in , c lk , r s t _ n ) ;

2 ou tpu t reg [ 7 : 0 ] d a t a _ou t ;
3 i npu t wire [ 2 : 0 ] u s r _ i d ;
4 i npu t wire [ 7 : 0 ] d a t a _ i n ;
5 i npu t wire c lk , r s t _ n ;
6 reg g r a n t _ a c c e s s ;
7 a lways @ ( posedge c l k or negedge r s t _ n )
8 beg in
9 i f ( ! r s t _ n ) d a t a _ou t = 0 ;
10 e l s e beg in
11 da t a_ou t = ( g r a n t _ a c c e s s ) ? d a t a _ i n : d a t a _ou t ;
12 g r a n t _ a c c e s s = ( u s r _ i d == 3 ' h4 ) ? 1 ' b1 : 1 ' b0 ;
13 g r a n t _ a c c e s s = ( u s r _ i d == 3 ' h4 ) ? 1 ' b1 : 1 ' b0 ;
14 da t a_ou t = ( g r a n t _ a c c e s s ) ? d a t a _ i n : d a t a _ou t ;
15 end
16 end
17 endmodule

(c) Grant access: Bug- grant_access signal is used before it is assigned a
value. Fix- grant_access signal is used after it is assigned a value.

1 module soc ( c lk , r s t _n , rda t a , r d a t a _ s e c u r i t y _ l e v e l , d a t a _ou t ) ;
2 i npu t c lk , r s t _n , r d a t a _ s e c u r i t y _ l e v e l ;
3 i npu t [ 3 1 : 0 ] r d a t a ;
4 ou tpu t [ 3 1 : 0 ] d a t a _ou t ;
5 t z _ p e r i p h e r a l u _ t z _ p e r i p h e r a l (
6 . c l k ( c l k ) , . r s t _ n ( r s t _ n ) , . d a t a _ i n ( r d a t a ) ,
7 . d a t a _ i n _ s e c u r i t y _ l e v e l ( 1 ' b0 ) ,
8 . d a t a _ i n _ s e c u r i t y _ l e v e l ( r d a t a _ s e c u r i t y _ l e v e l ) ,
9 . d a t a _ou t ( d a t a _ou t ) ) ;
10 endmodule

(d) TZ peripheral: Bug- security level to peripheral is incorrectly
grounded. Fix- security level for data is correctly assigned to parent
signal.

Figure 2: MITRE CWE bugs and their corresponding repairs.
The repair (green) replaces the bug (red) for a successful fix.

as the entity of the SoC changes among the 4 – Silicon Creator,
Silicon Owner, Application Provider, and the End User. We target
the LCI.FSM.LOCAL_ESC security measure in the otp_ctrl_lci
module. A part of this measure is that the FSM jumps to an error
state if the escalation signal is asserted. In Figure 3(b), no error is
raised in such a case because of our induced bug.

1 / / s t a r t _ i
shou ld only be s i g n a l l e d when we ' r e in the Wait ing s t a t e

2 / / SEC_CM : COMPARE . CTRL_FLOW . CONSISTENCY
3 l o g i c s t a r t _ a l e r t ;
4 a s s i g n s t a r t _ a l e r t = s t a r t _ i && ( s t a t e _ q != Done ) ;
5 a s s i g n s t a r t _ a l e r t = s t a r t _ i && ( s t a t e _ q != Wait ing ) ;

(a) ROM Control: Bug- alert asserted when start is high in any state other
than Done. Fix- alert asserted when start is high in any state other than
Waiting.

1 i f ( e s c a l a t e _ e n _ i != l c _ c t r l _ p k g : : Of f | | c n t _ e r r ) beg in
2 s t a t e _ d = E r r o r S t ;
3
4 f sm_er r_o = 1 ' b1 ;
5 i f ( e r r o r _ q == NoError ) beg in
6 e r r o r _d = F smS t a t eE r r o r ;
7 end
8 end

(b) OTP Control: Bug- alert is not raised when escalation signal is high.
Fix- fsm alert signal is asserted appropriately.

1 StTx : beg in
2 v a l i d = 1 ' b1 ;
3 s t r b = { I f B y t e s { 1 ' b1 } } ;
4 / / t r a n s a c t i o n a c c ep t ed
5 i f ( kmac_da ta_ i . r eady ) beg in
6 cnt_en = 1 ' b1 ;
7 kmac_done_vld = 1 ' b1 ;
8
9 / / second to l a s t b e a t
10 i f ( cn t == CntWidth ' ( 1 ' b1 ) ) beg in
11 s t a t e _ d = S tTxLa s t ;
12 end
13 end

(c) Keymanager KMAC: Bug- kmac done signal is prematurely asserted.
Fix- do not assert done signal here.

Figure 3: OpenTitan bugs and their corresponding repairs.
The repair (green) replaces the bug (red) for a successful fix.

3.2.3 Keymanager KMAC. This design carries out the Keccak Mes-
sage Authentication Code (KMAC) and Secure Hashing Algorithm
3 (SHA3) functionality. It is responsible for checking the integrity of
the incoming message with the signature produced from the same
secret key. We target the KMAC_IF_DONE.CTRL.CONSISTENCY se-
curity measure in the keymgr_kmac_if module. A part of this
measure is that the kmac done signal should not be asserted outside
the accepted window, i.e., when the FSM is in the done state. In
Figure 3(c), because of our induced bug, the kmac done signal is
incorrectly asserted in the transmission state StTx.

3.3 Hack@DAC-21
Hack@DAC-21 examples are bugs in the hardware designs for
Hack@DAC 2021 CTF competition. Hack@DAC is a hackathon for
finding vulnerabilities at the RTL level for a reasonably complex
System-on-Chip (SoC). The bugs and their corresponding fixes for
this source are shown in Figure 4.

