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Abstract — Over the past two decades, neural networks have 
been applied to develop short-term traffic flow predictors. The 
past traffic flow data, captured by on-road sensors, is used as input 
patterns of neural networks to forecast future traffic flow 
conditions. The amount of input patterns captured by the on-road 
sensors is usually huge, but not all input patterns are useful when 
trying to predict the future traffic flow. The inclusion of useless 
input patterns is not effective to developing neural network 
models.  Therefore, the selection of appropriate input patterns, 
which are significant for short-term traffic flow forecasting, is 
essential. This can be conducted by setting an appropriate 
configuration of input nodes of the neural network; however, this 
is usually conducted by trial and error. In this paper, the Taguchi 
method, which is a robust and systematic optimization approach 
for designing reliable and high-quality models, is proposed for the 
purpose of determining an appropriate neural network 
configuration, in terms of input nodes, in order to capture useful 
input patterns for traffic flow forecasting. The effectiveness of the 
Taguchi method is demonstrated by a case study, which aims to 
develop a short-term traffic flow predictor based on past traffic 
flow data captured by on-road sensors located on a Western 
Australia freeway. Three advantages of using the Taguchi method 
were demonstrated: (1) short-term traffic flow predictors with 
high accuracy can be designed; (2) the development time for 
short-term traffic flow predictors is reasonable; (3) the accuracy of 
short-term traffic flow predictors is robust with respect to the 
initial settings of the neural network parameters during the 
learning phase. 

Index Terms — Taguchi method, neural networks, traffic flow 
forecasting, sensor data, neural network configuration, input 
patterns 

I. INTRODUCTION 

Forecasting accurate traffic flow conditions has long been 
identified as a proactive approach to regional traffic control 
[28]. The approach can be broadly classified under: i) short-term 
and ii) long-term traffic flow forecasting [1]. Long-term 
forecasting provides monthly or yearly traffic flow forecasting 
conditions and is commonly used for long-term planning of 
transportation or construction. Short-term forecasting focuses 
on making predictions about the likely traffic flow changes in 
the short-term, typically within ten minutes ahead. It provides 
traffic forecasting required for traffic operations and control, 
with a lead time of a few minutes based on traffic flow data, 
which is captured by a set of on-road sensors installed along the 
freeway. It also assists the proactive traffic control centre to 
anticipate traffic congestion and improve the mobility of 
transportation [37]. This paper focuses on the development of 
robust and accurate short-term traffic flow predictors, 
concerned with producing real-time forecasts for a few minutes 
ahead, after the short-term traffic flow predictor has received 
past traffic flow data captured from on-road sensors within the 
past few minutes. 
 The short-term traffic flow predictor represents a 
multi-input-single-output system, which relates the past traffic 
flow conditions to the future traffic flow conditions.  Prior to 

developing the short-term traffic flow predictor, the amount of 
input patterns of the short-term traffic flow predictor, which 
represents the amount of past traffic flow conditions captured by 
on-road sensors, has to be determined. Subsequently, traditional 
time-series forecasting methods, such as filtering methods [23], 
moving average methods [29], k-nearest-neighbour methods [7] 
and Kalman filters [37], can be used to develop a short-term 
traffic flow predictor. Results show that short-term traffic flow 
predictors developed by these traditional forecasting methods 
can achieve reasonable accuracy in predicting future traffic flow 
conditions, but their ability to capture the strongly non-linear 
characteristics of short-term traffic flow data is questionable. 
Also, the determination of the amount of past traffic flow 
conditions used as input patterns of the models is based on a trial 
and error method, which is very much time-consuming. 

Another commonly used approach, namely neural networks 
(NNs) [11, 13, 22], has been applied to develop short-term 
traffic flow predictors [4, 8, 19], in order to address the 
non-linear traffic flow characteristics. To further enhance the 
generalization capability of NNs, research has been conducted 
by incorporating NNs with other computational intelligence 
methods or statistical prediction methods, such as fuzzy systems 
[12, 26, 38], Kalman filter [31], fuzzy clustering method [30], 
and the autoregression moving average method [35] etc.  

