302 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

PAUC: Power-Aware Utilization Control in
Distributed Real-Time Systems

Xiaorui Wang, Member, IEEE, Xing Fu, Xue Liu, and Zonghua Gu

Abstract—CPU utilization control has recently been demon-
strated to be an effective way of meeting end-to-end deadlines for
distributed real-time systems running in unpredictable environ-
ments. However, current research on utilization control focuses
exclusively on task rate adaptation, which cannot effectively
handle rate saturation and discrete task rates. Since the CPU
utilization contributed by a real-time periodic task is determined
by both its rate and execution time, CPU frequency scaling can be
used to adapt task execution times for power-efficient utilization
control. In this paper, we present PAUC, a two-layer coordinated
CPU utilization control architecture. The primary control loop
uses frequency scaling to locally control the CPU utilization of
each processor, while the secondary control loop adopts rate
adaptation to control the utilizations of all the processors at the
cluster level on a finer timescale. Both the two control loops are
designed and coordinated based on well-established control theory
for theoretically guaranteed control accuracy and system stability.
Empirical results on a physical testbed demonstrate that our
control solution outperforms a state-of-the-art utilization control
algorithm by having more accurate control and less power con-
sumption. Extensive simulation results also show that our solution
can significantly improve the feasibility of utilization control.

Index Terms—Feedback control, power-aware computing, real-
time embedded systems, utilization control.

1. INTRODUCTION

RADITIONAL approaches to handling end-to-end real-
T time tasks, such as end-to-end scheduling [33] and dis-
tributed priority ceiling [29], rely on schedulability analysis,
which requires a priori knowledge of the tasks’ Worst-Case
Execution Times (WCET). While such open-loop approaches
work effectively in the closed execution environments of tra-
ditional real-time systems, they may violate the desired timing
constraints or severely underutilize the system when task ex-
ecution times are highly unpredictable. In recent years, a new

Manuscript received October 01, 2009; revised March 24, 2010; accepted
May 17, 2010. Date of publication June 14, 2010; date of current version Au-
gust 06, 2010. This paper was presented in part at the Real-Time and Embedded
Technology and Applications Symposium (RTAS), San Francisco, CA, 2009.
This work was supported in part by the National Science Foundation (NSF)
under CSR Grant CNS-0720663 and CSR Grant CNS-0915959 and in part by
the NSF CAREER Award CNS-0845390, and in part by ONR under Grant
N00014-09-1-0750. Paper no. TII-09-10-0249.

X. Wang and X. Fu are with Department of Electrical Engineering and Com-
puter Science, University of Tennessee, Knoxville, TN 37996 USA (e-mail:
xwang @eecs.utk.edu; xful @utk.edu).

X. Liu is with Department of Computer Science and Engineering, University
of Nebraska, Lincoln, NE 68588 USA (e-mail:xueliu@cs.mcgill.ca) .

Z. Gu is with College of Computer Science, Zhejiang University, Hangzhou,
China (e-mail: zonghua@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T11.2010.2051232

category of real-time applications called Distributed Real-time
Embedded (DRE) systems has been rapidly growing. DRE sys-
tems commonly execute in open and unpredictable environ-
ments in which workloads are unknown and may vary signif-
icantly at runtime. Such systems include data-driven systems
whose execution is heavily influenced by volatile environments.
For example, task execution times in vision-based feedback con-
trol systems depend on the content of live camera images of
changing environments [18]. DRE systems call for a paradigm
shift from classical real-time computing that relies on accurate
characterization of workloads and platform.

Recently, feedback control techniques have shown a lot of
promise in providing real-time guarantees for DRE systems by
adapting to workload variations based on dynamic feedback.
In particular, feedback-based CPU utilization control [26], [37]
has been demonstrated to be an effective way of meeting the
end-to-end deadlines for soft DRE systems. The primary goal
of utilization control is to enforce appropriate schedulable uti-
lization bounds (e.g., the Liu and Layland bound for RMS) on
all the processors in a DRE system, despite significant uncer-
tainties in system workloads. In the meantime, it tries to maxi-
mize the system utility by controlling CPU utilizations to stay
slightly below their schedulable bounds so that the processors
can be utilized to the maximum degree. Utilization control can
also enhance system survivability by providing overload protec-
tion against workload fluctuation [38].

However, previous research on CPU utilization control
exclusively relies on task rate adaptation by assuming that
task rates can be continuously tuned within specified ranges.
While rate adaptation is an effective actuator for some DRE
systems, it has several limitations. First, it is often infeasible to
achieve desired utilization set points by rate adaptation alone
[35]. For example, many DRE systems are configured based
on tasks’ WCETs. Consequently, even when all the tasks are
running at their highest rates, CPU utilizations are still way
below the desired set points, resulting in severely underutilized
systems and excessive power consumption. In that case, CPU
frequency scaling can be used for power savings while keeping
the utilizations slightly below the schedulable bounds. Second,
many tasks in DRE systems only support a few discrete rates.
While optimization strategies [12], [22] are developed to handle
discrete task rates, they rely on the common assumption that
task WCETs are known a priori and accurate, which makes
them less applicable to DRE systems running in unpredictable
environments. Third, the model of task rate in many applica-
tions could be complex and vary at runtime based on application
evolution [15], [6]. As aresult, the estimated task rate ranges are
often inaccurate and may change significantly online, leading
to unexpected rate saturation and even deadline misses when

1551-3203/$26.00 © 2010 IEEE

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: PAUC: POWER-AWARE UTILIZATION CONTROL IN DISTRIBUTED REAL-TIME SYSTEMS 303

utilizations are higher than the schedulable bounds and can be
lowered down only by rate adaptation. Finally, tasks in many
real DRE systems may only have very narrow rate ranges or
not allow rate adaptation at all, but the CPU utilizations of the
processors still need to be controlled. Therefore, it is important
to explore complementary ways for effective CPU utilization
control.

In this paper, we propose to use Dynamic Voltage and
Frequency Scaling (DVFS) jointly with rate adaptation for
utilization control. Since the CPU utilization contributed by a
real-time periodic task is determined by both its rate and its ex-
ecution time, CPU frequency scaling can be used to adapt task
execution time for power-efficient utilization control. The inte-
gration of DVFS in utilization control introduces several new
challenges. First, a centralized controller for simultaneous rate
adaptation and DVFS would have a Multi-Input-Multi-Output
(MIMO) nonlinear model. Therefore, multiple linear control
loops are more preferable for acceptable runtime overhead.
Second, different control loops need to be carefully designed to
coordinate together for the desired control functions. Finally,
the control accuracy and global system stability of the coordi-
nated control solution must be analytically assured.

This paper presents PAUC, a two-layer coordinated CPU
utilization control architecture. The primary control loop uses
DVES to locally control the CPU utilization of each processor.
In the meantime, the secondary control loop adopts rate adapta-
tion to control the utilizations of all the processors at the cluster
level on a finer timescale. Specifically, the contributions of this
paper are fourfold:

* We derive an analytical model that captures the system dy-

namics of the new CPU utilization control problem.

* We design a two-layer coordinated control architecture and
conduct detailed coordination analysis.

* We implement our control architecture in an open-source
real-time middleware system.

e We present empirical results to demonstrate that our con-
trol solution outperforms a state-of-the-art utilization con-
troller that relies solely on rate adaptation. Extensive sim-
ulation results also show that our solution can significantly
improve the feasibility of utilization control.

The rest of this paper is organized as follows. We formu-
late the new CPU utilization control problem in Section II.
Section III presents the system model and control architecture.
Section IV briefly introduces the rate adaptation loop, while
Section V provides the detailed design and analysis of the CPU
frequency scaling loop. Section VI discusses the coordination
between different control loops. Section VII introduces the
implementation of the control architecture in a real-time mid-
dleware system. Section VIII presents our empirical results on
a physical testbed. Section IX reviews the related work. Finally,
Section X summarizes this paper.

II. PROBLEM FORMULATION
In this section, we formulate the new CPU utilization control
problem for DRE systems.
A. Task Model

We adopt an end-to-end task model [25] implemented by
many DRE applications. A system is comprised of m periodic

tasks {7;|1 < i < m} executing on n processors {P;|1 < i <
n}. Task T; is composed of a set of subtasks {7;;|1 < j < n;}
which may be located on different processors. A processor may
host one or more subtasks of a task. The release of subtasks is
subject to precedence constraints, i.e., subtask T;;(1 < j < n;)
cannot be released for execution until its predecessor subtask
T;;—1 is completed. All the subtasks of a task share the same
rate. The rate of a task (and all its subtasks) can be adjusted by
changing the rate of its first subtask. If a nongreedy synchro-
nization protocol (e.g., release guard [33]) is used to enforce
the precedence constraints, every subtask is released periodi-
cally without jitter.