3.3.1 Csr regfile. This design contains a module that carries out
changes in control and status registers according to the system’s
state. This includes changes in privilege levels, incoming interrupts,
virtualization, and cache support. We consider the module’s func-
tionality pertaining to the stalling of the core in the case of receiving
an interrupt and/or debug request. In Figure 4(a), the debug signal
overrides interrupt signals.

3.3.2 DMA. This design contains the Direct Memory Access mod-
ule common to all blocks. It uses the memory address as input and
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1 / / Wait f o r I n t e r r u p t
2 always_comb beg in : w f i _ c t r l
3 / / wa i t f o r i n t e r r u p t r e g i s t e r
4 wfi_d = wf i_q ;
5 i f ( | mip_q | | d ebug_ req_ i | | i r q _ i [ 1 ] ) beg in
6 i f ( | mip_q | | i r q _ i [ 1 ] ) beg in
7 wfi_d = 1 ' b0 ;
8 end e l s e i f ( !

debug_mode_q && c s r _ op _ i == WFI && ! e x_ i . v a l i d ) beg in
9 wfi_d = 1 ' b1 ;
10 end
11 end

(a) Csr regfile: Bug- debug signal overrides interrupt signals. Fix- remove
debug signal in condition.

1 r i s c v : : pmp_access_ t pmp_access_ type_reg , pmp_access_type_new
; / / r i s c v : : ACCESS_WRITE or r i s c v : : ACCESS_READ

2 reg pmp_access_ type_en ;
3 reg pmp_access_ type_en ;
4 a lways @ ( posedge c l k _ i or negedge r s t _ n i ) beg in
5 i f ( ! r s t _ n i ) beg in
6 pmp_access_ type_en <= 0 ;

(b) DMA: Bug- pmp enable register is not assigned a value on reset. Fix-
pmp enable register is assigned 0 on reset.

1 s15 : beg in
2 Ou t _ d a t a _ f i n a l <= Out_data ;
3 c t _ v a l i d _ o u t <= 1 ' b1 ;
4 s t a t e <= s0 ;
5 end
6
7 d e f a u l t : beg in
8 s t a t e <= s0 ;
9 end
10 endcase

(c) AES2 Interface: Bug- Incomplete case statements. Fix- add default case.

Figure 4: Hack@DAC-21 bugs and their corresponding
repairs. The repair (green) replaces the bug (red) for a
successful fix.

performs read or write operations according to the Physical Mem-
ory Protection (PMP) configuration. We consider the PMP access
mechanism as the relevant security implementation. In Figure 4(b),
the pmp register is not assigned any value on reset.

3.3.3 AES 2 Interface. This design instantiates the Advanced En-
cryption Standard (AES) module and outputs the cipher text to the
system. It uses an FSM to interact with the AES (initialize, reset,
and checking valid output). In Figure 4(c), the case statement has
neither enough cases nor a default statement.

4 EXPERIMENTAL METHOD
To test the capability of LLMs to generate successful repairs, we
design experiments that use the designs and bugs detailed in Sec-
tion 3. In this section we present our framework that automates
the execution of our experiments, starting from the identification
of bugs to the evaluation of the repairs.

4.1 LLM-based Repair Evaluation Framework
The framework overview for our experiments is shown in Figure 5.
It can be broken down into four components, i.e., the Sources,
Detector, Repair Generator, and Evaluator. The Sources are
discussed in Section 3, and the Detector, used for bugs from Hack@
DAC-21, is discussed in Section 4.2.

4.1.1 Repair Generator. This block takes the location and CWE
of the bug as the input from the Source or the Detector. For MITRE

SOURCES

MITRE

OpenTitan

H@DAC21

REPAIR GENERATOR

DETECTOR

CWEAT

Instructions to
assist repair Prompt

generator

Large Language
Model

Location

CWE

Functional Evaluation

Testbenches (All sources)

Security Evaluation

Testbenches (MITRE,

OpenTitan)

CWEAT (MITRE)

EVALUATOR

Functional

Secure

Prompt 

to LLM

Repairs

Figure 5: Overview of the framework used in our experi-
ments It is broken down into 4 main components. Sources
are the designs containing bugs. Detector localizes the bug
(for bugs 8-10). Repair generator contains the LLM which
generates the repairs. Evaluator verifies the success of the
repair.

and OpenTitan, we assume that the location of the bugs, i.e., start-
ing and ending line numbers and the filepath of the buggy file, is
known. For Hack@DAC, we run a bug detector tool that gives us
the location and relevant CWE of the bugs as its outputs.

For each bug, we develop Instructions to assist repair. These
are comments before and after the buggy code that assist the LLMs
in generating an appropriate repair for that bug. The Prompt gen-
erator combines the code before the bug, buggy code in comments,
and instructions to form the Prompt to LLM. This can be worded
as ‘what the LLM sees’. An example of this construction is shown
in Figure 6 (a)-(c) for the design Grant Access. The instructions are
broken down into Bug Instruction and Fix Instruction. The former
describes the nature of the bug and lets the LLM know that the
bug follows. The latter follows the bug in comments and instructs
the LLM on how to fix the bug. These instructions are varied in
different degrees of detail according to the bug as discussed in
Section 4.3.1. The Large Language Model takes the Prompt to
LLM as input and outputs the Repairs. The repairs produced may
be correct or incorrect. Some of the repairs generated using the
prompt Figure 6(c) are shown in Figure 6 (d)-(f).

4.1.2 Evaluator. This block takes the Repairs generated by the
LLM and verifies their correctness by evaluating their functionality
and security. A repair is successful if it is both functional and se-
cure. We use ModelSim simulator as a part of Xilinx Vivado 2022.2
to simulate the designs and custom testbenches.

5



Table 2: Bugs Overview. We assign a CWE to each bug and give a description of the design.

