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Abstract

We consider a dynamic set of soft real-time applicationsgisi set of shared resources. Each application
can execute in different modes, each one associated witrebdeQuality of Service (Qo0S). Resources,
in their turn, have different modes, each one with a speedagpolwer consumption, and are managed
by a Reservation Based scheduler enabling a dynamic abbacat the fraction of resources (bandwidth)
assigned to each application.

To cope with dynamic changes of the application, we advoeatedaptive resource allocation
policy organised in two nested feedback loops. The intdow operates on the scheduling parameter
to obtain a resource allocation that meets the temporalticnts of the applications. The external loop
operates on the QoS level of the applications and on the plawel of the resources to strike a good
trade-off between the global QoS and the energy consumpfibis loop comes into play whenever
the workload of the application exceeds the bounds that ipe¢h@ internal loop to operate correctly,
or whenever it decreases below a level that permit more agigeechoices for the QoS or substantial

energy saving.

. INTRODUCTION

In soft real-time applications timing constraints can &icaally be violated without causing

a system failure. However, the performance of the systenertigppon the number of violated



constraints and on the severity of such violations. Theegfone of the prominent goals for a
soft real-time system is to keep under control the violatériming constraints.

There are many examples of soft real-time applications ioatte consumer electronics market
and in the industrial application domain. Many of such aggilons involve video processing:
for example, distributed video monitoring for video-suheaace and collection of sensible data
(e.g., people counting, monitoring of parking lots, ettn)industrial control, image recognition
is increasingly used to identify objects on conveyor beitsto find defects in products. Also,
even control applications are known to be effectively impdatable by soft real-time tasks [1],
[2].

For all these applications, a static allocation of the cotajon resources to the various tasks
is rarely appropriate for many reasons: it requires an esipemff-line analysis of the application
requirements (e.g., execution times); it reduces the fiyilof the applications design and their
robustness to unexpected changes of external conditions.

In this context, we advocate the use of adaptive technigorethé Quality of Service (QoS)
management of soft real-time applications. The QoS can akiaed considering three different
dimensions. The first one is the macroscopic QoS perceivethéyser. For instance, in a
streaming application the QoS can be related to such pagasnas the resolution, the frame
rate etc. The second dimension is the compliance with thengroonstraints. Finally, a third
perspective on the system QoS is given by energy consumpgtgoan example, if the application
is run on a portable device, the duration of the battery i®atlly perceived as a quality
indicator. Correspondingly, we can classify adaptive néghes in three groupsipplication level
adaptation, in which the application operating modes aaptdl to the availability of resources;
resource allocation leveddaptation, in which the resource shares granted to thécapphs are
adapted to the dynamic workload requirements; essburce power levehdaptation, in which
the resource speed (and the corresponding power consumiadapted to the requirements
of the system.

Adaptation at the resource allocation level can be an @fesblution in case of short overload
situations. In this case, the detrimental effects on the @b8n the system is overloaded can
be controlled by the adaptive scheduler, exploiting theeieht robustness of soft real-time
applications to timing faults. However, if the overload gists (due to a structural change),

then the problem cannot be solved at the scheduling leveitandy be necessary to change the



application mode in order to reduce the workload. On therdthad, if changes in the application
level are too frequent, the perceived QoS can be very loweFbee, application level adaptation
cannot be used to control the timing behaviour of an apptinaat each activation of its tasks.

These simple arguments suggest the potential improverhahtme can achieve by the com-
bined application of resource level and application leveS@ontrol. However, this combination
is far from trivial: the adaptation on the application sidesho be appropriatelgoordinated
with the adaptation on the resource side, in order to masiisir effectiveness.

Therefore, in this paper we present a coherent softwarétactlre that 1) is soundly rooted in
control theory; 2) implements resource-level and appbcakevel adaptation by using a coherent
two-level control loop strategy; 3) allows the user to cuoss®e the desired QoS metric, and tune
the application parameters to maximise the desired metjids available on a widely used
operating system platform.

The advantages of our software architecture are demoadtoat a real application, consisting
of an adaptive video encoder, which is capable of dynanyicaaling the quality of the video
and the corresponding computing requirements.

The paper is organised as follows. In Section II, we quicldgart on the state of the art in
the field. In Section Ill, we describe our approach putting #tress on the idea of a double
feedback loop. In Section IV, we describe the Linux basetdwsot architecture that we have
designed to implement the idea and in Section V we report btaireed experimental results.

Finally, in Section VI, we offer our conclusions and anncaifigture work directions.

Il. RELATED WORK

The application of feedback control techniques to contrelévolution of real-time applications
has become popular in the research community. The basicsdeaompensate for the fluctuation
in the workload generated by the different applications bgrating on appropriatactuators
The proposed approaches take a different direction acopitdi the type of actuators used and
to the way the behaviour of the application is observed. Venghly, we can classify them in
three different areas: 1) application level adaptations@)eduling level adaptation, 3) power
level adaptation.

The idea underlying application level adaptation is to afeepn a set of parameters exposed

by the application in order to increase or decrease its g#grrworkload. This viewpoint is



championed by several researchers. A recent and importame is in the work of Wust et
al. [3], a QoS optimisation framework based on a Markov Denig’roblem (MDP) approach,
with similar goals to the ones considered in this paper. Oorkwdiffers in two respects. The
first difference is that we aim at supporting QoS in open systehere a MDP is hard to set up
because of the limited prior knowledge on the applicatidiiie second one, is that we consider
applications for which frequent changes in the operatinglenproduce annoying effects and
should be avoided solving the problem at the schedulind lshhenever possible.

The viewpoint taken by scheduling level adaptation is sohavdual: the QoS is controlled
by operating on the scheduling parameters, leaving theicabipih unaware of the adaptation.
An approach of this kind is the so called real-rate scheduleveloped by Steere and others [4].
The progress of the application is compared with the idgalaad corrective actions are taken as
required. In the real-time community a very significant wbds been carried out by Stankovic
and others [5], who measure for each task the deadline ntissatad operate on the deadlines
used by an EDF scheduler. In the absence of a precise dynaadelrof the scheduler, this
approach is to be classified as a heuristic solution. In eshtrAbeni and others [6] propose
the use of an adaptive scheme based on the resource resesvathedulers [7], which is one
of the cornerstones of the work presented in this paper. e af a resource reservation
scheduler enables a precise description of the evolutidgheobystem and hence a well founded
design [8]. A major limitation of adaptive scheduling is it&bility to operate when the system
is in persistent overload conditions, an issue we addregsdpaper by mixing application level
adaptation with adaptive scheduling.