Even if hybrid NNs can achieve better traffic flow forecasting 
results than those obtained by using only NNs, the limitation of 
determining useful input patterns to NNs for traffic flow 
forecasting is still not resolved. In fact, there are huge amount of 
input patterns captured by the on-road sensors. Using all input 
patterns which includes useless input patterns is not most 
effective in developing NNs. Zhang et al [39], and 
Lachtermacher and Fuller [18] mentioned that the determination 
of an appropriate amount of input patterns for the NN is a 
significant design factor for time-series forecasting. Too many 
or too few input patterns may significantly affect their 
forecasting effectiveness. Apart from this, an optimal NN 
configuration, which includes an optimal number of hidden 
nodes, is also closely correlated with the amount of input 
patterns [39]. The specification of appropriate input patterns can 
be configured with appropriate input nodes of the neural 
network, which is usually conducted by trial and error. 
Therefore, it is desirable to develop a methodical approach for 
determining the appropriate amount of input patterns of 
short-term traffic flow predictors, so that designers can identify 
a feasible solution-searching region, in order to improve the 
quality of traffic flow forecasting. 

In quality control, the Taguchi method has been successfully 
used to design reliable and high-quality products at low cost for 
various items, such as automobiles and consumer electronics 
[14, 32]. Based on our observation, the determination of 
topologies of short-term traffic flow predictors with high 
accuracy and robustness can be considered as the design of a 
high quality product, or the design of robust manufacturing 
processes [21], where both designs aim to produce the resultant 
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functionality which approximates the ideal function as closely 
as possible. In fact, the Taguchi method has also been used for 
the design of configurations of NNs for various manufacturing 
processes [16, 17, 24, 27, 52] and material characteristics [41, 
20]. In this paper, we propose the Taguchi method as a means of 
developing optimal topologies of short-term traffic flow 
predictors by optimizing the configuration and the inputs of NN 
models.  

The present research, which adopts the Taguchi method to 
investigate the significance of the design factors for short-term 
traffic flow predictors, can be classified into two types: a) past 
traffic flow conditions used as input patterns to the NN, and b) 
NN configurations, such as the number of hidden nodes, the 
number of hidden layers, the activation functions between 
nodes, etc. In accordance with the Taguchi method, these design 
factors are arranged in an inner orthogonal array. The Taguchi 
method conducts systematic trials based on orthogonal arrays to 
study the design factors using a small number of trials, and then 
it estimates the appropriate values of the design factors that can 
optimize a given performance measure, typically the differences 
between the actual data and the responses of the short-term 
traffic flow predictors. The Taguchi method is intended to 
achieve the following objectives, which are critical factors for 
the development of the short-term traffic flow predictors: (1) 
high accuracy, which is required for short-term traffic flow 
predictors; (2) reasonable time for the development of 
short-term traffic flow predictors; and (3) robust accuracy of 
short-term traffic flow predictors, which can withstand the 
initial setting of the NN weights during the learning phase, in 
order to reduce the chance of settling at local minima. 

The rest of the paper is organized as follows. Section 2 
provides a brief description of the Taguchi method. Section 3 
defines and describes the topology of the short-term traffic flow 
predictor. In Section 4, the main operations of the Taguchi 
method for short-term traffic flow predictor design, which 
involve the identification of design factors, the specification of 
objective functions, the trial design, and analysis of accuracies 
and reliabilities, are discussed. Finally, the discussion of the 
results and some conclusions, regarding short-term traffic flow 
predictor design using the Taguchi method, is presented in 
Section 5. 

II. ROBUST DESIGN USING TAGUCHI METHOD 

In this section, the Taguchi method, which has been widely used 
for the robust design of products [14, 32], is briefly described. 
To develop a product, the basic functional prototype design, 
which defines the configuration and attributes of the product 
undergoing analysis or development, is first initiated based on 
the designers’ knowledge of the product. The initial design is 
usually far from optimal in terms of quality or robustness. 
Therefore, it is necessary to identify the settings of design 
factors that optimize the performance characteristics and 
minimize the sensitivity of engineering designs to the sources of 
variation.  

A common approach to design optimization is to experiment 
with the design factors one at time or by the trial and error 
method, until a reasonable design with certain qualities is found. 
However, with the trial and error method, it may take a very long 
time to complete the design optimization. To determine the 
optimum conditions, a "full factorial" approach can be used, 

where all possible combinations of levels in all parameters are 
considered. When a product has n design factors and each of 
them has k levels, the total number of combinations of levels for 
the "full factorial" approach is nk . When the number of design 
factors is large, it is almost impossible to test all possible 
combinations of levels in all design factors. For example, if the 
designer is studying 15 design factors with two levels, a full 

factorial approach requires examining 32768  15i.e.:  2  

experiments. 
Table 1 Orthogonal array (  9 3L ) 

Experiments Design 
variable A 

Design 
variable B 

Design 
variable C 

Design 
variable D 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

 
In quality engineering, the Taguchi method is extremely 

effective to improve product quality while keeping the cost of 
design optimization low. In particular, experimental 
configurations are a systematic and efficient mechanism for 
exploring the domain of the design factors. It studies the effect 
of design factors simultaneously by planning matrix 
experiments using an orthogonal array, which studies a design 
factor domain with the smallest number of experiments [34]. For 
a product with 4 design factors with each design factor having 3 

levels, a full factorial design requires 81  4i.e.:  3  experiments. 