Bug Design CWE Source Description

1 Locked
Register 1234 MITRE This register module supports a lock mode that blocks any writes after lock is set to 1.

However, it also allows override of the lock protection when scan_mode or debug_unlocked modes are active.

2 Lock on
Reset 1271 MITRE This register module supports a lock mode that allows writes after unlock is set to 1. The locked register

does not have a value assigned on reset and when the circuit is brought out of reset, the state will be unknown.

3 Grant
Access 1280 MITRE This module allows register contents to be modified only when correct user id is used.

However, the asset is allowed to be modified even before the access control check is complete.

4 Trustzone
Peripheral 1276 MITRE This module instantiates a peripheral within a SoC using a signal to distinguish between trusted and untrusted

entities. However, this signal depicting the security level is incorrectly grounded.

5 ROM
Control 1245 OpenTitan This module contains an FSM where an alert should be triggered if start signal is high in any state other than

Waiting. However, the state is incorrectly compared to the Done state instead of the Waiting state.

6 OTP
Control 1245 OpenTitan The life cycle interface FSM should move into an invalid state upon global escalation via life cycle.

However, the corresponding error signal for this transition is not asserted when the escalation signal is high.

7 Keymanager
KMAC 1245 OpenTitan This module has an FSM which has a done signal which should only be asserted at the time of completion.

However, this signal is asserted outside of expected window, i.e., during a transmission state.

8 Csr regfile 1234 H@DAC-21 If there is any interrupt pending or an incoming interrupt request is received, the core should be unstalled.
In this example, the core is also unstalled if there is a request to enter debug mode.

9 DMA 1271 H@DAC-21 This module has a security sensitive register that controls whether the PMP (Physical Memory Protection)
register can be written into. This register should be assigned a value on reset but it is not.

10 AES-2
interface 1245 H@DAC-21 The FSM for AES 2 interface has a total of 15 states and does not include a default statement for its 4 bit

state variable. This represents an incomplete case statement of an FSM.

Functional Evaluation is done using custom testbencheswe de-
veloped in Verilog. These are made for each design and contain tests
to check for various input vectors. A failed testbench indicates a
failure of at least one test or a syntax error in the design. For MITRE
designs, we develop testbenches that cover the design’s entire in-
tended functionality. For OpenTitan and Hack@DAC designs, we
cover partial functionality for inputs and outputs that pertain to the
buggy code. These designs require an additional step of forming the
Device Under Test (DUT) before simulation. This entails tracking
the files instantiated by the buggy file and the files that need to be an-
alyzed before the buggy file. This list of files is input to the simulator.

Security Evaluation is done through a combination of cus-
tom testbenches (for MITRE and OpenTitan) and CWEAT (for
Hack@DAC). For MITRE designs, the tests are designed according
to the weaknesses mentioned on the MITRE website for each bug.
For OpenTitan, we use the security countermeasures defined in
their relevant .hjson files for the peripherals. It is difficult to verify
the security countermeasure completely because that requires sim-
ulating the entire SoC through the software for Design Verification
by OpenTitan. This method is still a work in progress for the Open-
Titan team. The countermeasures that can currently be verified com-
pletely still require a lot of simulation time. Hence, we develop cus-
tom testbenches that verify very specific functionality for the bugs
we introduce in the OpenTitan designs. For Hack@DAC, we employ
CWEAT for security evaluation; this is discussed in Section 4.2.
Functional and Security Verification are not always mutually

exclusive. There is often an overlap between the two, e.g., for CWE
1271 bugs, the security verification requires both a value on reset
for the security-sensitive register and the correct lock mechanism.
The latter is also a requirement for correct functionality. In the
case of Bug 3, the functional verification is a subset of the security
evaluation because the goal of the design is to grant user access
under the correct input.

4.2 End-to-end example with CWEAT
We present a demonstrative end-to-end framework for the detection
and repair of some CWEs in Verilog. This includes the detection
of the bug, the generation of repair using this detection, and the
evaluation of the correctness of the repair generated. The elements
of this pipeline are represented in hatched blocks in Figure 5.
The Detector used is a static analysis tool that has the capabil-

ity to detect some weaknesses at the RTL. We use the methods
described in [5] to traverse the Abstract Syntax Trees (AST)s gen-
erated by the Verific Verilog parser. There is one AST produced
per module. Each node of the tree represents a syntactical element
of the RTL code with various information about identifiers, types,
values and conditions. The ASTs are traversed using keywords and
patterns to indicate potential vulnerabilities in CWEs 1234, 1271,
and 1245. We ran this tool over the Hack@DAC 2021 SoC and se-
lected three instances, one per CWE, for the purposes of this paper.
We use the same tool for security evaluation of the generated
responses. We replace the buggy code with the repaired code in the
SoC and run the tool again. If the same bug is picked up, i.e., the
same location and CWE, we can determine that the repair is not
successful. If that is not the case, we infer that the repair is adequate.

We envision the use of this (or similar) LLM-infused end-to-end
solution by RTL designers as they write Hardware Description Lan-
guage (HDL) code in the early stages of Hardware Design. CWEAT
can highlight the potential weakness to the designer, run it through
the LLM to produce repairs, choose the ones that are secure, and
present those as suggestions to the designer.

4.3 Experimental Parameters
LLMs have several parameters that can be manipulated to produce
responses. We change the prompt (as discussed in Section 4.1.1)
according to the bug and instructions. We also vary the Instruc-
tions, Temperature andModels while keeping the top_p, num-
ber_of_completions (n) andmax_tokens constant at 1, 20 and
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1 module u s e r _ g r a n t _ a c c e s s ( da ta_out , u s r_ i d , da t a_ in , c lk , r s t _ n ) ;
2 ou tpu t reg [ 7 : 0 ] d a t a _ou t ;
3 i npu t wire [ 2 : 0 ] u s r _ i d ;
4 i npu t wire [ 7 : 0 ] d a t a _ i n ;
5 i npu t wire c lk , r s t _ n ;
6 reg g r a n t _ a c c e s s ;
7 a lways @ ( posedge c l k or negedge r s t _ n ) beg in
8 i f ( ! r s t _ n ) d a t a _ou t = 0 ;
9 e l s e beg in
10 da t a_ou t = ( g r a n t _ a c c e s s ) ? d a t a _ i n : d a t a _ou t ;
11 g r a n t _ a c c e s s = ( u s r _ i d == 3 ' h4 ) ? 1 ' b1 : 1 ' b0 ;
12 end
13 end
14 endmodule

(a) Original buggy file for bug 3 in design Grant Access.