As far as power adaptation is concerned, most of the work dorlee area is based on the
well-known dependency of the power consumption of a CPLhuEIMOS technology) from the
voltage level used for power supply and the operating frequeWhen the workload on a CPU
is low, we can lower the voltage and hence the frequency. iBecthere is a quadratic relation
between power and voltage, this can lead to remarkable gisergngs. Pillai and Shin [9] in a
seminal work propose a power aware real-time schedulingiguoe. A similar research direction
is taken by Aydin et al. [10]. However, in our case, we canmdy on a prior characterisation
of the workload and we are interested in adaptively strikingood compromise between QoS
and power rather than respecting every single deadline. ésnaequence, we perform power

adaptation on longer time scales rather than aggressivagging it upon each job execution.



Closer to our approach is the idea of Simunic and others [Mi§. authors estimate on-line the
arrival and the service rate of frames in a MPEG streamindicgion (modelled as a M/M/1
gueue) and adjust the CPU voltage and frequency accordiidptive schemes in which power
consumption is explicitly considered along with temporahgantees have been proposed by Qu
et al. [12] and in the GRACE-OS [13] architecture, proposgdrban and Nahrstedt. Our work
differs in many respects. First, power consumption is omlg of our optimisation criteria, and
it can be traded off with the macroscopic QoS level of the i@ppbns. Second, our power
adaptation mechanism does not take place at the schedeledy but it is carried out along
with adjustment in the application modes when the systeredenfigured.

A very general framework for QoS optimisation is QRAM [14]itWQRAM the dimensions
along which the QoS is evaluated can be multiple and incluaeep consumption. The frame-
work was initially applied offline but recently it has beentended in order to be applicable
on-line [15]. Differently from QRAM, we are not proposing areral framework for QoS
definition and optimisation. Our main focus is rather on digdapand combined control of QoS
and temporal behaviour. The two aspects are taken care @fdgdntrol loops: the external one
operating on the QoS level and the internal one operatingeagiiained control of the temporal
behaviour of the applications. In principle, QRAM could bged to specify the optimisation
problem operated by the external loop, along the line sugddsy Lee et al. [16].

An approach similar to the one presented in this paper has fyeposed by Abeni et al. [17],
where an inner controller performs on-line adaptation ef ilbquested bandwidth, and an outer
controller performs a slower on-line adaptation of the mapilon QoS level by modulating the
task activation rate. However, the approach presentedi$ernere general, in that we can operate
on multiple dimensions to change the QoS of the applicatamtshence the generated workload
(and not simply on the rate), and we seek optimum QoS/pomestamption trade-offs in the
global system reconfiguration. Another interesting apgina@cently proposed by Romero et al.
[18] uses global ILP optimization for setting applicatiordes and allocating tasks on multiple
processors, and adaptive reservations for controllingdtreedline-miss ratio of individual tasks.
However, power management is not considered in the model.

In order to solve the optimisation problem associated withexternal loop with an acceptable
cost we use a heuristic. Similar solutions can be found invtbek of several researchers. For

instance, Rusu et al. [19], propose a heuristic to solve #&gén Linear Program (ILP) that



identifies the optimal configuration of a system with muliae periodic real-time applications
under deadline and energy constraints. Chen and Kuo algmwogeo[20] various formulations,
comprising ILP, and propose heuristic solvers, focusingttus theoretical complexity of the
solution strategy. In both cases, the problem addressetdebnuthors bears some resemblance
with the one associated with our external loop. There areielier, significant differences, the
most important being that the authors mainly concentrata ime-slotted setting where tasks
share the same period (an extension to multiple periodsitedhto considering the hyper-period).
In our case, the use of a Reservation Based (RB) schedulecesdmportant differences in the
way the problem is formulated. Other differences are in & tunction (which in our case has
a term penalising power consumption) and in the fact thabéncited paper the authors assume
the possibility of choosing a different frequency for eaabkt (whereas we periodically set the
frequency of the CPU to be used for all tasks in the next pgribldese differences in the model
prevent the direct application of the heuristics proposethe cited papers in our framework,
although some of the ideas have been adapted and expertdr@ni@s detailed below).

Other authors propose architectural support for multeldeedback. This is the case of the
HOLA-QOS architecture [21] proposed by Valls et al. and of thork done by Kalogeraki
and others [22]. Generally speaking, devising middle-wsaitions for QoS management has
been an active research area in the last few years. One sagtiBample in this wide body of
literature is the work by Brandt and co-workers [23], in whi& middle-ware is used to support
application level adaptation. Other relevant middle-wareposals are the ones by Schmidt et
al. [24], and by Zhang et al. [25]. In these cases, there isaktime scheduling support for
the QoS management, which is part of our approach. More itaptly, in these proposals,
the authors offer a generic support for QoS adaptation =yt tto not commit to any specific
algorithmic solution. In this work, although we propose addie-ware architecture ourselves
and we place a major emphasis on the “internals” of the dlyos for QoS management.

Finally, this work extends and subsumes preliminary reswk presented in [26].

[1l. PROPOSEDAPPROACH
A. Dual-Loop Control Scheme Overview

The two-level feedback-based QoS control scheme proposehlis paper is sketched out in

Figure 1. The internal control loop is operated biRasource Allocation ControlleAt the end
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Figure 1. Two-level control loop.

of each job, the controller receives a measurement o$theduling errora QoS metrics which
will be introduced later in 11I-B2, and of the computatiomi of the previous job. The controller
then decides the fraction of resources (bandwidth) to b tmethe next job and actuates this
decision by properly changing tlseheduling parameter3 he objective of this control is to have
an evolution of the QoS metric complying with the stochastial-time specification set by the
external loop. This goal can be achieved only if some assompbn the workload generated
by the tasks are respected. TWerkload Monitorrecords the computation time of the jobs and
evaluates the workload generated by the task over a timevaite

An external control loop, operated by @lobal QoS Controller provides the application-
level and power-level adaptation. It periodically promfite Workload Monitor to evaluate if
the working assumptions for the resource controller aréated. If this is the case, it switches
the mode of the applications and the power mode of the ressui@ change the resource
requirements of the tasks. Similarly, if a reduction in tesaurce requirements is detected,
the QoS controller can make more aggressive choices in thkcapon modes increasing the

“macroscopic” QoS perceived by the users. The Global QoStrGlber chooses at all times a



configuration that maximises a system-wig@eS indexachieving the desired trade-offs between
QoS of applications and power consumption. When some of pipdication modes or of the
power modes are changed, the QoS controller resets thémeakpecifications for the resource
controllers adapting them to the new mode and resets theotlent

More details about the two control loops follow in Sectiomls@ and 11I-D, after a brief

introduction of the necessary concepts and notational exiésn

B. Background and Notation

Our system consists of a set afapplicationsA®, ... A™ sharing a pool ofn resources

RW_ ..., R™ . Although in the remainder of the paper we will concentratepopcessors, the
presented approach may be equally effective in managingr dilpes of resources. In fact,
the approach is applicable whenever the resource can beatdtb preemptively or with a fine
granularity for non-preemptive sections. A network link fahich the packet size used for
transmission is much smaller than the one used by the apiphda a good example. Applications
can dynamically enter and leave the system.