In our task model, each task 7; has a soft end-to-end deadline
related to its period. In an end-to-end scheduling approach [33],
the deadline of an end-to-end task is divided into subdeadlines
of its subtasks. Hence, the problem of meeting the end-to-end
deadline can be transformed to the problem of meeting the sub-
deadline of each subtask. A well known approach for meeting
the subdeadlines on a processor is to ensure its utilization re-
mains below its schedulable utilization bound [25].

Our task model has three important properties. First, while
each subtask T;; has an estimated execution time c;; available
at design time, its actual execution time may be different from
its estimation and vary at runtime due to two reasons: CPU fre-
quency scaling or workload uncertainties. Modeling such uncer-
tainties is important to DRE systems operating in unpredictable
environments. Second, the rate of a task 7; may be dynami-
cally adjusted within a range [Rmin,i, Rmax,:]. This assumption
is based on the fact that the task rates in many applications (e.g.,
digital control [28], sensor update, and multimedia [7]) can be
dynamically adjusted without causing system failure. The rate
ranges are determined by the applications (e.g., the limited sam-
pling frequency of a sensor) and are not necessarily accurate. A
task running at a higher rate contributes a higher value to the ap-
plication at the cost of higher utilizations. Please note that our
solution does not rely on continuous task rates. For a task with
only discrete rates, its continuous rate value will be truncated
to the highest discrete rate supported by the task that is below
the continuous value. The utilization difference resulted from
the truncation can be compensated by CPU frequency scaling.
Third, the CPU frequency of each processor P; may be dynam-
ically adjusted within a range [Finin i, Fiax,:]- This assumption
is based on the fact that many today’s processors are DVFS-en-
abled. For processors that do not support DVFS, clock modula-
tion can be used instead to change CPU frequency [23]. The fre-
quency ranges are assumed to be continuous because a contin-
uous value can be approximated by a series of discrete frequency
levels supported by a processor, as we explain in Section VII.

B. Problem Formulation

Utilization control can be formulated as a dynamic con-
strained optimization problem. We first introduce some
notation. 7, the control period, is selected so that multiple
instances of each task may be released during a control period.
u;(k) is the CPU utilization of processor P; in the kth control
period, i.e., the fraction of time that FP; is not idle during time
interval [(k — 1)T%, kTs). B; is the desired utilization set point
on P;. rj(k) is the invocation rate of task 7} in the (k + 1)th

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

304 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

control period. f;(k) is the relative CPU frequency (i.e., CPU
frequency relative to the highest level F,,.x ;) of processor P;
in the (k + 1)th control period.

Given a utilization set-point vector, B = [B; ... B,]%, rate
constraints [Ryin j, Rmax,j] for each task 7;, and frequency
constraints [Finin i, Fmax,:] for each processor P;, the control
goal at kth sampling point (time £7%) is to dynamically choose
task rates {r;(k)|1 < j < m} and CPU frequencies { f;(k)|1 <
1 < n} to minimize the difference between B; and w; (k) for all
the processors

n

> (Bi—ui(k+1)* (1)

min
{ry (D)|1<5<m.fi(k)|1<i<n} £
1=

subject to constraints

Rmin,j S Tj(k) S Rmax,j (1 S j S m) (2)
Fmin,i S fL(k) S Fmax,i (1 S 1 S TL)

3)

The rate constraints ensure that all tasks remain within their ac-
ceptable rate ranges. The frequency constraints ensure that all
CPU frequencies remain within their acceptable ranges. The
optimization formulation minimizes the difference between the
utilization of each processor and its corresponding set point, by
manipulating the rate of every task and the frequency of every
processor within their constraints. The design goal is to ensure
that all processors quickly converge to their utilization set points
after a workload variation, whenever it is feasible under the con-
straints. Therefore, to guarantee end-to-end deadlines, a user
only needs to specify the set point of each processor to be a
value below its schedulable utilization bound. Utilization con-
trol algorithms can be used to meet all the end-to-end deadlines
by enforcing the set points of all the processors in a DRE system,
when feasible under the constraints. When a system’s work-
load exceeds the limit that can be handled within the rate and
frequency constraints, utilization control needs to be combined
with admission control in order to provide desired real-time
guarantees.

III. END-TO-END UTILIZATION CONTROL

In this section, we model the end-to-end utilization control
problem and present our control architecture.

A. System Modeling

Following a control-theoretic methodology, we establish a
dynamic model that characterizes the relationship between the
controlled variable u(k) and the manipulated variables r(k) and
f(k). We first model the utilization w;(k) of one processor P;.
As observed in previous research [4], [30], the execution times
of tasks on P; can be approximately estimated to be a linear
function of P;’s relative CPU frequency.! In many real-time
systems, the CPU resource is the bottleneck of system perfor-
mance and tasks are mostly computationally intensive. In those
systems, the linear relationship can be a valid estimation. There-
fore, the estimated execution time of task 7); in the kth control

ITn general, the execution times of some tasks may include frequency-inde-
pendent parts that do not scale linearly with CPU frequency [3]. We plan to
model frequency-independent parts in our future work.

period can be modeled as c;;/ fi(k), where ¢;; is the estimated
execution time of T’j; as defined in Section II-A. The estimated
CPU utilization of processor P; can be modeled as

1,es, CitTi(k
(k) = = Jefsi(k)l (k)

where S; is the set of subtasks located at processor P;.

Example: Consider a system with two processors and three
tasks. T has only one subtask 771 on processor P;. T5 has two
subtasks 751 and 755 on processors P; and P, respectively. T3
has one subtask 73; allocated to processor P». The estimated
utilizations of P; and P, are

6117”1(}{)) + 0217‘2(]{3)

“

bl(k) = fl(k)
| coara(k) + c3ir3(k)
PR = T

Note that the utilizations of P; and P, are coupled because
the task rate of 75, i.e., r2(k), affects the utilizations of both P,
and P». We then define the estimated utilization change of P;,
Ab;(k), as

Yores Ciri(k) Yges, ciri(k—1)
S 1 R (g

Note that Ab;(k) is based on the estimated execution time
¢;1. Since the actual execution times may be different from their
estimation due to workload variations, we model the actual uti-
lization of P;, u;(k), as the following difference equation:

(&)

wi(k +1) = ui(k) + g: Abi(k) (6)

where the utilization gain g; represents the ratio between the
change to the actual utilization and its estimation Ab; (k). For
example, g; = 2 means that the actual change to utilization is
twice the estimated change. Note that the exact value of g; is
unknown at design time due to the unpredictability of subtasks’
execution times.

The system model (6) is nonlinear because the manipulated
variables, 7; (k) and f;(k), are in both the numerator and denom-
inator of the definition of Ab;(k) in (5), respectively. There-
fore, we need to simplify the controller design for acceptable
runtime overhead. There are two ways to simplify the system
model. First, we may assume that all the processors always run
at their highest CPU frequency and the utilizations are con-
trolled by rate adaptation only. As a result, f;(k) becomes 1 and
the system model (6) becomes a linear model between Ab; (k)
and Ar;(k) = r;(k) — rj(k — 1). Second, we can assume that
the utilizations are controlled by frequency scaling only. As a re-
sult, r;(k) is a constant and the model becomes a linear model
between Ab; (k) and Ad; (k) = 1/fi(k) — 1/ fi(k — 1).

However, in a system that allows both rate adaptation and fre-
quency scaling, relying solely on one adaptation strategy may
unnecessarily reduce the system’s adaptation capability because
both task rates and CPU frequencies can only be adapted within
limited ranges. Therefore, a novel control architecture needs
to be designed for utilizing both rate adaptation and frequency
scaling to maximize the system’s adaptation capability.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: PAUC: POWER-AWARE UTILIZATION CONTROL IN DISTRIBUTED REAL-TIME SYSTEMS 305

Distributed Real-Time System
(m tasks, n processors)

| i [
Proportional |, | Utilization | | PC F-| UM PC %{ UM
Controller Monitor
T
Model i P @ P E P
Predictive Frequency 1 2 i, n
Controller Modulator O Y
L]
Rate @
Modulator RM RM

F F F -

@ Subtask
...... » Precedence Constraints

—> Rate Adaptation Loop

- —» Frequency Scaling Loop

Fig. 1. The utilization control architecture of PAUC.

B. Control Architecture of PAUC

In this paper, we propose PAUC, a two-layer utilization con-
trol architecture, as shown in Fig. 1. To avoid having a nonlinear
model, our control architecture features two coordinated control
loops running in different control periods.

First, the cluster-level rate adaptation loop dynamically con-
trols the utilizations of all the processors by adjusting task rates
within their allowed ranges. Because the rate change of a task
affects the utilizations of all the processors where the task has
subtasks, this loop is a MIMO control loop, which works as fol-
lows: 1) the utilization monitor on each processor P; sends its
utilization u; (k) in the last control period to the Model Predic-
tive Controller; 2) the controller computes a new rate r; (k) for
every task 7; and sends the new rates to the rate modulators;
and 3) the rate modulators change the task rates accordingly.
Please note again that for a task with only discrete rates, the rate
modulator will truncate its continuous rate value to the highest
discrete rate supported by the task that is below the continuous
value.