Only 9 experiments are sufficient to evaluate the main effect of 
each design factor in order to determine the optimum condition, 
when an orthogonal array,  9 3L  (shown in Table 1), is used. 

Therefore 72  i.e.:  81 9  experiments are saved, compared 

with the full factorial design. In  9 3L , there are four columns 

representing the design factors A, B, C and D, each of which has 
three levels. The number of rows represents the configurations 
of the product to be tested with respect to the experimental level 
defined by the row. The number of columns represents the 
maximum number of design factors which is studied, where the 
experimental levels defined by the columns are mutually 
orthogonal. 

For example, in the first experiment, the four design factors 
have respective levels of one; in the second experiment, the four 
design factors have respective levels of either one or two. The 
first design factors are in level one and the last three design 
factors are in level two. Combinations in  9 3L  have the 

pairwise balancing property, whereby every test setting of a 
design factor occurs with every experiment of all other design 
factors that have the same number of times. It minimizes the 
number of required experiments, while retaining the pairwise 
balancing property. 

III. SHORT-TERM TRAFFIC FLOW PREDICTOR 

The short-term traffic flow predictor conducts future traffic flow 
forecasting based on current and past traffic flow conditions, 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> IEEE Transactions on Industrial Informatics < 3

which are collected by the n detector stations (D1, D2, …, and 
Dn) as illustrated in Figure 1. D1, D2, …, and Dn are located 
between the on-ramp and the off-ramp of the freeway. Di 
captures the average speed,  is t , of vehicles passing by 

between time t  and time  st T , where Ts is the sampling 

time.  is t  reflects the traffic flow condition of the freeway at 

the location of Di. If  is t  is near the speed limit of the freeway, 

the traffic flow condition at the location of Di is smooth. The 
output of the short-term traffic flow predictor indicates the 
prediction of the average speed of vehicles,  ˆ

L ss t m T  , 

passing through the L-th detector station at time  st m T  , 

where future traffic flow with m sampling time ahead is forecast. 

 ˆ
L ss t m T  as illustrated in Figure 2.  

 
Fig. 1 Schematic of short-term traffic flow predictor for a section of the freeway 

 
Fig. 2 Illustration of the input patterns and output of the short-term traffic flow 

predictor 
 

  ˆ
L ss t mT  is formulated by a neural network with a fully 

connected cascade configuration, namely NN, as follows: 
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NN consists of parametrical factors and design factors. Three 
parametrical factors are represented by the NN weights which 
included: i) the weight on the connections between the k-th and 
the l-th hidden sets, l

kw , with l>k; ii) the weights on the 

connections between the input sets and the k-th hidden sets, ,
k
i j ; 

and iii) the biases of the k-th hidden set, 0
k . Three design 

factors are included: i) the number of hidden nodes, M; ii) the 
activation function of the hidden set,  . ; and iii) the total 

number of input nodes, fN , which is determined by 

 1 2 ...f nN p p p    , where  1p , 2p ,…, and np  are the 

numbers of past traffic flow patterns collected from D1, D2, …, 
and Dn  respectively.  

The performance of NN can be evaluated by the mean 
absolute relative error ( MAREe ), which indicates the differences 

between the true collected future traffic flow data and the 
predictions of NN. Based on the collected traffic flow data, 

MAREe  is formulated as equation (3):  

    
    ,

ˆ 1
MARE

k k

k k
e

k 

  

  


 

testRtestR
,      (3) 

where   ˆ k   is the prediction of the NN, testR  is the test data 

set with    ,  k k     testR  and 1,2,...,k  testR .  k  is the 

average speed of vehicles collected from the L-th detection 
station at the time   st k m T  ;  k is denoted by  

    L sθ k s t k m T   ;              (4) 

as well as  k  is the current and past traffic flow data, which 

is collected from the n detection stations and is denoted by:  

                1 1 1 2 2, ,..., , , ,...,s s sk s t k s t k T s t k p T s t k s t k T     

    
        2 ,.... ,...,s n s n ss t k p T s t k T s t k p T      

  