1) Real-Time Task ModeEach application4d” is composed of one or more tasks, each one
deployed on a processor. For the sake of simplicity, we asdinatt in all applications there is
at most one task using each CPU:ét”) denote the task belonging 14 that usesRk(”, and
A, the set of applications with tasks ().

Ataskr(") consists of a sequence of jobs, or instandéisf). Each jobJ,f’” arrives (becomes
executable) at time!"”, and finishes at tim¢"") after usingR(" for a timec\"". Job J\""
is associated with a deadlin&”"”, which is metif " < d\"” and ismissedotherwise. In
this paper, we focus operiodically activated tasks with period® andrelative deadlineequal
to the period:r(2) = r"" + T4 andd""” =+ + 7@ = ") However, our software
architecture supports also aperiodic tasks (see Sectipn IV

2) Scheduling:Each processor is shared between multiple tasks by usingerReion Based
(RB) scheduling policy. In a multiprocessor setting, weuass tasks are statically partitioned
on the processors. In a RB framework, a task” deployed on a CPUR(") is associated a
pair (QU"), P(:7)  said reservation meaning that the scheduling algorithm guaranteesto
a budgetof Q") execution time units of the CPU in evergservation periodP"), whenever

in need. The ratioB®" = Q" /Pt is referred to ageserved bandwidtland quantifies



the fraction of the CPU reserved to the task. In our framewdnk reserved bandwidth can
be dynamically changed by changing the reserved bu@§et for each job. The reservation

period P(-") is strictly tied to the task perio@® (generally equal to the period of the task, or
to one of its sub-multiples). This choice maximises the igfficy in resource allocation [27] and

allows us to construct a dynamic model for the evolution eftdsk. As a result, the reservation
period only changes when the application period is changed, for a change in the application
mode). The symboB("" will denote the bandwidth allocated t&"".

To analyse the timing behaviour of the tasks, it is convartiemtroduce, for each joH,ii’T),
thelatest possible finishing tim@&PFT), defined as the end of last reservation period in wtheh
job can finish. As an example, if a task is scheduled througiservation Q") P(") = (1, 3)
and the job starts di with c,(f”) = 3, the LPFT is9. Indeed, it takes three reservation periods
for the task to complete. This quantity is an upper boundHerfinishing time of the job, which
is attained if: 1) the job does not receive computation tirtteepthan the reserved one, 2) in
the last reservation the budget is received right beforedteline. Based on this quantity it
is possible to introduce thgcheduling errore,(f’"), defined as the difference between the LPFT
and the job deadline (see [6] for details). This quantity barused to quantify the precision in
resource allocation. Indeed, if the scheduling error isatieg, then the job received more CPU
time than strictly required. Conversely, if the schedulergor is positive, then the job received
too little. The scheduling error as just defined has been usedrious papers about adaptive
real-time scheduling, in which feedback-based contropsooontrol its evolution in a range as
close as possible to zero, ranging from linear controlléist¢ non-linear [28] and stochastic
based ones [8], [29]. The controller proposed in this papee Section 1lI-C) falls in this latter
class.

In order for a RB scheduler to work properly, the followindatéon has to be respected at all
times:

vrel, ...,my B <Ul) (1)

i€A,
whereU") < 1 depends on the scheduling algorithm.
3) System ConfigurationEach applicationd® can execute in a mode chosen in a finite set
VO 2 1 n$} of cardinality nl,. Every modej € V@ is associated with ®0S rate

¢ € R, which is a measure of the instantaneous user satisfactimmw() executes in the



j-th mode.

Each resourceR"”) may vary its power mode within a finite sét™ 2 {1,... n{)} of
cardinality n") (e.g., by varying the clock frequency and voltage for a CAd)each mode
k, the resourceR(™) has a power consumptiont™*). Modes associated with a higher power
consumption reduce the execution time of the tasks. Thanigdtion framework presented in
this paper is very general and supports arbitrary speddicaif resource requirements for each
available power-mode, as it will be clarified in Section M-

In the following, for the purpose of clarity, whenever thesaission refers to a single task

and/or resource, the corresponding supers¢gipand/or(r) is omitted.

C. The Resource Allocation Controller

The goal of the resource-level control loop attached to dask is specified in terms of the
probability 7(>") that the scheduling erraf>") of the task respects an upper bound”). More
formally:

PI‘{EI(;’T) < 5(@',7")} > pim) @)

This goal is achieved by a control scheme (presented in apnalry version in [29]) consisting
of two basic elements: 1) a set of local controllers assediatith each taskt@isk controller,
and 2) a set of resource supervisors associated with eadegsar. The purpose of the task
controller is to formulate a minimum bandwidth requ&jﬁ ") that allows the task to respect its
timing constraints with probability ™). Because the controllers have only a local visibility, they
could formulate bandwidth requests exceedm@ in Condition (1). The resource supervisor
in this case can change the vallﬂiéi’r) of the bandwidth granted to the application so that
the condition is respected. The conceptual link betweentwoe components is a minimum
bandwidtth”) that has to be granted to jobgm), whenever the task controller formulates
a request?,(f’r) > Bg””). Clearly, to respect the schedulability constraint in Houm(1), the
minimum guaranteed bandwidths have to respect it in turn:

vrefl, ...,m}, Y BE <UD 3)

i€ A,

Indeed, in the worst case each task” is granted only its minimum guaranteed bandwidth
BY™.



1) Task controllers: Considering a single task, we can approximate the evolutiothe

scheduling error as follows:
67 |
i =S + s =10 @
k+1
where S(z) = x if x > 0, and S(z) = 0 if =z < 0. Intuitively, if in the previous job the task

received an amount of bandwidth greater than or equal toeisl r{negative scheduling error),
there is not any execution backlog on the new job. In this ,cHse LPFT can be computed
starting from the job activation instant. Otherwise, it l@a¥e computed starting from the LPFT
of the previous job (hence the functidf(.)), and the ratlo";;rl,)) approximates the number of
required reservations.