Second, on every processor F; in the system, we have a local
controller that controls the utilization by scaling the CPU fre-
quency of the processor. The controller is a Single-Input-Single-
Output (SISO) controller because the CPU frequency change of
P; only affects the utilization of F;. This loop works as follows:
1) the utilization monitor on P; sends its utilization w;(k) to
the local controller; 2) the controller computes a new CPU fre-
quency f;(k) and sends it to the frequency modulator on P;;
and 3) the frequency modulator changes the CPU frequency
accordingly.

Clearly, without effective coordination, the two control loops
may conflict with each other because they are controlling the
same variable, i.e., CPU utilization. To achieve the desired con-
trol function and system stability, one control loop, i.e., the pri-
mary loop, needs to be configured with a control period that
is longer than the settling time of the other control loop, i.e.,
the secondary loop. As a result, the secondary loop can always
enter its steady state within one control period of the primary
control loop. The two control loops are thus decoupled and can
be designed independently. The impact of the primary loop on
the secondary loop can be modeled as variations in its system
model, while the impact of the secondary loop on the primary
loop can be treated as system noise. As long as the two control
loops are stable individually, the whole system is stable.

In our design, we choose the task rate adaptation loop as the
secondary control loop for two reasons. First, the secondary
loop reacts faster to utilization variations. As a result, the
secondary loop has the priority to increase the value of its
manipulated variable(s) when the actual utilization is lower
than the set point, especially at the beginning of a system run.
We assume that a higher task rate contributes a higher system
value to the application and system value is more important
than power efficiency in our target real-time applications.
Second, the secondary loop must remain stable despite its
model variation caused by the primary loop. The stability of the
rate adaptation loop is less sensitive based on our coordination
analysis in (6).

In PAUC, the rate adaptation loop tries to achieve the desired
CPU utilization set points, while maximizing the task rates.
When it is infeasible to control utilizations by rate adaptation
alone (e.g., due to rate saturation or discrete task rates), the fre-
quency scaling loop can help to achieve the desired set points
on a coarser timescale, while reducing the power consumption
of the processors. Since the core of each control loop is its con-
troller, we introduce the design and analysis of the CPU fre-
quency scaling controller in the next two sections, respectively.
The implementation details of other components are provided
in Section VII.

IV. TASK RATE ADAPTATION LOOP

In this section, we briefly introduce the system model and
design of the rate adaptation loop.

A. System Model

Based on the control architecture, we assume that the relative
CPU frequency f;(k) = 1 for all the processors. The case when
fi(k) # 11is analyzed in Section VI. Hence, the estimated uti-
lization change Ab;(k) in (5) becomes

Z leATj(k) (7)

T €S

Abi(k) =

where Ar;(k) = r;j(k) —rj(k - 1).
Based on (6), a DRE system with m tasks and n processors
is described by the following MIMO dynamic model:

u(k) = u(k — 1) + GAb(k — 1) 8)

where G is a diagonal matrix, where ¢;; = ¢;(1 <7 < n) and
gij = 0 (i # j). Ab(k) is a vector including the estimated
utilization change (7) of each processor. Ab(k) = FAr(k). F
is an n X m matrix, where f;; = ZT716 s, Gl if one or more
subtasks of task 7 are allocated to processor P;, and f;; = 0 if
no subtask of task T is allocated to processor F;.

B. Controller Design

In this paper, we adopt the EUCON algorithm presented in
our previous work [26] for rate adaptation. EUCON features a
Model Predictive Controller (MPC) that optimizes a cost func-
tion defined over P control periods in the future, called the pre-
diction horizon. The control objective is to select control in-
puts in the following M control periods, called control horizon,

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

306 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

that minimize the following cost function, while satisfying the
constraints:

P
Z llu(k + i|k) — ref(k + i|k)]||?

M-—1
+ Y Ar(k+ilk) — Ar(k+i—1E)* (9)

=0

where P is the prediction horizon, and M is the control horizon.
The first term in the cost function represents the tracking error,
i.e., the difference between the utilization vector u(k+i|k) and a
reference trajectory ref (k+i|k) defined in [26]. By minimizing
the tracking error, the closed-loop system will converge to the
utilization set points if the system is stable. The second term
in the cost function represents the control penalty. This control
problem is subject to the rate constraints (2). The detailed design
and analysis of EUCON are available in [26].

Although the rate adaptation loop has been proved to be stable
in [26], in order for the coordinated control architecture to be
stable, the stability and settling time of the rate adaptation loop
need to be reexamined by considering the impact from the fre-
quency scaling loop. The detailed coordination analysis is pre-
sented in Section VI.

V. CPU FREQUENCY SCALING LoopP

In this section, we model, design, and analyze the CPU fre-
quency scaling loop in PAUC.

A. System Model

Based on our control architecture, the frequency scaling loop
can be designed separately from rate adaptation. As a result,
model (6) can be simplified by having r;(k) in (5) as a constant
r;. This decouples different processors because, as discussed in
Section III-A, processors are coupled to each other due to the
fact that the rate change of a task may affect the utilizations of
all the processors where its subtasks are located. The utilization
of each processor can now be modeled individually because the
CPU frequency change Ad;(k — 1) = 1/fi(k) = 1/fi(k —
1) only affects the execution times of all the subtasks on P;.
Specifically, the model of processor F; is

1) Z CiiTj.

T €S:

ul(k) = ui(k - 1) + giAdi(k - (10)

The model cannot be directly used to design controller be-
cause the system gain g; is used to model the uncertainties in
task execution times and thus unknown at design time. There-
fore, we design the controller based on an approximate system
model, which is model (10) with g; = 1. In a real system
where the task execution times are different than their estima-
tions, the actual value of g; may become different than 1. As
a result, the closed-loop system may behave differently. How-
ever, in Section V-C, we show that a system controlled by the
controller designed with g; = 1 can remain stable as long as
the variation of g; is within a certain range. This range is es-
tablished using stability analysis of the closed-loop system by
considering the model variations.

B. Controller Design
The Z-transform of model (10) with g; = 1 is

Ui(z) 21, e8, Cill's
AD;(z) z—1

(11)

where U,(z) and AD;(z) are the Z-transforms of w;(k) and
Ad; (k), respectively. Following standard control theory [13],
the transfer function of the closed-loop system with the con-
troller transfer function as C;(z) is

CZ(Z) ZTﬂGSq‘ CjiTj
2= 1+4Ci(2) Xryes, ity

Gi(z) = 12)

To design the controller C;(z), we adopt the minimal pro-
totype design method in [17], [27] to specify the desired be-
havior of the closed-loop system. Specifically, u;(k — 1) is pre-
ferred to converge to B; within one control period, i.e., u;(k) =
B;. In Z-transform, this requirement translates to the following
transfer function for the closed-loop system controlled by the
controller:

Gi(z) =2z"% (13)

Hence, from (12) and (13), we get the designed Proportional
(P) controller transfer function as

1
Ci(z) ==——"—. (14)
ZleGSi C4iT5
The time-domain form of the controller (14) is
1

2oTes, GilTs

We choose to use a P controller instead of a more sophisticated
controller such as a PID (Proportional-Integral-Derivative) con-
troller because the actuator 1/ f;(k) = Ad;(k—1)+1/ fi(k—1)
already includes an integrator such that zero steady state error
can be achieved without resorting to an I (Integral) part. The D
(Derivative) part is not used because it may amplify the noise in
utilization in unpredictable environments.

It is easy to prove that the controlled system is stable and has
zero steady state errors when g; = 1. The detailed proofs can be
found in a standard control textbook [13] and are skipped due to
space limitations. The desired CPU frequency in the kth control
period is

filk =1) X or, s, citTi
D) filk = 1) + X p, es, ciri

filk) = (16)

(B - uz(

C. Control Analysis for Model Variation

In this subsection, we analyze the system stability when the
designed P controller is used on a system with g; # 1. A
fundamental benefit of the control-theoretic approach is that it
gives us theoretical confidence for system stability, even when
the task execution times are significantly different from their
estimations.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: PAUC: POWER-AWARE UTILIZATION CONTROL IN DISTRIBUTED REAL-TIME SYSTEMS 307

The closed-loop transfer function for the real system is

Ui(2) gi

S Bef-1) i—(-gy

The closed-loop system pole in (17) is 1 — g;. In order for
the system to be stable, the pole must be within the unit circle.
Hence, the system will remain stable as long as 0 < g; < 2. The
result means that the actual utilization change cannot be twice
the estimated utilization change. To handle systems with an ac-
tual g; that is outside the established stability range, an online
model estimator implemented in our previous work [39] can be
adopted to dynamically correct the system model based on the
real utilization measurements, such that the system stability can
be guaranteed despite significant model variations.