(5) 

  j ss t k i T   is the average speed of cars collected at time 

  st k i T   by the j-th detection station, Dj, with j=1, 2, …,n, 

and 1 21,2,..., , ,..., ni p p p p  , where the number of input nodes 

of the NN is equal to, 1 2 ... np p p   . p  is the number of 

pieces of past traffic flow data collected from all the detection 
stations 
 The determination of the optimal NN involves two main 
tasks: pre-defining the design factors and optimizing the 
parametrical factors. When the design factors are pre-defined, 
the optimization of the parametrical factors can be carried. The 
literature indicates that much research has been conducted on 
the optimization of parametrical factors of NN. For example, the 
back-propagation algorithm is a commonly used method to train 
NNs for short-term traffic flow forecasting from the past [4, 9, 
10] and recent research [15, 42].  
 However, the trial and error method is still usually used for 
pre-defining the design factors. The values of p1, p2,…, and pn 
determine the number of input nodes of the NN which may 
significantly affect the NN in forecasting future traffic flow. To 
pre-define the design factors, a systematical and effective 
method, namely the Taguchi method [33, 34], is proposed. It has 
been previously widely used to reduce variation in the quality 
characteristics of products and improve manufacturing 
robustness. The operations of the Taguchi method for designing 
short-term traffic flow predictors are detailed in Section 4.  

IV. DESIGN OF SHORT-TERM TRAFFIC FLOW 

PREDICTORS USING TAGUCHI METHOD 
In order to illustrate the use of the Taguchi method for designing 
short-term traffic flow predictors, a case study was conducted 
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based on a real configuration of detection stations installed 
along a section of the Mitchell Freeway, Western Australia. 
Three detection stations, 1D , 2D  and 3D , are located at the 

intersection of Reid Highway and Mitchell Freeway: 1D is 

located at the off-ramp of Reid Highway; 2D is located between 

the off-ramp and on-ramp of Reid Highway; as well as 3D is 

located at the off-ramp of Reid Highway. Four detection 
stations, 4D , 5D , 6D  and 7D , are located at the intersection of 

Hutton Street and Mitchell Freeway: 4D is located at the 

off-ramp of Hutton Street; 5D  and 6D  are located between the 

off-ramp and on-ramp of Hutton Street; also 7D is located at the 

off-ramp of Hutton Street. The distance between Reid Highway 
and Hutton Street is about 7 kilometres. The short-term traffic 
flow predictor is developed to forecast future traffic flow 
conditions with 2 sampling times ahead. 

The traffic flow data sets were collected from the sixth week 
of 2009. They were collected over the 2-hour peak traffic period 
(6.30 – 10.30 am) on the five business days of the week, 
Monday, Tuesday, Wednesday, Thursday and Friday. Sixty 
seconds (1 minute) of sampling time were used and a total of 
600 observations were included in each set of traffic flow data. 
Each traffic flow data set was divided into two sub-sets. The 
first sub-set of traffic flow data, namely the training data, 
collected from Monday to Thursday (comprising 80% of all the 
observations or 480 observations), was used for training the 
neural network models. The second sub-set of traffic flow data, 
namely the test data, collected from Friday (comprising 20% of 
all the observations or 120 observations), was used to evaluate 
the generalization capability of the trained neural network 
models. Data collected on Friday was used as test data and data 
collected from Monday to Thursday was used as training data, 
because we can use only the past data (collected from Monday 
to Thursday) to train the short-term traffic flow predictors and 
use the future data (collected on Friday) to evaluate the 
generalization capabilities of the short-term traffic flow 
predictors. It is not possible to use future data to train the 
short-term traffic flow predictors.  

In the short-term traffic flow predictor, a complex 
relationship exists between the past and current traffic flow 
conditions which are captured by the seven detection stations, as 
well as the forecasted future traffic flow condition. The main 
objective of the proposed short-term traffic flow predictor is to 
accurately and reliably forecast future traffic flow conditions. 
The Taguchi method involving the following steps is proposed 
to optimize the topology of the short-term traffic flow predictor: 
(A) Identification of design factors of short-term traffic flow 

predictors 
(B) Specification of object functions for short-term traffic flow 

predictors 
(C) Trial design for developing short-term traffic flow 

predictors 
(D) Analysis of accuracies and reliabilities achieved by 

short-term traffic flow predictors 

A. Identification of design factors 

In the design of short-term traffic flow predictors, the design 
factors under consideration and their alternative levels are 
shown in Table 2.  