1 / / BUG : Access Con t ro l Check Implemented a f t e r
2 / / a s s e t i s Accessed .
3
4 / / Ensure t h a t a c c e s s i s g r an t ed b e f o r e da t a i s
5 / / a c c e s s e d .
6 / / FIX :

(b) Instructions used to assist repair utilizing variation c. The Bug instruc-
tion is highlighted in yellow and the Fix instruction is highlighted in gray.

1 module u s e r _ g r a n t _ a c c e s s ( da ta_out , u s r_ i d , da t a_ in , c lk , r s t _ n ) ;
2 ou tpu t reg [ 7 : 0 ] d a t a _ou t ;
3 i npu t wire [ 2 : 0 ] u s r _ i d ;
4 i npu t wire [ 7 : 0 ] d a t a _ i n ;
5 i npu t wire c lk , r s t _ n ;
6 reg g r a n t _ a c c e s s ;
7 a lways @ ( posedge c l k or negedge r s t _ n ) beg in
8 i f ( ! r s t _ n )
9 da t a_ou t = 0 ;
10 e l s e beg in
11 / / BUG : Access Con t ro l Check Implemented a f t e r
12 / / a s s e t i s Accessed .
13 / / d a t a _ou t = ( g r a n t _ a c c e s s ) ? d a t a _ i n : d a t a _ou t ;
14 / / g r a n t _ a c c e s s = ( u s r _ i d == 3 ' h4 ) ? 1 ' b1 : 1 ' b0 ;
15 / / Ensure t h a t a c c e s s i s g r an t ed b e f o r e da t a i s
16 / / a c c e s s e d .
17 / / FIX :

(c) Prompt-to-LLM: What the LLM gets as an input.

1 g r a n t _ a c c e s s = ( u s r _ i d == 3 ' h4 ) ? 1 ' b1 : 1 ' b0 ;
2 i f ( g r a n t _ a c c e s s ) d a t a _ou t = d a t a _ i n ;

(d) Correct repair produced by code-davinci-001 at temp=0.7.

1 da t a_ou t = ( g r a n t _ a c c e s s ) ? d a t a _ i n : d a t a _ou t ;
2 g r a n t _ a c c e s s = ( u s r _ i d == 3 ' h4 ) ? 1 ' b1 : 1 ' b0 ;

(e) Incorrect repair produced by code-davinci-001 at temp=0.5. This
response passed the functional evaluation but failed the security
evaluation.

1 i f ( g r a n t _ a c c e s s ) d a t a _ou t = d a t a _ i n ;

(f) Incorrect repair produced by code-davinci-001 at temp=0.7. This
response failed the functional and security evaluations.

1 module u s e r _ g r a n t _ a c c e s s ( da ta_out , u s r_ i d , da t a_ in , c lk , r s t _ n ) ;
2 ou tpu t reg [ 7 : 0 ] d a t a _ou t ;
3 i npu t wire [ 2 : 0 ] u s r _ i d ;
4 i npu t wire [ 7 : 0 ] d a t a _ i n ;
5 i npu t wire c lk , r s t _ n ;
6 reg g r a n t _ a c c e s s ;
7 a lways @ ( posedge c l k or negedge r s t _ n ) beg in
8 i f ( ! r s t _ n )
9 da t a_ou t = 0 ;
10 e l s e beg in
11 g r a n t _ a c c e s s = ( u s r _ i d == 3 ' h4 ) ? 1 ' b1 : 1 ' b0 ;
12 i f ( g r a n t _ a c c e s s ) d a t a _ou t = d a t a _ i n ;
13 end
14 end
15 endmodule

(g) Generated repair file using 6(d). This is sent to the Evaluator for
evaluation.

Figure 6: Prompt to LLM and sample repairs produced for
Bug 3 - Grant Access. Sub-figures (a)-(c) show how the bug
is combined with instructions to generate the prompt that
the LLM gets as one of its inputs. Sub-figures (d)-(f) show
some actual repairs generated by an LLM.

Table 3: Instruction Variations. We develop 5 types to assist
repair of bugs. Variation a is the base variation with no
assistance. The level of detail/assistance increases from
variation a to e.

Instruction
Variation Description

a No Instruction
b Natural language description of bug

c Natural language description of bug
Prescriptive instruction of how to fix

d Natural language description of bug
Descriptive instruction of how to fix

e Code examples of bug and fix

200 respectively. top_p is an alternative to sampling with temper-
ature, called nucleus sampling, where only results with probability
mass of top_p are considered. n is the number of completions
generated by the LLM per request.max_tokens is the maximum
number of tokens that can be generated per completion.

4.3.1 Instruction Variation . We test five instruction variants to
guide the repair of bugs. They are described in Table 3. Each vari-
ation has 2 parts – Bug Instruction and Fix Instruction. The
former describes the nature of the bug and precedes the commented
bug. The latter follows the bug in comments and represents guid-
ance to the LLM on how to fix the bug.
Variation a provides no assistance and is the same across all

bugs. The Bug instruction is “BUG:” and the Fix Instruction
is “FIX:”. The Bug Instruction for the remaining variations is a
description of the nature of the bug. We take inspiration from the
MITRE website and cater them according to the CWE they repre-
sent. For variation e this description is appended with an example
of a ‘generalized’ bug in comments and its fix without comments.
This generalization is done through using more common signal
names and coding patterns. The Fix Instruction for b and e is the
same as that for a. For c, it is preceded by a ‘prescriptive’ instruction
which means that natural language is used to assist the fix. For d,
however, it is preceded by a ‘descriptive’ instruction which means
that language resembling pseudo-code is used to assist the fix. The
components of instruction that change are shown in Table 4.