In order to find a feedback control law that achieves Condlitt), the sequence of computation
timesC,(j””) and of observed scheduling errm‘ké’") are considered as discrete-time, continuous-
valued, stochastic processes, related by Equation (4)pit¢tdem is to find a function relating

(3,7)

B,iH) to ¢’/ such that Equation 2 is respected.
A reasonable approximation of this ideal design goal is Hevis. If the scheduling error is in
an attractivity regionR" = [-T®  R(] enclosing the target regioR\ " = [T, §6:7)),

then it is steered back l’lig’ ") with at least the probabilityr - 7):
Pr{€k+1 c Rz r) ‘ (i,7) R(z r } > ﬂ_(i,r). (5)

Informally speaking, the quantitR®") > §¢:7) represents the maximum value that the schedul-
ing error can take for which the controller is able to conttoeh the desired set at the next step
with a high probability.

As discussed in [29, Proposition 1], assuming that an auditicomponent the predictor
— provides the controller with a quantilfyl,fj’r? such thatPr {c,gH) < H,gﬁr?} > 77 and that
the minimum bandwidtng”) guaranteed to the task satisfies
H,ﬁ”’

(i7)
Bg z SR T £ 660 — RN’ 6)
then Condition (5) is fulfilled by the following control law:
(i7)
— () H
By} = - : 7

T + 567 — Sy
The quantityH,gﬂ’r? represents a guess of an “upper bound” for the computatioe &ffjrq)

Clearly, choosing a tight bound generally decreases thbapitity 7(>") of making a correct



guess. Theup in Equation (6) has to be evaluated over all the (possiblyiiaj sequence of
jobs. For all practical purposes, this quantity can be eetd from previous executions of the
application or estimated on a trial execution of a sufficiemmber of jobs.

This result, given a desired value for "™ = inf R,(j””) and given the maximum resource
requirement estimated by the predictor, allows us to ifeatiminimum bandwidth requirement
Bg”") that attains the goal. We can extend the control law propedede by saturating it to
BY" for values of the scheduling error greater thaf™:

H(Z )

y , kel for B < Rl
B(z,r)(el(fz,r)) _ T(z)'_i_(;(z,r)_s(el(c’ )) k (8)
B otherwise

(3,7

As discussed in [29, Proposition 2], B, ) dominates the moving average of the computation
times over a given time horizon, then this control law alssuges that, if the scheduling error
leaves the attractivity region, it returns to it in a finitenmoer of steps and its maximum value
can be bounded.

2) Predictor: Many algorithms are available for time series predictid3@][ Generally, they
rely on an analysis of the past obser\zéidr) samples, where both simple solutions like moving
averages, or complex ones based on optimal filtering theoeypossible. A better performance
can be obtained by leveraging off the knowledge on the domf&ihe application (as suggested
by Pohlack et al. [31] for MPEG decoding). Any predictor tbah be characterised in terms of
a probability7") satisfying Equation (2) can fit in our framework.

3) Resource SupervisorEach resourcék(”) is attached asupervisorthat comes into play
whenever the set of requested reservations violate Equétio In such a case, the supervisor
must guarantee to each task its minimum bande@ﬁ”. We cope with this problem by using
a compression function [32]. Le{tﬁ(i’r)} denote the bandwidths required by the task controllers
at some timet. If >, B < U") | then the granted bandwidtha") are simply set equal
to the required valuesti € T,, B4 = B™". Otherwise, the granted bandwidths@ "} are

set as follows¥: € T,

) ) ) @) pin)
B — gin 4 (g ZB&JL,T) 5 —Bm .
lub -G, 7) (4, 7)
JET, Z]‘ETT (B — B, )

where B £ min { BU™, E(iﬂ‘)} .



D. The Global QoS Controller

1) Macroscopic QoS:The QoS, in our setting, can be evaluated using differentricset
Namely, for every applicatiotd® and for every possible modg we define an instantaneous
QoS rateq’), If this rate is maintained for a time intervalt (the “sampling” period of the
external loop, from here on referred to ggtimisation period, then the accumulated QoS in the
interval is given byq/)At. For certain types of applications, changing the applicatnode
too often may diminish the QoS experienced by the user. Famele, while playing a video
stream, changing too frequently the bit-rate can be veryowng. To model this detrimental
effect, when going from modégj) to mode(k), we introduce a negative QoS metric given by
— kD g0 — ¢, with k% > 0, which penalises switches in the application mode. Thisiter
is not multiplied by the time interval duration, thus its iagb is lower at higher values of the
optimisation periodAt.

Another dimension for evaluating the QoSesergy consumptioThe energy spent over the
sampling intervalAt by resourceR(") operating in modek is given byp*)At. This metric
has to be accounted for with a negative sign. If appropriatettie specific architecture, it is
possible to introduce a metric quantifying the energy speat transition between two different
power modes;j) and (k): —k;sz)(j’ " In addition to associating energy consumption with a QoS
metric, we support also constraints on the maximum consipoeer, e.g., dictated by a desired
lifetime for battery operated devices.

These different metrics are clearly in trade-off. For inst® reducing the power mode of a
resource is an advantage for the energy consumption bigatiatreases the computation times
of the different tasks generating potential overload ctows that have to be solved reducing
quality of the applications. The problem is a multi-objeetoptimisation, and we solve it by a
simple technique known as “scalarisation” [33]. The wtifinction is built as a weighted linear
combination of scalar terms, each one representing a eliffggossible optimisation dimension
(see Equation (9) below).

2) Optimisation Problem Set-upFhe global QoS controller performs an optimisation whose
decision variables are the modes of the applications andeoptocessors. Because these levels
are discrete, we can conveniently set up the problem as aeBodinear program (BLP). To

this end, we introduce a vector of Boolean variabtés = [z(-1) . .. ,x(iv“g)ﬂ)], wherez () is 1



if the mode; is selected for applicationt”, 0 otherwise. The vectok® denotes the current
configuration of A®”) (as computed by the controller at the previous optimisti@milarly,
we introduce for each resourd@™ the vector of Boolean variablgg™ = [y™!) ... ,y("’”%],
wherey"7) is 1 if the modej is selected forR(™, and the vectory™ to denote the current
configuration ofR(".