We now analyze the steady-state error of the controlled
system when g; # 1

lim (2 = 1)Ui(2) = lim (ﬁB) =B;. (18
Equation (18) means that we are guaranteed to achieve the
desired CPU utilization as long as the system is stable.

VI. COORDINATION ANALYSIS

We now analyze the coordination needed for the frequency
scaling and rate adaptation loops to work together with global
stability. The analysis here, as well as the control architecture
design in Section III and our empirical results, demonstrates the
importance of coordinating different control loops, which is a
major contribution of our paper.

First, we need to ensure that the stability of the rate adapta-
tion loop will not be affected when the frequency scaling loop
changes the CPU frequency and so f;(k) # 1. Given a specific
task set, the stability condition of the rate adaptation loop as a
range of g; (i.e., the ratio between the actual utilization change
and the estimated change) can be established by following the
steps presented in [26]. For example, the stability condition of
the task set used in our experiments is that the actual change
cannot be 10 times the estimated change. Accordingly, we must
guarantee that the relative CPU frequency of each processor
is not smaller than 0.1, i.e., 0.1 < f;(k) < 1, because the
rate adaptation controller is designed with the assumption of
fi(k) = 1. This constraint must be enforced in the frequency
scaling loop. One of the reasons for us to choose the rate adap-
tation loop as the secondary loop in our control architecture is
that it has a larger stability range and thus is less sensitive to the
impact of the primary loop.

Second, we must guarantee that the frequency scaling loop is
also stable, i.e., 0 < g; < 2. Since the frequency scaling loop is
the primary loop of our two-layer control architecture, the dif-
ference between the actual and estimated utilization changes is
mainly caused by the differences between the actual and esti-
mated execution times. Therefore, it is preferable to use pes-
simistic estimation on execution times such that the controlled
system can be guaranteed to be stable and the system oscillation
can also be reduced. Please note that using pessimistic estimated
execution times does not result in underutilization of the CPU as
in systems that rely on traditional open-loop scheduling. This is

because our control architecture dynamically adjusts CPU fre-
quencies and tasks rates based on measured utilization rather
than the estimated execution times. The downside of using more
pessimistic estimation on execution times is that it leads to a
smaller system gain, which may cause slower convergence to
the set points. However, since it is more important to guarantee
system stability in a DRE system, it is still preferable to overes-
timate task execution times. We now rigorously derive the rela-
tionship between the convergence (settling) time of the system
and the value of g;. By transforming the closed-loop transfer
function (17) to the time domain, the system variation model
becomes u;(k + 1) = (1 — g;)u;(k) + g; B;. As commonly de-
fined in control theory, the system settles when u; (k) converges
into the 2% range around the desired set point B;. Hence, the
required number of control periods, k, for the system to settle
can be calculated as: k > 1n0.02/1In|1 — g;|. Based on a re-
quired convergence time, we can derive a range of g;. As long
as g; is within this range, the system is guaranteed to achieve
the required settling time.

Third, we need to analyze the settling time of the rate adap-
tation loop in order to determine the control period of the fre-
quency scaling loop. Since settling time has not been analyzed
in [26], we now outline the general process of analyzing the set-
tling time of the rate adaptation loop when the actual utilization
change is different from the estimated change, i.e., g; # 1.

1) Given a specific task set, we derive the control inputs (i.e.,

desired task rate changes) that minimize the cost function
(9) based on the nominal system model with g; = 1. The
control inputs Ar(k) represent the control decision based
on the estimated system model

Ar(k) = Ku(k) + Lu(k — 1) + HAr(k— 1)+ EB (19)

where K, L, H, and E are parameter matrices. The de-
signed MPC controller is a dynamic controller. Therefore,
the stability analysis needs to consider the composite
system consisting of the dynamics of the original system
and the controller.

2) We then derive the closed-loop model of the composite
system by substituting the control inputs derived in Step 1
into the actual system model (8) with g; # 1. The closed-
loop composite system is

u(k +1) I+GFK GFL GFH
uk) | = I 0 0
Ar(k) K L H
u(k) GFE
x| uk-1) |+| 0 |B (0
Ark —1) E

where I is the identity matrix. Note that the closed-loop
system model is a function of G.

3) We calculate the dominant pole (i.e., the pole with the
largest magnitude) of the closed-loop system. According to
control theory, the value of the dominant pole determines
the system’s transient response such as settling time.

Based on our analysis, the task set used in our experiments

has a settling time of 5 control periods under rate adaptation.
The detailed derivation is not included due to space limitations.
The control period of the rate adaptation loop is selected to be

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

308 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

2 s to include multiple instances of each task, resulting in a set-
tling time of 10 = 5 x 2 s. Therefore, the control period of
the frequency scaling loop is set to 20 seconds, which is much
longer than the settling time of the rate adaptation loop.

VII. SYSTEM IMPLEMENTATION

In this section, we first introduce the physical testbed used in
our experiments and the implementation details of the control
components. We then introduce our simulation environment.

A. Testbed

Our testbed includes four Linux servers, called RTES1 to
RTES4, to run the end-to-end real-time tasks and a desktop ma-
chine to run the MPC controller. The four servers are equipped
with 2.4 GHz AMD Athlon 64 3800+ processors with 1 GB
RAM and 512 KB L2 Cache. The controller machine is a Dell
OptiPlex GX520 with 3.00 GHz Intel Pentium D Processor and
1 GB RAM. All the machines are connected by a 100 Mbps in-
ternal Ethernet switch. The four servers run openSUSE Linux 11
with kernel 2.6.25 while the controller machine runs Windows
XP.

We implement our PAUC control architecture in FC-ORB, an
open-source real-time Object Request Broker (ORB) middle-
ware system [34]. FC-ORB supports end-to-end real-time tasks
based on the end-to-end scheduling framework [25]. FC-ORB
implements the release guard protocol to enforce the precedence
constraints among subtasks.

Our experiments on the testbed run a medium-sized workload
that comprises 12 end-to-end tasks (with a total of 25 subtasks).
The subtasks on each processor are scheduled by the RMS al-
gorithm [25]. Each task’s end-to-end deadline is d; = n; /r;(k),
where n; is the number of subtasks in task 7T; and r;(k) is the
current rate of 7;. Each end-to-end deadline is evenly divided
into subdeadlines for its subtasks. The resultant subdeadline of
each subtask T;; equals its period, 1/7; (k). The utilization set
point of every processor is set to its RMS schedulable utilization
bound [25],i.e., B; = ni(21/"7’ — 1), where n; is the number of
subtasks on P;. All (sub)tasks meet their (sub)deadlines if the
desired utilization on every processor is enforced.

We now introduce the implementation details of each compo-
nent in our two-layer control architecture. Please note that the
processes running the control loops have the highest priority in
the system so that the feedback control loops can be executed
even in overload conditions.

Utilization Monitor: The utilization monitor uses the /proc/
stat file in Linux to estimate the CPU utilization in each control
period. The /proc/stat file records the number of jiffies (usually
10 ms in Linux) when the CPU is in user mode, user mode with
low priority (nice), system mode, and when used by the idle task,
since the system starts. At the end of each control period, the
utilization monitor reads the counters, and estimates the CPU
utilization as 1 minus the number of jiffies used by the idle task
in the last control period and then divided by the total number
of jiffies in the same period.

MPC Controller: The controller is implemented as a single-
thread process running separately on the controller machine.
Each time its periodic timer fires, the controller sends utiliza-
tion requests to all the four application servers. The incoming

replies are handled asynchronously so that the controller can
avoid being blocked by an overloaded application server. After
the controller collects the replies from all the servers, it executes
the control algorithm introduced in [26] to calculate the new
task rates. The controller then sends the tasks’ new rates to the
rate modulators on the servers for enforcement. If a server does
not reply in an entire control period, its utilization is treated as
100%, as the controller assumes this server is overloaded with
its (sub)tasks and so cannot respond. The control period of the
rate adaptation loop is 2 s. The execution time of the MPC con-
trol algorithm has been analyzed in our previous work [34] to be
5 ms on a 2 GHz Intel Pentium4 processor. Therefore, the over-
head of the rate adaptation control loop is smaller than 5 ms in
a control period of 2 s, i.e., 0.25% CPU time.

Rate Modulator: A Rate Modulator is located on each pro-
cessor. It receives the new rates from the controller and then
resets the timer interval of the first subtask of each task whose
invocation rate needs to be changed. The overhead of rate mod-
ulation has been analyzed in our previous work [38] to be about
600 microseconds on a 2 GHz Intel Pentium4 processor.

Proportional Controller: The controller is implemented as
a process running on each of the four servers. With a control
period of 20 s, the controller periodically reads the CPU utiliza-
tion of the server, executes the control algorithm presented in
Section V-B to compute the desired CPU frequency, and sends
the new frequency to the frequency modulator on the server.