These design factors are mostly related to determining the 
optimal topology of the short-term traffic flow predictor. Design 
factor A and Design factor B are critical for developing a NN for 
time series forecasting [2]. Design factor C to Design I are 
regarding the input nodes of the short-term traffic flow 
predictor, which are more significant for the design of NN 
configuration than is the determination of the number of hidden 
nodes for time series forecasting [39]. They are described by:  

Design factor A: The number of hidden nodes in the hidden 
layers is an important design factor, which determines the size 
of the NN for the short-term traffic flow predictor. The 
number of hidden nodes recommended by [36] is 

 2log 480 10 . The maximum number of hidden nodes of 

50 is recommended by [6] to model a set of benchmark 
modeling problems. Therefore, Level 1, Level 2 and Level 3 
are set between these two settings. 10 hidden nodes, 20 hidden 
nodes and 50 hidden nodes are set as Level 1, Level 2 and 
Level 3 respectively.  
Design factor B: For the activation functions of the hidden 
set,  . , Tansig, Logsig and Purelin functions are 

commonly used. Level 1, Level 2 and Level 3 are defined as 
Tansig, Logsig and Purelin functions respectively. 
Design factors C to Design factor I: the amounts of input 
patterns of the short-term traffic flow predictor, are 
determined by 1p , 2p , …, and 7p , with respect to the seven 

detection stations, D1, D2, …, and D7 respectively. They 
represent the number of time sampling lags that are captured 
by the detection stations. 1 time sampling lags, 5 time 
sampling lags, and 10 time sampling lags are considered as 
Level 1, Level 2 and Level 3 respectively. 
Table 2 Design factors of the short-term traffic flow predictors 

Design factor Level 
1 2 3 

Design factor A Number of 
hidden nodes 

10 20 50 

Design factor B Activation 

function,  .  

Tansig Logsig Purelin 

Design factor C p1 w.r.t D1 1 5 10 
Design factor D p2 w.r.t D2 1 5 10 
Design factor E p3 w.r.t D3 1 5 10 
Design factor F p4 w.r.t D4 1 5 10 
Design factor G p5 w.r.t D5 1 5 10 
Design factor H p6 w.r.t D6 1 5 10 
Design factor I p7 w.r.t D7 1  5 10 

‘w.r.t.’ represents ‘with respect to’. 

B. Specification of objective functions 

The performance measure represents two aspects of the 
short-term traffic flow predictor: the accuracy of traffic flow 
forecasting and the robustness against the noise factors. The 
objective function in terms of the signal-to-noise ratio (S/N) is 
shown in equation (6). It is intended to address these two aspects 
by defining a type of signal-target problem [25]. It evaluates the 
accuracy of the traffic flow predictor by comparing the outputs 
of the traffic flow predictor with the actual traffic flow 
conditions. It also evaluates the level of robustness against the 
noise factors. The ideal differences in terms of network accuracy 
should be zero. If the S/N is larger, then the error between the 
actual traffic flow conditions and the forecasting is smaller, as 
well as the robustness of accuracy is larger.  
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where   is the S/N ratio for the accuracy of the short-term 

traffic flow predictor; n is the number of trials with different 
initial values of NN weights;   is the mean value of i

MAREe ; and 
i
MAREe  is defined by equation (3) which indicates the differences 

between the actual traffic flow conditions and the forecasts. 
Based on equation (6), noise factors, including the varieties of 
initial values of the NN weights between neural net nodes, can 
be addressed as external to the short-term traffic flow predictors. 

C. Trial design 

Within each design factor, there are three levels of interest. An 
orthogonal array L27(3

9) is used, because it has 3 levels and 9 

design factors to match the requirements of the short-term traffic 
flow predictor. The orthogonal array L27(3

9) for this design 
problem is shown in Table 3. The elements at the intersections 
indicate the level settings that apply to the design factors for that 
combination of levels of a main trial. When the design factors 
(i.e. the NN configuration) are pre-defined, the parametrical 
factors of the short-term traffic flow predictor (i.e. the NN 
weights) can be determined. A recently developed learning 
algorithm, namely the Wilamowski’s learning algorithm [46, 
51], is used to determine the optimal NN weights with respect to 
the pre-defined NN configuration, because of its very good 
convergence. 
 