We introduce a vector notation also for the QoS levgls= [¢*V) . .. ,q(i’”‘(j')")] and the power
consumptionp™ = [pH) ... ,p(“"%]. Also, we introduce the matriK!”’ = [k{"Y""] of the
power-switching penalties. Finally, for each applicatidty and resourc&® ), we introduce the
matrix Bg’ N A [Bg”")(j’k)]jvk containing on each rowthe requirements of the application mode
for the various resource modes, and on each colktie requirements of the resource mader
the various application modes. More precisely, the comptsnefBg’ g represent the minimum
guaranteed bandwidths required by task controllers toasushe performance specification in
Equation (5). This quantity can be computed, given an ames$#i ofsup, {H,ﬁi””)} , by using
Equation (6). Such estimates may be based on informationir@cjupon each optimisation
period from the Resource Controller (see Figure 1), thug thay be time-varying. Concerning
the resource requirements related to configurations ofytske that are not currently in use, we
assume that they can be estimated, based on the values steasuthe current configuration,
by application-dependent interpolators (the so cattedti-mode predictors In the next section,
we will provide details for a specific application domain.

3) Formal Problem Statemenflow, we are in condition to formalise the problem as:

q? - x® — g . %0

)

> w (ATpm Ly 4 §OTKG, k>y<r>) Q)

r=1

max w'? (ATq(i) cx(® —
i=1

where “” denotes the scalar product!” denotes the matrix/vector transposition, and the weights
{wc(f)} and {wé’")} are positive real numbers that configure the relative emgludsapplications
QoS and power consumption in the search on the Pareto frtwet.nTaximisation is subject to

the constraints:
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where the first constraint limits the maximum instantangooswer consumptiorP sustainable
by the system, while the next constraints represent theistensy conditions in Equation (1),
for the various possible configurations. The quanfitycould in principle be time-varying to
accommodate the possible changes in the current level dbdttery or be chosen to obtain a
desired lifetime for the system. The problem has bilinearst@ints and absolute values in the
objective function. However, it can be transformed in a déad BLP problem through simple
transformations.

In our framework, each application is associated an additidictitious switching mode
corresponding to a null resource requirement (for eachuresopower mode) and to a null
QoS rate. This way, the presented BLP program has alwayssibleaolution. If the optimiser
selects the fictitious mode for an applicatight’, then: if A®) is requiring admission into the
system, then the request is turned downAif) was admitted previously, then it is dynamically
dismissed.

4) Solving the optimisation problemlhe exact solution of a BLP has generally an expo-
nential complexity in the number of decision variables. &exe our approach requires that the
optimisation problem be solved online (to close the extelowp), it is mandatory to use some
kind of heuristic simplifying its solution. The proposedrnework does not specify any particular
heuristic, and is open to the adoption of any heuristic, ag ks it produces feasible solutions. As
an example we implemented some simple heuristics, featufifierent performance/overhead
tradeoffs depending on the class of problem they are apfpdied

The simplest heuristic that we have developed was inspiyethé work of Abdelzaher et.
al. [34]. It is a greedy heuristic, quadratic in the numbetasks and resources and linear in the

number of levels. The algorithm is readily described:



1) set the current configuration with application modes toimum QoS and resource modes
to maximum power;
2) if the current configuration is feasible, then proceed te&p 8§, otherwise if the power

constraint is violated, then:

a) compute the changes of the objective function due to chgreach resource mode to
the next available one; only changes keeping feasibilitthefnon-power constraints
are considered; if no such changes exist, then exit withrierro

b) update the current configuration with the change that misgs the overall power
consumption;

C) repeat from step;

3) compute the changes of the objective function due to dhgrepch application or resource
mode to the next one; only changes that do not violate cansrare considered; if no
such changes exist, then exit and return the current coafigur
4) update the current configuration with the change in eitherQoS mode of an application,
or the power mode of a resource that maximises the objeativetibn increment;
5) repeat from step.
From the3-rd step, the execution can be interrupted at any iteratigh & feasible solution.
Therefore, it is possible to consider different trade-dftetween solution time and accuracy.
This heuristic is defined Greedy Cost (GC). Being a greedyisige) the algorithm is clearly
subject to the issue dbcal optima To overcome the problem we have investigated two different
approaches. The first one is inspired from the work of Rusu.dtlQ]. The idea is that if at
each step we simply make the choice that maximises the costidln, we could saturate the
resource constraints preventing subsequent improvememsefore, we can amend step 2a by
maximising the ratio between the QoS improvement achieyed bhoice and the norm of the
vector of increased resource utilisation incurred by theiad This algorithm is referred to as
Greedy Cost/Utilisation (GCU) heuristic.

An alternative idea entails a more substantial change.ejps&tand3 of the above algorithm,
instead of considering merely the solution change leadinipé maximum power consumption
decrement or objective function increment, we considenedit changes leading to th& best

moves, producing aet of current configurationd hen, we proceeded by carrying on the heuristic



“in parallel” from step2 on all the current configurations. At each repetition, thee of the
set of the currently considered solutions increaseg<bghowever a lower number is generally
kept, due to unfeasible and duplicate solutions), then atrmioout of them are selected for
proceeding to the next step. This heuristic is called npdtih search (MPS) heuristic.

The two ideas can be combined, producing the Multi-path @eatith Cost/Utilisation (MP-
SCU), in which the search is carried out on multiple pathstaedncrements of the cost function
are weighted against the introduced utilisation.

a) Examples:To the simple purpose of illustrating the practical ap@itity of the heuris-
tics implemented in the framework, we propose here some pbemof the overhead/performance
tradeoffs that we obtained on several test cases.

A test case corresponds to a different choice of values fdlowing parameters: number of
applications, number of resources, number of resource snaadé number of application modes.
For each test case, we selectdld different optimisation problems. This selection was made
randomly, ensuring the correctness of the problem (a hig@w® has to be associated with a
higher execution time, and a smaller power consumption baset associated with a higher
computation time). For each problem instance, we applieditfierent heuristics and found the
exact solution by using the GNU Linear Programming Tooldt PK) API*. For each test case
and for each solution algorithm, we recorded the averageptimal value and execution time
for the different problems, obtained on an Intel Core 2 Du6@®OCPU at 2.66 GHz (only 1
CPU was actually used by the solver).

The results are depicted in Figure 2. Each curve represkatpdrformance of the different
heuristics for one of the test cases on a QoS value/computatrerhead plane. For all the
test cases we consider@dresourcesy application modes and power modes. The difference
between the three test cases lies in the number of apphsatiofor the test case associated
with the curve at the bottong for the one associated with the intermediate curve &nhdor
the curve on the top of the plot. The vertical offset betwessn d¢urves is clearly due to the
increased number of applications, which corresponds togeiaccumulated value for the QoS.