Frequency Modulator: We use AMD’s Cool’n’Quiet
technology to enforce the new CPU frequency. AMD
Athlon 64 3800+ microprocessor has five discrete CPU
frequency levels. To change CPU frequency, one needs to
install the cpufreq package and then use root privilege to
write the new frequency level into the system file /sys/de-
vices/system/cpu/cpul/cpufreq/scaling setspeed. ~A routine
periodically checks this file and resets the CPU frequency
accordingly. The average overhead (i.e., transition latency) to
change frequency in AMD Athlon processors is about 100 us
according to the AMD white paper report. Recent studies [21]
have also shown that the overhead of DVFS can be in nanosec-
onds in future microprocessors and is thus small enough to be
used in real-time systems.

Since the new CPU frequency level periodically received
from the proportional controller could be any value that is not
exactly one of the five supported frequency levels. Therefore,
the modulator code must locally resolve the output value of
the controller to a series of supported frequency levels to
approximate the desired value. For example, to approximate
2.89 GHz during a control period, the modulator would output
the sequence 2.67, 3, 3, 2.67, 3, 3, etc., on a smaller timescale.
To do this, we implement a first-order delta-sigma modulator,
which is commonly used in analog-to-digital signal conversion.
The detailed algorithm of the first-order delta-sigma modulator
can be found in [23].

Power Monitor: The power consumption of each server is
measured with a WattsUp Pro power meter by plugging the
server into the power meter, which is connected to a standard
120 V AC wall outlet. The WattsUp power meter has an accu-
racy of £1.5% of the measured value. To access power data, the
data port of each power meter is connected to a serial port of the
data collection machine. The power meter samples the power

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: PAUC: POWER-AWARE UTILIZATION CONTROL IN DISTRIBUTED REAL-TIME SYSTEMS

c 09
=l
©
N
',,_: 0.7——~—J\’-W—~V-M_‘
=
o
o
© o5 : : : : :
B | 300 600 900 1200 1500 1800
Time (sec)

(a)

309

= 24 110 -
g N= vy 8
= 22f ____ ‘__,]_Mw.____““_mo g
- [
oy 2 Freq 90 g
g - = =Power o

1.8 80

1 300 600 900 1200 1500 1800

Time (sec)

(b)

Fig.2. CPU utilization control by frequency scaling under a workload increase from 600 to 1200 s. (a) CPU utilization, (b) CPU frequency and power consumption.

data every second and then sends the reading to the data collec-
tion program through a system file /dev/ttyUSBO.

B. Simulation Environment

To stress test PAUC in large-scale distributed real-time
systems, we have developed an event-driven simulator imple-
mented in C++. The simulator implements task scheduling in
a distributed real-time system controlled by the rate adapta-
tion loop and the CPU frequency scaling loop. Based on the
frequency range of the real processors used in our testbed, the
normalized range of processor CPU frequency in our simula-
tions is configured as [0.417, 1] (to simulate AMD processors)
or [0.75, 1] (to simulate Intel processors). The rate adaptation
controller is implemented based on the 1sglin least squares
solver in MATLAB. At the start time of the simulation, the
simulator opens a MATLAB process to initialize the rate adap-
tation controller. At the end of each control period of the rate
adaptation loop, the controller collects the CPU utilizations
of the processors from their utilization monitors, and calls the
least squares solver in MATLAB with the utilization vector
as parameters. The solver then computes the desired rates for
all the tasks and returns them to the rate modulators on the
processors in the simulator to adjust the task rates.

We adopt the power model proposed in [19] to estimate the
power consumption of a processor based on its CPU frequency
and CPU utilization. Specifically, the power model of the 2th
processor is

pi(fi,ui) = aisfiu; + ainfi + ainu; + aio 21
where model parameters a;; can be determined by curve fit-
ting based on the system identification experiments on a phys-
ical server. Based on the processors used in our testbed exper-
iments, we have a;3 = 33.41, a;5 = 24.98, a;1 = —7.34,
and a;o = 61.37. The results in [19] report that power estima-
tion using this model is considerably accurate (confirmed by the
coefficient of determination B2 = 98.79%), with an average
error of 1% (worst case < 4%). The results on our testbed also
show that R? = 95.75%. We assume that all the processors are
homogeneous in our simulations, but it is easy to extend our
power estimation to heterogeneous environments. We use ran-
domly generated workloads in our simulations. The details of
the workloads are presented in Section VIII-D.

VIII. EXPERIMENTATION

In this section, we first test the frequency scaling loop alone.
We then show that the frequency scaling loop can effectively
control utilizations when it is infeasible for a rate adaptation

controller to do so. We then demonstrate that the PAUC co-
ordinated control solution can maximize the system’s adapta-
tion capability for power-efficient utilization control. Finally,
we present simulation results in large-scale systems with ran-
domly generated workloads to show that our solution can sig-
nificantly improve the feasibility of utilization control.

A. Frequency Scaling Loop

In this experiment, we disable the rate adaptation loop to eval-
uate the performance of the frequency scaling loop on server
RTESI1. As a common practice in real-time systems that rely
on open-loop scheduling algorithms, the workload of RTES1
is configured with carefully tuned initial task rates such that
the server has an initial CPU utilization of 0.72, which is its
RMS bound. As shown in Fig. 2(a), at time 600 s, the execu-
tion times of all the tasks on RTES1 are suddenly increased by
8% to test the system’s capability of handling workload fluctu-
ations. The increase makes the CPU utilization of RTES1 jump
to 0.78, which is higher than the RMS bound and so may cause
undesired deadline misses. Fig. 2(b) shows that the frequency
scaling loop responds to the utilization increase by dynamically
increasing the CPU frequency of the server processor from 2.0
to 2.18 GHz. As a result, the utilization returns back to the set
point quickly. In contrast, An open-loop system without dy-
namic feedback would have its utilization stay above the RMS
bound. At time 1200 s, the task execution times are suddenly
reduced back to their original values, resulting in a utilization
lower than the set point. The frequency scaling loop then re-
sponds by reducing the CPU frequency back to 2.0 GHz for
power savings.

To test the robustness of the controller, we conduct a set of
experiments with different utilization set points. Fig. 3(a) plots
the means and the standard deviations of RTES1’s CPU utiliza-
tion after the controller enters the steady state. We can see that
the frequency scaling loop can successfully achieve the desired
utilization set points. Fig. 3(b) demonstrates that more power
saving has been achieved when we allow the system to have a
utilization set point closer to its RMS schedulable bound, i.e.,
0.72. The maximum standard deviation for power is smaller than
1.5 W.

B. Frequency Scaling Versus EUCON

In this experiment, we show that frequency scaling can be
used to control CPU utilizations when rate adaptation fails to do
so in some cases. We compare the frequency scaling loop with
a baseline, a state-of-the-art control algorithm called EUCON
[26], which relies only on the rate adaptation loop introduced
in Section III. Fig. 4(a) shows that EUCON fails to achieve

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

310

1
§ 0.8 _
.g 0.6 1 1 1
5 04
g 0.2 JUtlIlzatlon M Set point
, “H U0 °H 'R
072 0.7 0.68 0.66 0.64
Set point
(a)

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

110
= 100
©
s 9
“;’ 80
°
a 70
60
0.72 0.7 068 066 0.64 0.62
Set point
(b)

Fig. 3. CPU utilization control by frequency scaling under different utilization set points. (a) CPU utilization. (b) Power consumption.

1 T T T T T 1 T T T T T

S 08 1§ os8f]

E iy il E -

% 0.6 W\ IR ‘ \u: 3l Mnﬁ«‘;\}‘?&w‘#,—'&?ﬂ‘ ! sl Akl bt f,‘,lq,‘ﬁ'(rﬁ %

2 2

% 0.4} RTES1 ‘RTES2 J E—) 0.4} —RTES1 v RTES2]

----- RTES3 ' - - -RTES4 - === RTES3 ‘- - - RTES4
0.2 1 1 1 L 1 0'2 1 1 1 L 1
1 200 400 600 800 1000 1200 1 200 400 600 800 1000 1200
Time (sec) Time (sec)
(a) (b)
Fig. 4. Comparison of control accuracy between EUCON and the frequency scaling loop. (a) EUCON. (b) Frequency scaling activated from 400 s.
140 T T T T T 140 T T T T T

@ 120 1 @ 120 e) G 1
*;‘-v' e i T e i T ™ ™ ™ s e " W T b ke T et B ™ ™ g Ll ke obdibelb & P LB LR A R ¢ L Lk
T 100 r 1 T 100

s s
S 80" RTES1 wowasnimits ‘RTES2 | o 8ot

----- RTES3 - - - - RTES4
60 L L L L L 60 1 1 L L L
1 200 400 600 800 1000 1200 1 200 400 600 800 1000 1200
Time (sec) Time (sec)
(@) (b)

Fig. 5. Comparison of power consumption between EUCON and the frequency scaling loop. (a) EUCON. (b) Frequency scaling activated at 400 s.

the desired set points (0.74 for RTES2 and 0.72 for the other
three servers) because the task rates saturate at the upper bound-
aries of their allowed ranges. As a result, the system is under-
utilized with unnecessarily high power consumption, as shown
in Fig. 5(a). We then test the frequency scaling loop using the
same workload with the rate adaptation loop disabled. In the ex-
periment, to highlight the performance of the frequency scaling
loop, we first let the system run in an open-loop manner (with
no controller activated). Therefore, the system initially cannot
achieve the desired CPU utilizations. At time 400 s, we activate
the frequency scaling loop. Fig. 4(b) shows that the CPU utiliza-
tions quickly converge to their desired set points. As a result, all
the servers achieve power savings [as shown in Fig. 5(b)], while
still guaranteeing the end-to-end task schedulability.