Trials A B C D E F G H I Number 

of input  

patterns 

1
MAREe  2

MAREe  3
MAREe  4

MAREe  4

1

1

4
i
MARE

i

e



 

Ranks of 
4

1

1

4
i
MARE

i

e



  

S/N 

1 1 1 1 1 1 1 1 1 1 7 0.1416 0.152 0.1464 0.1423 0.1456 20 49.15 
2 2 3 2 1 1 2 1 2 2 23 0.0771 0.0722 0.079 0.0764 0.0762 8 52.95 
3 3 2 1 1 2 1 2 2 2 23 0.1309 0.1233 0.1218 0.116 0.123 14 47.76 
4 3 3 1 2 3 2 1 1 2 28 0.0723 0.0727 0.0782 0.0715 0.0737 3 57.82 
5 3 1 2 3 2 1 1 2 1 28 0.1532 0.1505 0.1485 0.1553 0.1518 27 51.65 
6 1 2 3 2 1 1 2 1 2 28 0.1197 0.1207 0.1157 0.1158 0.1179 10 55.42 
7 2 3 3 1 2 3 2 1 1 33 0.0752 0.0715 0.0811 0.076 0.076 7 52.38 
8 2 1 1 2 1 2 2 2 3 32 0.1459 0.154 0.1534 0.1484 0.1504 24 52.83 
9 3 2 2 1 3 2 3 1 1 33 0.1182 0.1161 0.1198 0.1234 0.1193 11 51.98 
10 1 2 1 2 2 2 3 3 1 37 0.1251 0.1262 0.1216 0.1253 0.1245 16 56.45 
11 2 1 3 2 3 1 1 3 1 38 0.1498 0.1481 0.1461 0.1526 0.1492 23 56.75 
12 1 3 2 3 1 1 3 1 3 38 0.0746 0.0731 0.077 0.0738 0.0746 4 58.21 
13 2 2 1 3 2 3 1 1 3 38 0.121 0.1237 0.1153 0.1239 0.1209 12 56.45 
14 3 3 2 2 1 3 2 3 1 37 0.0682 0.0716 0.072 0.0767 0.0721 1 55.71 
15 2 1 2 2 2 3 3 1 2 41 0.147 0.1459 0.1473 0.1455 0.1464 21 58.74 
16 3 2 3 1 1 3 1 3 3 43 0.1235 0.1179 0.1207 0.122 0.121 13 55.46 
17 1 3 1 3 3 3 2 2 1 42 0.0826 0.0815 0.0753 0.0813 0.0802 9 57.47 
18 1 1 2 1 2 2 2 3 3 41 0.1521 0.1454 0.1456 0.1432 0.1466 22 52.55 
19 2 2 3 3 1 2 3 2 1 42 0.1238 0.1239 0.1222 0.1242 0.1235 15 58.78 
20 2 3 1 1 3 1 3 3 3 43 0.0747 0.0689 0.0775 0.0729 0.0735 2 54.88 
21 2 2 2 3 3 1 2 3 2 46 0.1236 0.1276 0.1226 0.1281 0.1254 17 53.44 
22 3 3 3 2 2 1 3 2 3 46 0.0806 0.0751 0.0693 0.0756 0.0751 5 48.98 
23 3 1 1 3 1 3 3 3 2 47 0.1534 0.1511 0.1531 0.1492 0.1517 26 50.87 
24 1 2 2 2 3 3 1 2 3 46 0.1112 0.158 0.1545 0.1582 0.1455 19 34.12 
25 1 3 3 3 2 2 1 3 2 46 0.0773 0.0732 0.0757 0.0758 0.0755 6 52.72 
26 3 1 3 3 3 2 2 1 3 51 0.1424 0.1393 0.1454 0.1448 0.1429 18 55.84 
27 1 1 3 1 3 3 3 2 2 51 0.1518 0.1451 0.1582 0.1471 0.1505 25 49.86 

Table 3 Orthogonal array, L27(3
9), and experimental results 

 
For each main trial corresponding to each row of the 

orthogonal array L27(3
9), 4 random trials (i.e. n=4 in equation 

(6)) are used to establish the initial NN weights prior to each 
learning session. The four trials with respect to the 27 main 
trials, 1

MAREe 2
MAREe 3

MAREe  and 4
MAREe , are shown in Table 3. Thus, 

a total of 108 trials (27 main trials with 4 random trials) are 
conducted in order to assess the robustness of the network 
performance against initial NN weights prior to each learning 
session. Note that there are essentially 27 main trials to be 
carried out, in order to study the effects of each of the seven 
design factors. The other 81 (=108-27) trials are basically 
replications of the 27 main trials. This is necessary in order to 
obtain a more precise estimation of the trial error with different 
initial NN weights for training the NN weights in the traffic flow 
predictor. 