A first comment on the results is that an exact solution withP&Ls not affordable in our

setting (it requires a computation time in the order of atfaacof seconds even for small sized

1 More information is available at the URInt t p: / / www. gnu. or g/ sof t war e/ gl pk.
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Figure 2. QoS index versus computation time for differest tases and different heuristics.

problems). A second comment is that the use of Greedy Hagristquires a computation time
an order of magnitude below the multi-path heuristics (Wwhit our case scanned four paths in
parallel). We conjecture that this gap can be reduced byogpiate optimisations in the code,
but is very likely to remain significant. An execution ovealdeof 10us is probably affordable in
many applications, but the payoff in terms of cost functisroften moderate. For the test case
on the top of the plot, the use of the utilisation to weigh therément of the cost function is
not apparently convenient.

The simple conclusion that we draw from our experiments @& tione of our proposals
displayed a striking convenience over the other ones fgpadkible scenarios, and the selection
of the heuristic should be made based on the characterigtithe considered system and
applications, the performance cost/tradeoffs specificaléntified for the different classes of
applications, and similar considerations. A more compdgtduation of these heuristics is beyond

the scope of this paper and is reserved for future work.
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infrastructure. Greyed blocks correspond to the impleatént of the dual-loop architecture proposed in this paper.

IV. SOFTWARE ARCHITECTURE

The control architecture described in Section Il has besplémented in the software architec-
ture shown in Figure 3. The main components of the architece the following.

The ALC Li brary is the interface between the application and #ieC Ser ver im-
plementing the Global QoS controller. The application heseas to this library through the
ALC API allowing it to specify its resource requirements and itsrapen modes, in terms of
associated QoS values and timing requirements. The libragptiates with théA\LC Ser ver
an appropriate operating mode for the application, depgndn the system workload.

The FQDB Li brary allows applications to specify the workload requiremerdsoaiated

with each operation mode and power mode. This informatiam loa stored from previous



runs in aSQLi t e? database. When queried about a configuration that has not steeed
yet, the library performs an on-line interpolation of théommation collected on-line by using
application-specific and resource-specific plugins. Thisrg is only made when the application
is activated, therefore, assuming that activations areespaut by a reasonable amount (say
in the order of100ms or more) the introduced overhead is negligible. #pplication plugin
implements a particular mathematical model that descritmeg the workload reshapes when
changing application-level parameters, such as videolugso or colour depth. Aresource
pluginimplements a model that describes how computation timde sdgth respect to resource
mode parameters, such as the CPU frequency. These plugieni@ant thenmulti-mode predictor
functionality introduced in Section IlI-D.

The ALC Ser ver implements the global power/QoS aware optimisation gjsatand per-
forms admission control and periodic re-configuration oplagations and resources. After the
optimisation problem is solved, each application is ndifjeia the ALC Li br ary) the mode
it has to use for the subsequent activations. LikewiseAth@ Ser ver reconfigures the power-
mode of the system resources via a speéfier gy Managenent Li brary. This provides
a unified view on the available power-modes of the underlyphgsical resources, along with
the associated power consumption figures, and allowsAth@ Ser ver to reconfigure the
power-mode of each resource. Currently, power manageroeprdcessors is supported via the
cpuf r eq® infrastructure.

The FB Li brary implements the inner control-loop at the resource allocatevel. It
performs the actual allocation of the CPU via tResour ce Reservations Library.

It gets from the real-time application notification of thegbeand end of each job, and performs
on-line adaptation of the reserved budget, so as to meetdablardd timing constraints of the
application (in terms of periodicity and deadline-missaatThe library does not necessarily
require a periodic task model, but it supports the optiomesgbility for the task to specify the
deadline at every job start. This way, the bandwidth may lséyeadapted also for aperiodic jobs,
where it needs to be computed depending on the actual stertef the job and the available

time till the deadline.

2More information is available dttt p: / / ww. sql i t e. org.

3More information is available aht t p: / / www. ker nel . or g/ pub/ | i nux/ utils/kernel /cpufreq/cpufreq. htm.



The Resour ce Reservati ons component, enclosed in a dashed box, is responsible for
performing the real-time scheduling of tasks, accordinght parameters supplied by tik&

Li brary. This is currently accomplished by using thRSH API [35] developed in the context
of the FRESCOR project. This is a cross-platform API designed for meeting the neddsoth
hard and soft real-time applications, and it has been impleed on theLi nux OS (when
enriched with theAQuoSA® scheduler [32]), oMaRTE®, PaRTi Kl e’ and EneaDSE® operating
systems. Furthermore, the use of #RSH API allows real-time applications to take advantage
of real-time scheduling services for the disk and netwodoueces.

The Super vi sor is a kernel-level component of th&QuoSA real-time scheduler which
receives the independent budget adaptation requests miusaclients (coming from théB
Li brary), and scales them down in order to not violate the schedolesistency relationship,
if needed.

The ALC Server is realised as a stand-alone server process, which comatesiavith
instances of théALC Li br ary residing within the application process by usingrap/ | P
connection at the initial registration of the applicatiorthin the framework, and by means of
a shared memory segment, which allows for a very fast comeation between the server and
the clients. However, the TCP/IP channel is planned to beréged in future extensions of the

framework for the management of distributed real-time @pgibns.

V. EXPERIMENTAL RESULTS

In order to produce an experimental validation of the apghmpave installed the architecture
described in Section IV on an ASUS EEE PC endowed with an(R}eAtom(TM) N270 CPU
at 1.60GHz, with Dynamic Voltage Scaling capabilities, @ped by a Linux KernelZ. 6. 29
series) extended with our AQuUoSA real-time scheduler [22hong the solvers for the global
optimization problem introduced in Section IlI-D4, givemetlimited computing capabilities of

the platform, we decided to used Greedy Cost, the least ctngpintensive solver, in all the

“More information is available at t p: / / www. f rescor. or g.

*More information is available 4ttt p: / / aquosa. sf . net.

®More information is available #ttt p: // mart e. uni can. es.

"More information is available attt p: // ww. e-rt|.org/ partikl e.

8More information is available &ttt p: / / www. enea. com



experiments that follow. Also, the maximum power constragorresponding to a minimum
life-time of the system, was not used, as our platform wasanbattery-operated one.

The type of applications that we have considered represelarge class of multimedia
applications that one can encounter in modern industriadestts such as video-surveillance and
visual based control. An important feature of the consideseenario is the extremely dynamic
behaviour of the system: new streams can be activated amutividdad based on environmental
conditions and on the requests of human operators.