4.3.2 Temperature (t). A higher value means that the LLM takes
more risks and yields more creative completions. We use 𝑡 ∈
{0.1, 0.3.0.5, 0.7, 0.9}.

4.3.3 Models. We use four LLMs, three of which are made avail-
able by OpenAI [35] and one is an open-source model available
through [34]. The OpenAI Codex models are derived from GPT-3
and were trained on millions of public GitHub repositories. They
can ingest and generate code, and also translate natural language to
code. We use/evaluate code-davinci-001, code-davinci-002
and code-cushman-001 models. From Hugging Face, we evaluate
the model CodeGen-16B-multi, which we refer to as CodeGen
in this work. It is an autoregressive language model for program
synthesis trained sequentially on The Pile and BigQuery.
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Table 4: Details of Instruction Variations and Stop keywords used. The same Bug instruction is used for variations 𝑏,𝑐,𝑑 , shown
in column 2. In case of variation 𝑒, this Bug instruction (in column 2) is appended by an example of a bug and its repair in
comments, shown in column 3. Fix instructions for variations c and d precede the string “FIX:”, shown in columns 4 and 5
respectively. Additional stop keywords that terminate the further generation of tokens by LLMs are shown in column 6.

Bug Bug Instruction for
variations 𝑏,𝑐 ,𝑑 ,𝑒

Bug Instruction appended
for variation 𝑒

Fix Instruction
for variation 𝑐

Fix Instruction
for variation 𝑑

Stop
keywords

1
// BUG: Hardware Internal
or Debug Modes Allow
Override of Locks.

// if (write & (∼lock | debug)
// FIX:
if (write & ∼lock)

// Debug or scan signals
should not be included
in if condition

// Write data if write
signal high and lock
signal is low

‘\𝑛’

2
// BUG: Uninitialized Value
on Reset for Registers
Holding Security Settings.

// if(unlock) q <= d_in; else q <= q;
// FIX:
if(∼resetn) q<=0;
else if(unlock) q <= d_in; else q <= q;

// Ensure that the security
sensitive lock register is
assigned a value on reset.

// Assign 0 to register
when reset is low -

3
// BUG: Access Control
Check Implemented
After Asset is Accessed.

// d = (access) ? d_in : d_out;
// access = (id == 2’h2) ? 1’b1 : 1’b0;
// FIX:
access = (id == 2’h2) ? 1’b1 : 1’b0;
d = (access) ? d_in : d_out;

// Ensure that access is
granted before data is
accessed.

// Assert access when
id is correct. Then
assign data to register
if access is asserted.

end

4
// BUG: Hardware Child
Block Incorrectly Connected
to Parent System

// .in_security_level(1’b0),
// FIX:
.in_security_level(data_security_level),

// The security level of
the child signal should
match that of the parent
signal

// assign data security
level to input security
level

‘\𝑛’

5 // BUG: Incorrect Alert
Mechanism

// alert = start && (state!=FINISHED);
// FIX:
alert = start && (state!=IDLE);

// An alert signal should
be set if an FSM is
instructed to start in a
state that is not idle

// Assert alert signal
if start signal is
asserted and state is
not idle

‘\𝑛’

6 // BUG: Escalation does
not lead to fatal error

// if (escalate_i != 0 ) begin
// state_d = err_state;
// FIX:
if (escalate_i != 0 ) begin
state_d = err_state; fsm_err_o = 1’b1;

// FSM should raise
error if system is in
escalation

// Assert error when
escalation input is
high

end

7 // BUG: Done signal is
asserted prematurely

// if (ready) begin done_vld = 1’b1;
// FIX:
if (ready) begin done_vld = 1’b0;

// Do not assert done
signal in intermediate
states

// assign zero to done
signal in ready state end

8
// BUG: Hardware Internal
or Debug Modes Allow
Override of Locks.

// BUG: Hardware Internal
or Debug Modes Allow
Override of Locks.

// Debug or scan signals
should not be included
in if condition

// unstall core when
interrupt is high ‘\𝑛’

9
// BUG: Uninitialized Value
on Reset for Registers
Holding Security Settings.

// if(unlock) q <= d_in; else q <= q;
// FIX:
if(∼resetn) q<=0;
else if(unlock) q <= d_in; else q <= q;

// Ensure that the security
sensitive lock register is
assigned a value on reset.

// Assign 0 to register
when reset is low -

10 // BUG: Incomplete
case statement

// endcase
// FIX:
default: begin
state <= s0; end endcase

// Add a default case
statement

// Write a default case
statement where
initial state is
assigned to state

endcase

4.3.4 Number of lines before bug. Another parameter to consider
is in the prompt preparation: the number of lines of existing code
given to the LLM. Some files may be too large for the entire code
before the bug to be sent to the LLM. We, therefore, select a mini-
mum of 25 and a maximum of 50 lines of code before the bug as part
of the prompt. In Figure 6(a), this would be lines 1–9 (inclusive).
If there are more than 25 lines above the bug, we include enough
lines that go up to the beginning of the block the bug is in. This
block could be an always block, module, or case statement, etc.