If the full factorial design is used, 6561 ( 83 ) main trials are 

required to be carried out, where eight design factors and three 
levels in each design factor is used for this traffic flow predictor 
design. Hence, there are a total of, 26244 ( 6561 4  ) trials, 
which need to be conducted, as four random trials are conducted 
in each main trial. In this design problem, approximately ten 
seconds are required for each trial. 26244 trials require 262440 
seconds to be conducted. Hereby, 72.9 hours or 3.03 full days 
are required to design a short-term traffic flow predictor. When 
the orthogonal array, L27(3

9), is used for this design problem, 
only 108 trials, or 0.3 hours (=1080 seconds) are required for the 
design of the short-term traffic flow predictor, which is much 
less than the number required by full factorial design. 
Comparing this with the full factorial design, 26136 
(=26244-108) trials, or 72.6 (=72.9-0.3) hours can be saved in 
the design of the short-term traffic flow predictor. Therefore, a 
significant amount of computational effort and time can be 
saved by using the Taguchi method. It demonstrated the 
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effectiveness of using the Taguchi method in traffic flow 
predictor design. 

Also the average MARE of the four trials with respect to the 

27 main trials,  
4

1

1 4 i
MARE

i

e


 , the ranks of the average MARE, 

and the number of input patterns to the NN are shown in Table 3. 
It shows that the 14th trial with 37 input patterns can achieve the 
smallest average MARE. It is smaller than those achieved by the 
26th and 27th trials, involved 51 input patterns, which is the 
largest number of input patterns used. It is also smaller than 
those achieved by the 1st trial, involving 7 input patterns, which 
is the smallest number of input patterns used. Also, in the 11th to 
the 13rd trials, 38 input patterns with different configurations are 
used, but different results in term of MARE are obtained. 
Therefore, these results clearly show that the determination of 
appropriate input patterns involved in NNs is important to traffic 
flow forecasting. These results show that one should not simply 
use the maximum number of input patterns, but rather use the 
optimal number of input patterns, which helps to specify the 
optimal configuration of input nodes. 

D. Analysis of accuracies and reliabilities 

After a detailed trial plan for the short-term traffic flow predictor 
design is developed, the results for the trials are conducted. Four 
results with respect to each trial were collected as illustrated by 

1
MAREe , 2

MAREe , 3
MAREe , and 4

MAREe  in Table 3. These results were 

the accuracies of the trained NNs as defined by equation (3). 
The signal to noise ratios (S/N),  , were computed by using the 

equation (6), for each row of the orthogonal array L27(3
9). The 

compiled results for all trials are shown in Table 3.  
 As the combinations of design factors of each trial are 
orthogonal, the main effect of each design factor can be 
separated out [3,25]. The main effects of each design factor at 
each of the three levels are calculated and shown in Table 4. The 
main effects shown in the response table are calculated by taking 
the average from Table 3 for a design factor at a given level. As 
an example, the design factor D is at level three in the trials of, 5, 
12, 13, 17, 19, 21, 23, 25 and 26. The average of the 
corresponding traffic flow condition is 55.05, which is shown in 
the response table under the design factor D at level three. The 
sensitivity of each design factor is computed by taking the 
difference between the largest and smallest main effect for a 
given design factor. Table 4 shows that the design factor H 
shows the greatest sensitivity, which means that the one which 
has the largest effect on the short-term traffic flow predictor is 
realized by varying the design factor H, which is the number of 
time sampling lags of the detection station D6. Similarly, the 
design factor C shows the least sensitivity to the short-term 
traffic flow predictor. The main effects of all design factors are 
also shown graphically in Figure 4. Graphing the main effects of 
design factors can provide more insight at a glance, and it clearly 
shows that design factor H has much greater sensitivity than do 
of the other design factors. 
 

 
Design Factors A B C D E F G H I 

Level 1 51.77 53.14 53.74 51.89 54.38 52.92 51.90 55.11 54.48 
Level 2 55.25 52.21 52.15 52.98 53.08 54.66 53.72 50.50 53.29 
Level 3 52.90 54.57 54.03 55.05 52.47 52.34 54.31 54.32 52.15 

Sensitivity 3.472 2.362 1.871 3.161 1.915 2.319 2.408 4.620 2.333 
Table 4 Main effects of S/N of each design factor 
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Figure 4 Main effects of each design factor 

Based on Table 3 and Figure 4, the main effect of each level 
of each design factor can be observed. The design of short-term 
traffic flow predictors can be summed up as follows: 

1. The sensitivities of the design factors C, and E, are smaller 
than those of the design factors A, B, D, F, G, H and I, where 
the design factors C and E represent the numbers of past 
traffic flow data, p1 and p3, collected from the detection 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> IEEE Transactions on Industrial Informatics < 7

stations, D1 and D3 respectively. The design factors A, B, D, 
F, G, H and I, were considered to be more significant than the 
design factors C, and E, and these significant design factors 
were established for future designs. The insignificant design 
factors C, and E, could be kept unchanged for further designs. 
The insignificant design factors were relatively not carrying 
any variation of the outputs of the short-term traffic flow 
predictor. 