To simulate this challenging situation, we considered types of real-time applications,
developed on purpose. The first one igal-time streamingpplication (hencefortbt r eaner),
which periodically grabs video frames fromval 2 devicé€ at 25 fps, encodes them in MPEG-
4 video, and sends the resulting video stream over the nktwiarthe Real-Time Transport
Protocol (RTP, see RFC 3550 and RFC 3016 for more details)kediace the latency, each
video frame is encoded before the next one is grabbed (so wedraimplicit relative deadline
equal to the period” = 40ms), and only frames of typé and P are used. The application
uses the MPEG-4 video encoder provided bylthéavcodec library'®, and it uses a dynamic
reconfiguration of the video resolution at the encoder inpubrder to achieve variable QoS
levels.

The second application that we considered, cafiadpl e- app, is essentially a synthetic
periodic task generating a random-walk around a controllglisation value, specified via
command-line parameters. The application can switch ket\Redifferent operating modes,
corresponding to decreasing workload requirements anlhreéecQoS rates.

We show the results from three separate experiments. Theffiesdisplays the advantages of
the QoS optimisation, the second one focuses on power-reareag and the third one presents

overhead measurements.

A. QoS Optimisation

In this section, we show how our dual-feedback loop reactshtnges in workload deciding a

new configuration for the system. We conside6eishstances of thesanpl e- app application,

®More information about the Video4Linux 2 (v4I2) AP is avatile atht t p: / /| i nuxt v. or g/ downl oads/ v4l - dvb- api s/ .

OMore information is available att t p: / / www. f f npeg. or g



started at equally spaced out times. The relevant parasnetehe applications are summarised
in the first group of rows of Table I. Each column refers to onstance of the application.
The first row reports the time when the application is staridte second row reports the QoS
rate for each mode, introduced in Section 11I-B3 and usedhim problem formalisation in
Equation (9). The third row reports the “target” probalildf deadline miss (DM) required to
the inner control loop (as specified in Equation (2)). For phnedictor, we adopted a simple
scheme based on a percentile estimator. In essence thettalydeeps track of the padp
samples of the computation time and selects a value greadera percentile of the collected
sample given by the desired probability of deadline misga@y, in this way, the condition
in Equation (2) isapproximativelysatisfied. The multi-mode prediction was easy in this case,
because the application was designed in such a way as tasgcthe required workload by a
factor of 4 when the required QoS is stepped up. The workload associateceach mode has
been stored in the database from previous executions anthfbrmation can be retrieved when
the application requires admission.

In this experiment, we disabled the power-aware logic btirggthewp weight equal ta) in
the cost function. The weight{m;ff)} for the different applications were all settomeaning that
all applications are equally important. The global optiatisn was carried out with a sampling
period of1s.

First, we disabled the dynamic rejection capability of th@nrfework, so applications were
accepted on the basis offa FO policy. In this case, if a new application saturates theesyst
it is simply rejected without any consideration on its Qo®wever, we retained both the inner
resource allocation control loop and the periodic optitmseloop. The result of the experiments
in this case is shown in the dashed curve of Figure 4, wherelotethe value of the achieved
overall QoS index over time. After an initial time needed éfirre the workload estimate from
the inner feedback loops (the values used at admissiometdimhe, measured during previous
runs of the applications, were clearly optimistic, in thizse), the system finds its optimal
configuration.

In the second run, we turned on the dynamic rejection capahhereby the system evaluates
the QoS before deciding which application should be diseds#fter the same time for fine-
tuning the workload estimates, the system stabilises omégtoation with a far higher overall

QoS index. This is an obvious consequence of the fact thaadoption of a FIFO policy in



Instance 1%t ond 3rd 4th 5th 6th

Approx. start-time 2.0s 3.1s | 4.3s 5.5s 6.7s | 7.9s
¢®Y (QoS in model) | 353 | 411 | 321 514 | 445 | 577
¢®? (QoSinmode2) | 712 | 691 | 680 739 | 797 | 789
7Y (DM in mode1) | 8.3% | 8.3% | 8.3% | 8.3% | 8.3% | 8.3%
71 (DM in mode2) | 25% | 25% | 25% | 25% | 25% | 25%

Total Jobs (QoS) 500 500 32 500 500 500

DM Ratio (QoS) 12.4% | 6.6% | 75% | 16.6% | 17% | 16%

Avg QoS (QoS) 418 428 680 526 548 605

Total Jobs (FIFO) 500 | 500 | 500 | 500 | Rej | Rej

DM Ratio (FIFO) 9.6% | 6.8% | 10.8% | 6.8% - -

Avg QoS (FIFO) 418 | 428 380 542 - -
Table |

TOP HALF: APPLICATION PARAMETERS FOR THE EXPERIMENTS ON THEOS. BOTTOM HALF: DEADLINE MISS RATIO AND

AVERAGE QOS LEVEL EXPERIENCED BY INDIVIDUAL APPLICATIONS.
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Figure 4. Time evolution of the overall QoS index while stagtand dropping thé sanpl e- app applications.

deciding the applications to discard was not optimal. Itesyvinteresting to take a closer look
at how the two feedback loops interact. To this end, Figurdh@ns the computation times
experienced by the different jobs of the first applicatiantHe interval between thg)* and the

80" job, the application workload increases, and the innerkfaekl control loop increases the

allocated bandwidth grow in response, up to a point wheretitiget allocation (not shown) is
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saturated by the Supervisor. At a certain time (close t®gjgbthe global QoS controller detects
the problem and automatically scales down the mode of th&cagtipn, reducing its workload
requirements in order to gain back the schedulability ofshstem.

The deadline-miss values and average QoS values expeatibycine individual applications
are shown in Table I. It can be seen that, while the FIFO giyapmiddle rows) decided to reject
the last two applications, the optimum QoS-aware strategyded instead to admit them, at the
cost of dynamically dismissing th&¢ application after32 jobs. This way it achieves a QoS
index (averaged over timeR% higher than the FIFO policy (approximatel$50 vs 1400).

As far as the temporal properties of the tasks are concemed;an see that the deadline
miss ratio that we achieved enerally intermediate between the value required in mode 1
and the value required in mode 2. This is suggestive of a bhetawf the resource controller
within the specification (since the applications dynantycalitch between the two modes).
This result is due to the fact that: 1) the percentile predigrredicts a vaIueH,fi’r? such that
Pr {cg;? < H,gi?} > 77 with #(7) greater than or equal to the probability specified in
the first part of Table I, 2) the assumption in Equation (6)aspected. An exception to the
latter condition is offered by th& ¢ application for the QoS-aware strategy case. At some point
the workload generated by the application prevents theuresocontroller to accommodate its
requests and the probability of deadline miss growgi. The application is later dismissed
by the outer loop.