C. Coordinated Utilization Control

Since both task rates and CPU frequencies can only be
adapted within allowed ranges, the PAUC coordinated control

solution is designed to combine them based on control theory
for maximized adaptation capability. In this experiment, we
run the same workload with all the tasks starting with lower
initial rates than those used in Section VIII-B. As a result,
Fig. 6(a) shows that the utilizations controlled by the rate
adaptation loop start from values lower than those in Fig. 4(a).
Similar to Fig. 4(a), the rate adaptation loop fails to achieve
the desired utilization set points (dashed lines in the figure)
because tasks are already running at their highest possible
rates allowed by their ranges. In this case, the CPU frequencies
of the processors could be lowered for power savings. We
then examine the frequency scaling loop alone by running
the same experiment in Section VIII-B with lower initial task
rates. Fig. 4(b) shows that the frequency scaling loop fails to
achieve the desired utilizations this time because the tasks are
running at lower rates. As a result, even when the processors are
already running at their lowest CPU frequencies, utilizations
still cannot converge to the desired set points. In this case, we

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: PAUC: POWER-AWARE UTILIZATION CONTROL IN DISTRIBUTED REAL-TIME SYSTEMS 311

1 . , , , ,
S OBttt st
(I& V ” ‘ \‘.’\ l;il I v‘ ! h/,\iklt(l >,y wl\ ..k ',
= 0.6 o n-(w.wluﬁﬂ,‘v A HRUALAT R
50
o
G 04 ———RTES1 . RIES2]

----- RTES3 - - - -RTES4
0.2 1 1 1 1 1
1 200 400 600 800 1000 1200
Time (sec)
(a)
Fig. 6.
1 T T ;
= o
S Lo Lo i |
g i II' i iy
g _
=2
n- -
©o04 [———RTEST RTES2
- = = -RTES4
0.2 1 1 1 1 1
1 200 400 600 800 1000 1200
Time (sec)
(a)

~ . RTES2
- - - -RTES4]

—RTEST1

PEES T R AN BLR STa T

CPU utilization
o
[+}]

0_4-—,_- - P, N . -
0.2 1 1 L 1 L
1 200 400 600 800 1000 1200
Time (sec)
(b)

Infeasible utilization control by rate adaptation or frequency scaling individually. (a) Rate adaptation. (b) Frequency scaling activated at 400 s.

140 T T T . :

120 . |

\s-t‘,.~_ = -~ =]

Power (Watts)

100
80+ RTESH1 ~+RTES2 1
----- RTES3 - - - -RTES4
1 200 400 600 800 1000 1200
Time (sec)
(b)

Fig. 7. CPU utilization control by the PAUC coordinated control solution (activated at 420 s). (a) CPU utilization. (b) Power consumption.

could allow tasks to run at higher rates to contribute a higher
value to the system.

We now evaluate the PAUC coordinated control solution. To
highlight the performance of PAUC, we first run the rate adap-
tation loop, which achieves the highest rates for all the tasks, re-
sulting in a high system value. At time 420 s, we activate the fre-
quency scaling loop. Fig. 7(a) shows that the coordinated control
solution successfully achieves the desired utilization set points.
In the meantime, Fig. 7(b) demonstrates that servers RTES2,
RTES3, RTES4 also receive considerable power savings. There-
fore, the PAUC coordinated control solution can effectively con-
trol CPU utilizations to the desired set points, while achieving
increased task rates and reduced power consumption.

D. Simulation Results in Large-Scale Systems

In this section, we conduct three sets of simulations to eval-
uate the effectiveness of PAUC in large-scale distributed real-
time systems with randomly generated workloads. We compare
PAUC with two baselines, EUCON and frequency-scaling-only,
to examine the power consumption of the system and the per-
centage of randomly generated task sets that can be feasibly
controlled to achieve the desired utilization set points under the
three schemes. We define that a task set is feasible for utilization
control if the utilizations of all the processors can be controlled
to stay within 3% of their respective utilization set points in the
steady state [35]. We randomly generate 1000 different synthetic
task sets in the first set of simulations and 100 different task sets
in the other two sets. The results in the first and the other two
sets of simulations are the average results of the 1000 and the
100 task sets, respectively. In all the simulations, each task set

contains 20 periodic tasks and each periodic task has three sub-
tasks that are allocated to three different processors. All the 60
subtasks are randomly deployed on 20 processors in all the sim-
ulations. The execution time of each subtask is randomly gen-
erated within the range of [23, 53] in each simulation run.

In the first set of simulations, the task period range of each
task is configured to be [200, 300] and the initial task rate of
each task is set to 300. As shown in Fig. 8(a), PAUC outper-
forms both EUCON and frequency-scaling-only because it in-
tegrates rate adaptation and frequency scaling for maximized
adaptation capability. EUCON has worse performance than fre-
quency-scaling-only when the frequency range is from 0.417 to
1, because the normalized rate range size is relative small (i.e.,
300/200 = 1.5) compared to the normalized range size of exe-
cution time variations (53/23 = 2.3) and the normalized range
size of CPU frequency (1/0.417 = 2.4). As aresult, the system
under EUCON has only limited capability for rate adaptation.
When the frequency range is reduced to [0.75, 1] (to simulate
Intel processors), the performance of EUCON is impacted only
slightly as it relies on rate adaptation. However, none of the task
sets is feasible under frequency-scaling-only because now the
normalized range size of CPU frequency (1/0.75 = 1.3) is too
small for utilization control. PAUC also has degraded perfor-
mance as it relies on both rate adaptation and frequency scaling.
Nonetheless, the percentage of feasible task sets under PAUC
is still significantly higher than that under either EUCON or
frequency-scaling-only. Fig. 8(b) shows the total power con-
sumption of the 20 processors in the system averaged over the
1000 task sets. EUCON has the highest power consumption
because it does not adjust CPU frequency for power savings.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

312

100

[

= 80 DFreq range [0.417,1]

3 B Freq range [0.75,1]

Q2

- o 60

o0

O x 40

g8

g o i

)

o PAUC EUCON Frequency
scaling only

(a)

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

c 2200
0
‘g_ 2000
3 @ 1800
& = 1600
o= 1400 OFreq range [0.417,1]
g B Freq range [0.75,1]
PAUC EUCON Frequency
scaling only
(b)

Fig. 8. Comparison of percentage of feasible tasks and power consumption under the three control schemes. (a) Percentage of feasible tasks. (b) Power

consumption.

Percentage of
feasible task sets

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 145 1.5
Normalized rate range

(a)

Fig. 9. Comparison of percentage of feasible tasks when task rate range varies.

0.75 to 1.

c 2200

L

E‘ 2000

5 2 1800 -

c © 1600

83

~ — 1400 EEUCON OPAUC

g 1200 [[] [] [] [1

S 1.051.1 1151212513 1351414515

Normalized rate range
(a)

Percentage of
feasible task sets

1.05 1.1 1.15 1.2 1.25 1.3 1.35 14 145 15
Normalized rate range

(b)

(a) CPU frequency range is from 0.417 to 1. (b) CPU frequency range is from

s 2200

E 2000

5 @ 1800

c © 1600

g3

~ — 1400 B EUCON OPAUC

d;’ 1200 EE EE B EER § J
s 1.05 111151212513 1351414515

Normalized rate range
(b)

Fig. 10. Comparison of power consumption when task rate range varies. (a) CPU frequency range is from 0.417 to 1. (b) CPU frequency range is from 0.75 to 1.

Frequency-scaling-only has the lowest power consumption be-
cause it relies only on frequency scaling for utilization con-
trol. PAUC has slightly higher power consumption than fre-
quency-scaling-only but achieves a significantly higher feasi-
bility percentage. This experiment demonstrates that PAUC im-
proves the feasibility and power efficiency of utilization control.