4.3.5 Stop keywords. A stop keyword is specified to stop the re-
sponse of the LLM (i.e., the response is considered finished when
the stop keyword is generated by the model). They are not included
in the response. We developed a strategy that works well with the
set of bugs we have. The default stop keyword is endmodule. Ad-
ditional keywords used are shown in the column Stop keywords
in Table 4.
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5 EXPERIMENTAL RESULTS
We set up our experimental framework for each LLM, generating
20 responses for every combination of bug, temperature, and in-
struction variation. The responses are counted as successful repairs
if they pass functional and security tests. The number of successful
repairs is shown as heat-maps in Figure 7. The maximum value for
each element is 20, i.e., when all responses were successful repairs.

5.1 RQ1: Can LLMs fix hardware security bugs?
This work shows that LLMs can repair simple hardware bugs.
code-davinci-001, code-davinci-002, and code-cushman-001
yielded at least one successful repair for every bug in our dataset.
CodeGen was successful for 7 out of 10 bugs. In total, we requested
20,000 repairs out of which 6376 were correct, a success rate of
31.9%. The key here lies in selecting the best-observed parame-
ters for each LLM. code-davinci-001 performs best at variation
𝑑 , 𝑡𝑒𝑚𝑝 0.1 producing 71% correct repairs. code-davinci-002,
code-cushman-001 and CodeGen perform best at (𝑒, 0.1), (𝑑, 0.1)
and (𝑎, 0.3 and 0.5) with success rates of 70%, 58% and 12% respec-
tively. Performance of these LLMs across bugs is shown in Figure 8.

We can fine-tune the parameters for each bug. The choice of the
right combination of model, instruction variations and temperature
can yield near-perfect results. We present these best-observed set-
tings in Table 5. Under these settings, Bug 7 has a success rate of
85% and the rest have a success rate of 100%.

Table 5: Best-observed settings for each bug. ‘dv1’, ‘dv2’
and ‘cus’ stand for code-davinci-001, code-davinci-002
and code-cushman-001. Within the settings arrays, the
first element is the LLM, the second is a set of instruction
variations and the third is a set of temperatures.

Bug Best Setting
1 [dv1,b,0.1] [dv2,(b,d),(0.1,0.3)] [dv2,c,(0.1,0.3,0.5)]
2 [cus,d,0.1] [dv1,e,0.1] [dv2,e,(0.1,0.3)]

3 [cus,a,0.1] [dv1,c,(0.1,0.3)] [dv1,d,0.1]
[dv2,(b,c,e),(0.1,0.3,0.5)] [dv2,d,(0.1,0.3,0.5,0.7)]

4

[cus,(a,c,d),(0.1,0.3,0.5)] [cus,b,(0.1,0.3,0.5,0.7)]
[dv1,(a,b),(0.1,0.3,0.5)] [dv1,(c,d),(0.1,0.3,0.5,0.7)]
[dv2,(a,b,d),(0.1,0.3,0.5,0.7)]
[dv2,c,(0.1,0.3,0.5,0.7,0.9)] [dv2,e,0.1]

5 [cus,(c,e),0.1] [dv2, (a,c),(0.1,0.3,0.5)] [dv2,b,0.1]
[dv2, (d,e),(0.1,0.3)]

6 [cus,e,(0.1,0.3)]
7 [dv1,d,0.1]

8 [dv1,(b,e),0.1] [dv1,c,(0.1,0.3,0.5)]
[dv2,c,(0.1,0.3,0.5)] [dv2,e,(0.1,0.3)]

9 [cus,e,(0.1,0.3,0.5)] [dv1,e,(0.1,0.3)]
[dv2,e,(0.1,0.3,0.7)]

10 [cus,(c,d),0.1] [dv1,a,0.1] [dv1,(b,d),(0.1,0.3)]
[dv1,c,(0.1,0.3,0.5)] [dv2,(c,d),0.1]

5.2 RQ2: What bugs are amenable to repair?
The cumulative number of correct repairs for each bug is shown in
Figure 9. Bugs 3 and 4 were the best candidates for repair with suc-
cess rates of over 50%. These are examples from MITRE where the
signal names used clearly indicate their intended purposes. For the
Grant Access module, the signals of concern are grant_access
and usr_id used in successive lines. LLMs are able to interpret the
intended functionality that the usr_id should be compared before
granting access. Most successful repairs either flipped the order of
blocking assignments or lumped them into an assignment using
the ternary operator. Similarly, Trustzone Peripheral uses signal
names data_in_security_level and rdata_security_level
which illustrate their intended functionality.

Bugs 2, 6, 7, and 9 were the hardest to repair with success rates
of under 25%. Bugs 2 and 9 had the same bug of a register holding
security settings not initialized under reset. This was difficult to
repair because a fix required the creation of an always block with
an appropriate reset as well as re-creating the previous intended
functionality. Bug 7 was the hardest to repair because it was the
only bug that required a line to be removed without replacement as
a fix. We hypothesize that Bug 6 was hard to fix because it was diffi-
cult to phrase the fix instruction according to the description of the
bug provided by Opentitan. The fix relies on asserting the fsm alert
signal when escalation signal is high, but this condition is repre-
sented in code as if (escalate_en_i != lc_ctrl_pkg::Off)
which is harder to grasp by the LLMs.

5.3 RQ3: How should prompts be engineered
to assist the repair of hardware bugs?

The 5 variations from 𝑎 to 𝑒 increase in the level of detail. In general,
apart from CodeGen, all LLMs do better with more detail being
provided to assist repair as shown in Figure 10(a). Variations 𝑐-𝑒
perform better than variations 𝑎 and 𝑏. They include a fix instruc-
tion after the buggy code in comments, giving credence to the
use of two separate instructions per prompt (one before and one
after the bug in comments). Variation 𝑑 has the highest success
rate among OpenAI LLMs and is therefore our recommendation
for bug fixes. The use of a fix instruction in ‘pseudo-code’ fashion
leads to the best results. There is variation within LLMs for the
best-observed instruction variation, e.g., code-davinci-002 and
CodeGen perform best at 𝑒 .