As a variant of this experiment, we started our applicatiafith only the high QoS mode
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Figure 6. Achieved average QoS index versus average deadigs ratio under various configurations.

available. This way the only action available for the ex#&roop is to reject the applications.
Figure 6 plots on thex axis the average deadline-miss ratio among the applicatiand on
they axis the QoS index, averaged over the entire experimentAgansome instances were
rejected dynamically during their execution, the averagkeias refer to the respective time-life
of the various instances. Each point on the plot corresptmds experiment run, and arrows
connect points corresponding to runs with the same configntaWWe can see that with only
high-QoS applications (points with the labels), the QoS aware admission-control achieves a
worse QoS index than the FIFO policy, but this is merely theepit has to pay for keeping the
DM ratio within the target specification values. In fact, imch a case, after admission of the
applications on the basis of historical workload data, tbiia workloads grow unexpectedly
and persistently, and the inner QoS control-loop cannotatpeat its set-point anymore, due to
the impossibility to grant the necessaf’>"”’} minimum bandwidths. Clearly, this is a case
where a dynamic reconfiguration is needed, achieved by tHe &ware policy by dismissing
one of the applications (hence, the loss in the QoS index).

By enabling mode-switching for the applications, we oledirthe two points labelled &3
corresponding to the same runs shown in Figure 4. The saifigucapability of the framework
produces a good performance even in the FIFO case. Howéeepdssibility to admit new
applications based on a QoS optimisation logic improve<}bg index by+32% (as discussed

above), at the cost of a slight worse DM ratio (which remairihiw the required bounds).



Mode | Frequency| Power (W) | QoS Penalty
Mode 1| 1.60 GHz 2.5 750
Mode 3| 1.07 GHz 1.0 500
Mode 4 | 0.80 GHz 0.7 300

Table Il

POWER MODES OF THEINTEL ATOM WE USED, AND ASSOCIATED PENALTIES ON THEQOS INDEX.

B. Power/QoS Optimisation

For the experiment shown in this section, we enabled the poasanagement capability. In
Table II, we describe the technical data of the power modesgawith the QoS penalty term
we introduced for each mode in the QoS Index. The power copgamfigures are the maximum
values as from the CPU specification [36].

In this experiment, we used multiple instances of stie¢ eaner application, one acquiring
from a real video source, the others acquiring from fictsimideo sources provided by means
of thevi vi . ko kernel module, started at intervals bf. Figure 7 (a) shows the overall QoS
of the system over time, while in (b) we report the power-mofl¢he CPU. Between timé
and7 we can see that, while the system admits new applicatioas<CBlJ power mode is driven
from the lowest frequency to the highest frequency mode. g@lbein Figure (a) also shows a
transient during which the system lowers the QoS mode of dneitted applications in order to
account for the actually sensed application workload,rtdaigher than the value estimated at
admission-control time.

The measured deadline-miss ratios for the two admstedeaner instances have been of

0.073 and 0.003, against configured values of

C. Overhead Measurements

We performed an evaluation of the overheads associatedrtéramnework by focusing on the
most critical elements, which are triggered at run-time aray possibly impact on the appli-
cations performance. Basically, the overhead of our dugb-lcontrol architecture is evaluated
separately for the inner loop, where we measured the timdete& run the feedback-based

QoS control logic, and the outer loop, where we measureditie needed to solve on-line the
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Figure 7. Overall QoS index (a), comprising both QoS of agglons and penalties due to power consumption of the CPU,

and corresponding CPU power mode (b), while starting tweaimses of thest r eaner application.

optimisation problem. All measurements have been doneeairtaximum CPU frequency of
1.60 GHz.

D. Inner Loop Overheads

In order to measure the overheads associated to the bahdvadtrol logic of the inner loop,
we ran 10 instances of thest r eaner application with500 jobs per-run, and we measured
the time needed to recompute the bandwidth values at eacbnbResults are summarised in
Table Ill. As we can see, the average overhead (first row) mboiit46..s, which is a perfectly
sustainable figure as compared to the average job execumenof nearlyl7ms in the lowest
QoS mode. Also, we measured the time needed to update thédoaels for all application and
power modes into the server optimisation problem, obtgirin average value (second row) of

35.62us. This value is particularly low thanks to the use of the sharnesnory communications



Description Avg (us) | Dev (us) | Min (us) | Max (us)

Bandwidth Adaptation| 45.96 8.14 40.00 204.0

Update of Loads 35.62 31.21 25.00 168.0

Admission Control 19863 6716 14978 44485
Table IlI

OVERHEAD FOR DIFFERENT OPERATIONS

between the server and the clients. Also, note that, whédebemdwidth adaptation is performed

every job period, the loads update is only performed evetimogpation period.

E. Admission Control Overhead

In the same experiment just described, we also measuredntiigeneeded to perform the
admission control of the new application, involving botle time for setting-up the client-server
communications and allocating the necessary resourceginiie for uploading the load figures
into the optimisation problem, and the time for finding thevnsolution. This time has been
measured as (third row of Table Ill) close 20ms (with the GC solver). Such value is surely
of importance, however it does not impact the applicatiorigomance, because this operation

is needed before the application enters its main functitowy.

VI. CONCLUSIONS

In this paper, we presented a novel QoS management framdaogoft real-time applications
based on the application of two QoS control loops. A propeigie of these two controllers
allows for the optimisation of the performance of multi-neockal-time applications running
on hardware with power-switching capabilities. We alsosprged a software architecture that
implements the idea. We provided extensive experimentaleece of the effectiveness of the
framework in optimising the overall QoS index keeping in dhéhe real-time behaviour of
the applications. The validation was carried out both ontlsstic applications and on a real
multimedia encoder (featuring dynamic QoS modes). The areasent collected on our imple-
mentation in the Linux Kernel revealed that the overheaccteptable for the considered class

of applications.



In the future, we plan to investigate on the integration of @engeneral power consumption
model, which also accounts for the dependency of the poweherexpected load (which we
assumed to be kept as practically constant and close tocasiatyrin the current framework),
in addition to the frequency. For example, most modern CP&ssgaed for laptops may switch
very quickly to and fromdle states, even without reconfiguring the CPU frequency anthgel
Also, we plan to extend our framework to the networking reéseuso as to properly model
networking elements in distributed real-time applicasioorrespondingly, we plan to study
distributed solutions for power-aware QoS management.tifarogeneralisation we plan is in
the direction of allowing each application to have more tbae task per CPU. This way we could
consider multi-threaded applications, which are ceryaugry important in modern applications.
Finally, we plan to investigate on possible applicatiorefic improvements on the heuristics

proposed in this paper.
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