In the second set of simulations, since the task rate range is
an important parameter, we change the rate range size of the
tasks in the system to examine the performance of EUCON and
PAUC. The highest allowed task rate of every task is fixed to be
300, while the lowest task rate is varied from 195 to 150 with
a decrement of 5. As a result, the rate range size normalized to
the range used before (i.e., [200, 300]) changes from 1.05 (i.e.,
(300 — 195)/(300 — 200)) to 1.5. As shown in Fig. 9(a), the
percentage of feasible task sets controlled by EUCON increases
almost linearly as the rate range size increases. The reason is
that since the execution times are generated randomly, if the
rate range size increases linearly, the probability of having fea-
sible utilization control also increases approximately linearly.
When we reduce the frequency range from [0.417, 1] to [0.75, 1]
in Fig. 9(b), the percentage of feasible task sets under PAUC

drops to 86% when the normalized rate range is 1.05. This is
because when both rate and frequency ranges are small, PAUC
has a reduced adaptation capability. However, when either range
has a reasonable size, PAUC can effectively utilize it to maxi-
mize the system adaptation capability. Fig. 10(a) and (b) show
that the system power consumption under PAUC is lower than
that under EUCON. When the frequency range is [0.417, 1],
the power consumption under PAUC increases when the task
rate range increases because PAUC tries to conduct rate adapta-
tion first in order to achieve the highest task rates and so highest
system value. With wider rate ranges, PAUC is able to control
CPU utilizations without lowering the CPU frequencies of the
processors, resulting in improved task rates. This experiment
demonstrates that EUCON is sensitive to the range size of task
rates, while PAUC can have an increased number of feasible task
sets and reduced power consumption by integrating frequency
scaling.

In the third set of simulations, we examine EUCON and
PAUC with hybrid workloads, where some tasks do not allow
task rate adaptation (i.e., some tasks have constant invoca-
tion rates). The motivation is that hybrid workloads are more

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: PAUC: POWER-AWARE UTILIZATION CONTROL IN DISTRIBUTED REAL-TIME SYSTEMS 313

100 — g

(2]
59 80
[i
gé 60
€+ 40
[T
S92 20 EEUCON @IPAUC
a® 0

2 20% 40% 60% 80% 100%

Percentage of tasks with constant rates (%)
(a)

100

2
59 80
(] il
> é 60
=+ 40 -
o9
g 2 20 B EUCON OPAUC
a § 7 W

- 20% 40% 60% 80% 100%

Percentage of tasks with constant rates (%)
(b)

Fig. 11. Comparison of percentage of feasible tasks when the workload composition varies. (a) CPU frequency range is from 0.417 to 1. (b) CPU frequency range

is from 0.75 to 1.

g 2200

ué_ 2000 -

E 5 1800

§£ 1600 l &
£ 1400 BEUCON EPAUC
H 1200 — — —
g 20% 40% 60% 80% 100%

Percentage of tasks with constant rates (%)
(a)

< 2200

£ 2000

5:@1800

c & 1600

8=

o < 1400 BEUCON EPAUC
s 1200 . = .
o 20% 40% 60% 80% 100%

Percentage of tasks with constant rates (%)
(b)

Fig. 12. Comparison of power consumption when the workload composition varies. (a) CPU frequency range is from 0.417 to 1. (b) CPU frequency range is from

0.75 to 1.

common in distributed real-time systems than ideal workloads
where the rates of all the tasks are adjustable. To test the
sensitivity of EUCON and PAUC, we vary the percentage
of tasks with constant rates from 20% to 100%. As shown
in Fig. 11(a) and (b), the number of feasible task sets under
EUCON decreases significantly when the percentage of tasks
with constant rates increases from 60% to 100%. This exper-
iment demonstrates that EUCON has inferior performance
with realistic workloads, where the majority of tasks do not
allow rate adaptation. In contrast, PAUC can achieve a much
greater adaptation capability by integrating rate adaptation
and frequency scaling. Fig. 12(a) and (b) also demonstrate
that PAUC is more power efficient. PAUC has reduced power
consumption when the percentage of tasks with constant rates
increases because PAUC relies more on frequency scaling for
utilization control when more tasks do not allow their rates to
be adjusted.

IX. RELATED WORK

A survey of feedback performance control in computing sys-
tems is presented in [1]. Many projects that applied control
theory to real-time scheduling and applications are closely re-
lated to this paper. Steere et al. and Goel et al. developed feed-
back-based schedulers [32], [16] that guarantee desired progress
rates for real-time applications. Abeni et al. presented control
analysis of a reservation-based feedback scheduler [2]. Wang
et al. proposed a two-layer response time control architecture
for virtualized servers [40]. Lu et al. developed a middleware
service that adopts feedback control scheduling algorithms to
control CPU utilization and deadline miss ratio [38]. Feedback
control has also been applied to power control [43], [23], [39]
and digital control applications [8].

Various CPU utilization control algorithms (e.g., [38], [31],
[24], [34]) have been recently proposed to guarantee real-time
deadlines. For example, Lu et al. designed constrained MIMO
utilization control algorithm for multiple processors that are
coupled due to end-to-end tasks [26]. Wang et al. proposed
decentralized utilization control algorithm for large-scale dis-
tributed real-time systems [37]. Yao et al. developed an adap-
tive utilization control algorithm [42]. However, all those algo-
rithms assume that task rates can only be continuously tuned.
Hybrid control theory [22] and optimization strategies [12] are
adopted to handle discrete task rates based on the assumption
that task WCETSs are known a priori and accurate. In contrast to
all the existing work that relies exclusively on rate adaptation,
we present a two-layer control architecture that uses both rate
adaptation and DVFS for power-efficient utilization control.

Many energy-efficient real-time scheduling algorithms have
been proposed (e.g., [3], [41], [10], [30], [4], and [43]). For ex-
ample, Aydin et al. considered the energy-aware partitioning
of real-time tasks for multiprocessor systems [5]. Huang et al.
studied a similar problem in the context of heterogeneous multi-
processors [20]. Chen et al. extended the power models adopted
in [5], [20] and proposed a real-time scheduling method that
minimizes both dynamic and leakage energy consumption [9].
Aydin et al. addressed the frequency-independent parts in task
execution times that do not scale linearly with CPU frequency
[3]. Various thermal management algorithms have also been
proposed for real-time systems (e.g., [11] and [14]). However,
most existing work relies on detailed knowledge (e.g., WCETs)
of workloads to minimize the energy consumption or system
temperature, or maximize the system reward in an open-loop
manner. While they can effectively guarantee task schedula-
bility in closed environments without a feedback loop for adap-
tations, they may not be directly applied to DRE systems whose

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

314 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

workloads may vary significantly at runtime. In contrast, we use
DVES as a knob to dynamically react to unpredictable workload
variations instead of minimizing the energy consumption of the
entire DRE system.

X. CONCLUSION

In this paper, we have formulated a new CPU utilization
control problem based on both frequency scaling and rate
adaptation. Since a centralized controller for simultaneous
frequency scaling and rate adaptation would have a nonlinear
system model, we designed PAUC, a two-layer coordinated
CPU utilization control architecture. The primary control loop
uses frequency scaling to locally control the CPU utilization
of each processor, while the secondary control loop adopts
rate adaptation to control the utilizations of all the processors
in the system at the cluster level on a smaller timescale. Both
the two control loops are designed and coordinated based on
well-established control theory for theoretically guaranteed
control accuracy and global system stability. Empirical results
on a physical testbed demonstrate that our control solution
outperforms EUCON, a state-of-the-art utilization control
algorithm, by having increased adaptation capability and less
power consumption. Extensive simulation results also show
that our solution can significantly improve the feasibility of
utilization control.

REFERENCES

[1] T.F. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
performance control in software services,” IEEE Control Systems, vol.
23, no. 3, pp. 74-90, 2003.

[2] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a reser-
vation-based feedback scheduler,” in Proc. RTSS, 2002, pp. 71-80.

[3] H. Aydin, V. Devadas, and D. Zhu, “System-level energy management
for periodic real-time tasks,” in Proc. RTSS, 2006, pp. 313-322.

[4] H. Aydin, P. Mejia-Alvarez, D. Mossé, and R. Melhem, “Dynamic and
aggressive scheduling techniques for power-aware real-time systems,”
in Proc. RTSS, 2001, pp. 95-105.

[5] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in Proc. IPDPS, 2003.

[6] S. A. Brandt and G. J. Nutt, “Flexible soft real-time processing in
middleware,” in Proc. RTSS, 2004, pp. 77-118 [Online]. Available:
http://www.springerlink.com/content/w0043qk112jgu251/

[7]1 G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic sched-
uling for flexible workload management,” IEEE Trans. Computers, vol.
51, no. 3, pp. 289-302, 2002.

[8] A.Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen, “Feedback-feed-
forward scheduling of control tasks,” Real-Time Systems, vol. 23, no.
1, pp. 25-53, 2002.

[9] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo, “Leakage-aware energy-effi-
cient scheduling of real-time tasks in multiprocessor systems,” in Proc.
RTAS, 2006, pp. 408-417.