5.4 RQ4: Does the temperature matter?
A higher temperature allows the LLM to be more creative in its
responses. As shown in Figure 10(b), the LLMs perform better at
lower temperatures. All OpenAI LLMs perform best at 𝑡 = 0.1
and CodeGen performs best at 0.3. A lower temperature leads to
less variation in responses as well, implying that the less creative
responses are more likely to be correct repairs.

5.5 RQ5: Are some LLMs better than others?
The code-davinci-002 LLM was the best performing, producing
2371 correct repairs out of 5000, giving it a success rate of 47.4%.
code-davinci-001, code-cushman-001 and CodeGen had suc-
cess rates of 40.4%, 33.1% and 6.68% respectively. The large differ-
ence between OpenAI LLMss and CodeGen is caused by CodeGen
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Figure 7: Results for all 4 LLMs represented as heatmaps. The maximum value for each small box is 20. A higher value
indicates more success by LLM in generating repair and is highlighted with a darker shade. All bugs were repaired at least
once by at least one LLM.

10



Figure 8: Results showing the performance of each LLM
across all bugs in the form of heatmaps. Each small square
shows the number of correct repairs for the corresponding
instruction variation and temperature of the LLM. Themax-
imum possible value is 200. A higher value indicates more
success in generating repairs and is shaded in a darker color.
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Figure 9: Number of correct repairs per bug. The number
above each bar shows the sum of successful repairs across
all LLMs for the corresponding bug. The maximum possible
value is 2000. A higher value indicates that the bug was
repaired more times.

being a much smaller LLM, having 16 billion parameters compared
to the OpenAI LLMs that are based on GPT-3’s ∼175B parameters
(the exact number of parameters for each of the OpenAI LLMs are
not public). Additionally, code-cushman-001 is slightly inferior
to the davinci LLMs because it was designed to be quicker. This
may mean that it has fewer parameters or that it has been trained
over less data or both.
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Figure 10: Results: Trends Across Models. The top graph
shows the number of correct repairs for LLMs for specified
instruction variations. The bottom graph shows the number
of correct repairs for LLMs for specified temperature. The
maximum value for each data point is 1000.

5.6 Comparison with CirFix
A comparison of our work with CirFix is shown in Table 6. We use
the best-performing LLM (code-davinci-002) at 𝑡 = 0.1 and gen-
erate one repair each for variations 𝑎 and 𝑏. This is done to closely
mirror the use case of CirFix. By comparing the first example pro-
duced by the LLM, we evaluate only one attempt at repair. This
attempt ismanually evaluated for correctness.We use variation a for
the primary comparison as this variation uses no instructions to as-
sist repairs. This variation produces 17.5 correct repairs as compared
to CirFix’s 16. The half repair corresponds to fixing one numeric er-
ror out of 2 for the first benchmark. To elicit the power of LLMs, we
use variation b which includes a description of the type of bug to as-
sist repair. We use the brief descriptions of bugs provided in CirFix’s
GitHub repository. Variation𝑏 fixes 20 of the 32 benchmarks and col-
lectively, LLMs (both variations) are able to repair 23.5 of the bugs.

6 DISCUSSION AND LIMITATIONS
Our results show that LLMs have a lot of potential for bug repair. At
the present, some assistance is required from the designer to identify
the location and nature of the bug. This may be overcome by using
other tools to localize the bugs and better design practices such as
comments explaining the functionality of the design. Currently, the
designer may also be needed to pick between a few options pro-
duced by the LLMs. This is where static analysis tools like CWEAT
and other bug detection tools may come in to complete the loop by
suggesting a repair that is correct to a high degree of confidence.
A limitation of the work is the subjectivity of instruction vari-

ations. Although the Bug instructions devised are inspired by the
descriptions in CWEs, the Fix instructions are devised according
to the knowledge and experience of the authors. Our work reveals
the importance of these variations as subtle changes can affect the
response generated by LLMs. Devising 5 categories is an attempt
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Table 6: Comparison on CirFix benchmarks. A successful
repair is shown as y. We use two instruction variations for
this comparison. An element - | y means that the repair
using variation 𝑎 was not successful but using variation
𝑏 was. The element 1/2 means that 2 errors were used in
the description of a single fault/bug and 1 out of the 2 was
successfully repaired.

Project Defect Description CirFix LLM
var 𝑎 | 𝑏

decoder Two numeric errors y 1/2 | 1/2
(3 to 8) Incorrect assignment - - | -
first_counter Incorrect sensitivity list y y | y
overflow Incorrect increment of counter y - | y

Incorrect reset y y | y
flip_flop Incorrect conditional y - | -

if-statement branches swapped y | y
fsm_full Incorrect case statement - - | -

Assignment to next state and
default in case statement omitted y y | y

State omitted from senslist - - | y
Incorrect blocking assignments - - | -

lshift_reg Incorrect blocking assignments y - | y
Incorrect conditional y - | y
Incorrect sensitivity list y y | y

mux_4_1 Three numeric errors - y | y
Hex instead of binary numbers - y | y
1 bit instead of 4 bit output - y | y

i2c Incorrect sensitivity list y - | -
Incorrect address assignment - y | -
No command acknowledgement y y | y

sha3 Off-by-one error in loop y y | -
Incorrect assignment to wire - y | -
Skipped buffer overflow check y - | -
Incorrect bitwise negation - y | y

tate_pairing Incorrect logic for bitshifting - - | -
Incorrect instantiation of modules - y | y
Incorrect operator for bitshifting - y | y

reed_solomon
decoder

Insufficient register size
for decimal values - - | -

Incorrect sensitivity list for reset y y | y
sdram
controller

Incorrect assignments to registers
during synchronous reset y y | 1/2

Numeric error in definitions - y | y
Incorrect case statement - - | y

16 17.5 | 20

to standardize this process, but more varieties are probably needed
to study their effects better. Moreover, instructions are challenging
to generalize across different bugs. Ideally, a designer would want
variation a to fix all bugs because no instructions are needed. But
since more information is needed according to the particular in-
stance of the bug for a higher probability of a successful fix, it is a
challenge to form a small set of instructions, e.g., if LLMs are able to
produce a successful fix with the Bug Instruction “Improper FSM”
instead of “FSM has an unreachable state”, that would be better.