[10] J.-J. Chen, C.-M. Hung, and T.-W. Kuo, “On the minimization of the
instantaneous temperature for periodic real-time tasks,” in Proc. RTAS,
2007, pp. 236-248.

[11] J.-J. Chen, S. Wang, and L. Thiele, “Proactive speed scheduling for
frame-based real-time tasks under thermal constraints,” in Proc. RTAS,
2009, pp. 141-150.

[12] Y. Chen, C. Lu, and X. Koutsoukos, “Optimal discrete rate adaptation
for distributed real-time systems,” in Proc. RTSS, 2007, pp. 181-192.

[13] G. F. Franklin, J. D. Powell, and M. Workman, Digital Control of Dy-
namic Systems, 3rd ed. Reading, MA: Addition-Wesley, 1997.

[14] X. Fu, X. Wang, and E. Puster, “Dynamic thermal and timeliness guar-
antees for distributed real-time embedded systems,” in Proc. RTCSA,
2009, pp. 403-412.

[15] S. Goddard and X. Liu, “A variable rate execution model,” in Proc.
ECRTS, 2004, pp. 135-143.

[16] A. Goel, J. Walpole, and M. Shor, “Real-rate scheduling,” in Proc.
RTAS, 2004, pp. 434-441.

[17] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control System De-
sign. Englewood Cliffs, NJ: Prentice-Hall, 2000.

[18] D. Henriksson and T. Olsson, “Maximizing the use of computational
resources in multi-camera feedback control,” in Proc. RTAS, 2004, pp.
360-367.

[19] T. Horvath and K. Skadron, “Multi-mode energy management for
multi-tier server clusters,” in Proc. PACT, 2008, pp. 270-279.

[20] T.-Y. Huang, Y.-C. Tsai, and E. T.-H. Chu, “A near-optimal solu-
tion for the heterogeneous multi-processor single-level voltage setup
problem,” in Proc. IPDPS, 2007, pp. 1-10.

[21] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level anal-
ysis of fast, per-core DVFS using on-chip switching regulators,” in
Proc. 14th IEEE Int. Symp. High-Performance Computer Architecture
(HPCA), 2008, pp. 123-134.

[22] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu, “Hybrid super-
visory utilization control of real-time systems,” in Proc. RTAS, 2005,
pp. 12-21.

[23] C. Lefurgy, X. Wang, and M. Ware, “Power capping: A prelude to
power shifting,” Cluster Computing, vol. 11, no. 2, pp. 183-195, 2008.

[24] S. Lin and G. Manimaran, “Double-loop feedback-based scheduling
approach for distributed real-time systems,” in Proc. HiPC, 2003, pp.
268-278.

[25] J. W. S. Liu, Real-Time Systems. Englewood Cliffs, NJ: Prentice-
Hall, 2000.

[26] C. Lu, X. Wang, and X. Koutsoukos, “Feedback utilization control in
distributed real-time systems with end-to-end tasks,” IEEE Trans. Par-
allel Distrib. Syst., vol. 16, no. 6, pp. 550-561, Jun. 2005.

[27] Y. Lu, T. F. Abdelzaher, and A. Saxena, “Design, implementation,
and evaluation of differentiated caching services,” IEEE Trans. Par-
allel Distrib. Syst., vol. 15, no. 5, pp. 440—452, May 2004.

[28] P. Marti, G. Fohler, P. Fuertes, and K. Ramamritham, “Improving
quality-of-control using flexible timing constraints: Metric and sched-
uling,” in Proc. RTSS, 2002, pp. 91-100.

[29] R. Rajkumar, L. Sha, and J. P. Lehoczky, “Real-time synchronization
protocols for multiprocessors,” in Proc. RTAS, 1988, pp. 259-269.

[30] S. Saewong and R. R. Rajkumar, “Practical voltage-scaling for fixed-
priority RT-systems,” in Proc. RTAS, 2003, pp. 106—-114.

[31] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and
C. Lu, “Feedback control scheduling in distributed real-time systems,”
in Proc. RTSS, 2001, pp. 59-70.

[32] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J.
Walpole, “A feedback-driven proportion allocator for real-rate sched-
uling,” in Proc. OSDI, 1999, pp. —158.

[33] J. Sun and J. Liu, “Synchronization protocols in distributed real-time
systems,” in Proc. ICDCS, 1996, pp. 38—45.

[34] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, “FC-ORB: A robust
distributed real-time embedded middleware with end-to-end utilization
control,” J. Syst. Softw., vol. 80, no. 7, pp. 938-950, 2007.

[35] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, “On controllability and
feasibility of utilization control in distributed real-time systems,” in
Proc. ECRTS, 2007, pp. 103-112.

[36] X. Wang, X. Fu, X. Liu, and Z. Gu, “Power-aware CPU utilization
control for distributed real-time systems,” in Proc. RTAS, 2009, pp.
233-242.

[37] X.Wang, D. Jia, C. Lu, and X. Koutsoukos, “DEUCON: Decentralized
end-to-end utilization control for distributed real-time systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 18, no. 7, pp. 996-1009, Jul. 2007.

[38] X. Wang, C. Lu, and C. Gill, “FCS/nORB: A feedback control real-
time scheduling service for embedded ORB middleware,” Micropro-
cess. Microsyst., vol. 32, no. 8, pp. 413—424, 2008.

[39] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power con-
trol for chip multiprocessors with online model estimation,” in Proc.
ISCA, 2009, pp. 314-324.

[40] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient response
time guarantees for virtualized enterprise servers,” in Proc. RTSS, 2008,
pp. 303-312.

[41] R. Xu, R. Melhem, and D. Mossé, “Energy-aware scheduling for
streaming applications on chip multiprocessors,” in Proc. RTSS, 2007,
pp. 25-38.

[42] J. Yao, X. Liu, M. Yuan, and Z. Gu, “Online adaptive utilization
control for real-time embedded multiprocessor systems,” in Proc.
CODESHISSS, 2008, pp. 85-90.

[43] Y.Zhu and F. Mueller, “Feedback EDF scheduling exploiting dynamic
voltage scaling,” in Proc. RTAS, 2004, pp. 84-93.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: PAUC: POWER-AWARE UTILIZATION CONTROL IN DISTRIBUTED REAL-TIME SYSTEMS 315

Xiaorui Wang (M’06) received the B.S. degree from
Southeast University, China, in 1995, and the Ph.D.
degree from Washington University, St. Louis, MO,
in 2006, both in computer science.

He is an Assistant Professor in the Department of
Electrical Engineering and Computer Science at the
University of Tennessee, Knoxville. He is an author
or coauthor of more than 40 refereed publications.
In 2005, he worked at the IBM Austin Research
Laboratory, designing power control algorithms for
high-performance computing servers. From 1998 to
2001, he was a Senior Software Engineer and then a Project Manager at Huawei
Technologies Co. Ltd., China, developing distributed management systems for
optical networks. His research interests include real-time embedded systems,
power-aware computer systems, and cyber-physical systems.

Prof. Wang is a member of the IEEE Computer Society. He is the recipient
of the NSF CAREER Award in January 2009, the Chancellor’s Award for Pro-
fessional Promise and the College of Engineering Research Fellow Award from
the University of Tennessee in 2009 and 2010, respectively, the Power-Aware
Computing Award from Microsoft Research in 2008, and the IBM Real-Time
Innovation Award in 2007. He also received the Best Paper Award from the 29th
IEEE Real-Time Systems Symposium (RTSS) in 2008.

Xing Fu received the B.S. and M.S. degrees from
Beijing University of Posts and Telecommunications,
Beijing, China. He is currently working towards the
Ph.D. degree in computer engineering at the Depart-
ment of Electrical Engineering and Computer Sci-
ence, University of Tennessee, Knoxville.

His research interests are distributed real-time sys-
tems with power or thermal constraints and real-time
middleware. His current research focuses on power-
aware multicore real-time systems.

Xue Liu is an Associate Professor in the Department
of Computer Science and Engineering, University
of Nebraska-Lincoln. Before that, he was an Assis-
tant Professor in the School of Computer Science,
McGill University, Canada from 2007 to 2009. He
has worked briefly in the Hewlett-Packard Labs and
IBM T. J. Watson Research Center. His research
interests are in real-time and embedded systems,
cyber-physical systems, networking, data centers,
and software reliability.

Prof. Liu received the IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS Best Paper Award in 2008.

Zonghua Gu received the Ph.D. degree in computer
science and engineering from the University of
Michigan, Ann Arbor, in 2004.

He worked as a Postdoctoral Researcher at the Uni-
versity of Virginia from 2004 to 2005, and then as
an Assistant Professor at the Hong Kong University
of Science and Technology from 2005 to 2009 be-
fore joining Zhejiang University as an Associate Pro-
fessor in 2009. His research area is real-time and em-
bedded systems.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE. Downloaded on August 17,2010 at 01:53:33 UTC from IEEE Xplore. Restrictions apply.