Another limitation of the current framework is that the functional
and security evaluations are not exhaustive. Security evaluation is
dependent on the security objectives for the design and can not truly
be exhaustive [4].With this inmind, we limit the security evaluation
to the particular bug that makes the design insecure. Ideally, efforts

should be made to check that a fix does not result in another kind of
bug. Functional evaluation is needed because a design that is secure
but not functional is useless. For the CWE examples, we were able to
build exhaustive testbenches because the designs were low in com-
plexity and had only one or twomodules. Ideally, the functional test-
benches should be exhaustive for other examples too. But this would
be very time-consuming as the size of the designs gets very large.
It would be a difficult task to write testbenches for these complex
SoCs and simulating the designs according to the software provided
by OpenTitan and Hack@DAC takes a lot of time, e.g., design veri-
fication of OpenTitan examples takes ∼10 minutes and it takes ∼15
minutes to simulate the Hack@DAC-21 SoC. Therefore, we chose
to build custom testbenches that test the code a repair could impact.
The use of end-tokens is another area of subjectivity that influ-

ences the success rate of repairs. Some strategies are intuitive like
using the end line token as an end token for a bug that is present
in only one line. Others may require more creativity because some
lines of code can be written in multiple ways. A repair that spans
multiple conditional statements, e.g.,

if (~resetn) begin locked <= 0; end
else if(unlock) begin locked <= d; end
else begin locked <= locked; end

may not be completely produced if the keyword end is used as
a stop token. On the other hand, not limiting a response with an
appropriate stop token may mean that the LLM produces the cor-
rect repair but then adds more code that contains a syntax error or
affects functionality. We use a post-processing script to minimize
syntax errors. This involves adding/removing the end keyword as
needed. When the LLM generates a repair, that repair is a substi-
tute for the bug only. The number of begin and end keywords are
counted. If the numbers are same, nothing is to be done, and the
repair is inserted in place of the bug. If the number of begins are
greater by an amount 𝑛, end is added at the end of the repair 𝑛
times. If the number of ends are greater by an amount 𝑛, the first
𝑛 instances of end are removed.

The LLMs are very quick in generating repairs. The 20 responses
per request are generated in under a minute. While trying to find a
repair for a bug, a Verilog designer should have enough suggested
repairs very quickly. The designer can then choose the best sug-
gestion as the repair. In our experiments, we faced some challenge
because of token limits set by the OpenAI API. Since we were gen-
erating thousands of requests with a limited number of token keys,
we had to wait for a minute ever time we reached the limit. This
raised our generation of repair time to ∼20 minutes per LLM.
To evaluate security-related hardware bugs, a large number of

benchmarks are needed that show these defects in designs. Our
work takes a step in this direction. We believe more examples are
needed to make more conclusive claims about repair techniques.

7 CONCLUSIONS AND FUTUREWORK
By choosing the right parameters and providing the right prompts,
LLMs can fix the hardware bugs in our corpus. All the bugs had
at least one successful repair and 9 of the 10 had 100% correct
responses with the best set of parameters. We have found that in in-
stances where signal names and comments implicate the functional-
ity, LLMs have a high success rate. Conversely, fixes that span more
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than 1 line or require the removal of a buggy line are harder to repair.
Detailed instructions to assist repair tend to achieve higher success
rates with variation 𝑑 using a Fix instruction that uses pseudo-code-
like language performing the best. LLMs at lower temperatures and
bigger LLMs perform better than LLMs at higher temperatures and
LLMswith fewer parameters. LLMs do a better job at fixing function-
related bugs in Verilog relative to the program repair mechanism
in CirFix. We propose the following directions for future work:

• Test a hybrid approach for security-related bugs. Use Lin-
ters, Formal Verification, fuzzing, fault localization, and static
analysis tools for detection and LLMs, oracle-guided modi-
fying algorithms for repair. An ensemble of these options is
likely to have more success than one technique alone.

• Fine-tune LLMs over HDLs and see if the performance im-
proves. This improves the generation of functional code [45].

• Explore the repair of functional bugs using LLMs with the
full sweep of parameters. We only used one set of parameters
that performed the best in our experiments.

• Build a database of security-related hardware bugs. Ongoing
efforts like Trusthub’s Vulnerability Database [3] can be con-
solidated with our examples to build standard benchmarks.
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APPENDIX
Compute environment
All experiments were conducted on a Intel Core i5-10400T CPU
@2GHzx12 processor with 16 GB RAM. Operating system Ubuntu
20.04.5 LTS was used.

Open source details
There are a few parts of our experimental framework where we
could not provide fully open-source access:

• Verific: We used Verific libraries provided by Verific under
an academic license. Please contact Verific to get access to
their products.

• CWEAT: We requested CWEAT code from the authors of the
paper “Don’t CWEAT It: Toward CWE Analysis Techniques
in Early Stages of Hardware Design” [5]. The paper is avail-
able at https://dl.acm.org/doi/abs/10.1145/3508352.3549369.
Please contact the authors for use/help with their codebase.

• CirFix: We used the CirFix benchmarks and results provided
in the open-source github repository provided by the au-
thors of the paper “CirFix: automatically repairing defects
in hardware design code.” [6] https://github.com/hammad-
a/verilog_repair. Please contact the authors about use of their
tools. Their paper is available at
https://dl.acm.org/doi/10.1145/3503222.3507763.

• Hack@DAC SoC: We use the SoC used during the 2021 com-
petition. Please contact them at info@hackatevent.org for
more information/access.
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