2. The largest main effects of S/N of each design factor are 
underlined in Table 3, i.e. design factor A with level 2, design 
factor B with level 3, design factor C with level 3, design 
factor D with level 3, design factor E with level 1, design 
factor F with level 2, design factor G with level 3, design 
factor H with level 1, and design factor I with level 1. Figure 5 
shows the simulation result obtained by the short-term traffic 
flow predictor, which was developed based on the design 
factor levels with smallest main effects. From the figure, it can 
be seen that the forecasted result is close to the actual traffic 
flow data. 

3. Factors C to I specify different configurations of input 
patterns of the neural network for traffic flow forecasting. 
Different results in terms of forecasting accuracies can be 
obtained with different configurations. Therefore, an 
appropriate amount of input patterns is required to be 
specified, in order to obtain a satisfactory forecasting 
performance. 
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Figure 5 Forecasting of traffic flow condition 

4. The optimum levels of the design factors can be refined 
further by decreasing the design factor ranges and increasing 
the number of levels of each design factor. As design factors 
A, D, and H are more significant than the rest of the design 
factors, further design modification can be carried out by 
refining the relatively significant design factors A, D, and H. 
However, for the purposes of the design of this short-term 
traffic flow predictor, an accuracy level higher than 94.51% 
can be obtained which is considered to be satisfactory. 

V. PERFORMANCE EVALUATION OF THE TAGUCHI METHOD 

This section demonstrates the effectiveness of the Taguchi 
method by comparing it with other existing methods, used to 
determine appropriate input node configurations for neural 
networks. Also, the effectiveness of the Taguchi method is 
further demonstrated by the determination of appropriate input 
node configuration for Type-II fuzzy neural networks, which 
have been applied to traffic flow forecasting.  

A. Comparison with other existing methods 

The two existing approaches, genetic algorithms (GA) [43] and 
particle swarm optimization (PSO) [45], which were developed 
for optimizing input node configurations of neural networks, 
were employed as a comparison. A fully connected cascade 
architecture was used. Both the chromosomes of the genetic 
algorithm and the particles of the particle swarm optimization 
algorithm are represented in two parts:  the hierarchical string 
[44] and the integer string. The hierarchical string is used to 
represent the input node configurations of the neural network. 
As shown in Figure 6, the input node of the neural network is 
activated, when the corresponding element of the hierarchical 
string is ‘1’. When an element of the hierarchical string is ‘0’, 
the corresponding input node of the neural network is not 
activated. The total number of ‘1’s in the hierarchical string 
represents the number of activated input nodes. As mentioned 
previously in Section IV.A, there are seven detection stations, 
D1, D2, D3, D4, D5, D6 and D7, which are used for collecting the 
current and past traffic flow data. Each of the detection stations 
captures 10 pieces of time series patterns into the neural 
networks for traffic forecasting, where each piece of time series 
patterns is inputted into its corresponding input node. Therefore, 
the total length of the hierarchical string in term of the input 
patterns is 70. The integer string is used to represent the number 
of hidden nodes used in the neural network, and the activation 
function, where the element for the number of hidden nodes is 
an integer ranging from 10 to 50, and the element for the 
activation functions represents either the ‘Tansig’, ‘Logsig’ or 
‘Purelin’ function.  

 
Figure 6 The hierarchical string in term of the input patterns for GA and PSO 

In the GA [43], a population of chromosomes is first created 
randomly based on a hierarchical string illustrated in Figure 6. 
Then, each chromosome is evaluated based on equation (3) with 
respect to the input nodes specified by the chromosome, where 
the neural network weights are determined using the 
Wilamowski’s learning algorithm [46]. After all evaluations, the 
genetic operations, crossover and mutation used in [43], are 
performed in order to reproduce new chromosomes to replace 
the old chromosomes, where the new chromosomes have higher 
potential to reach the optimal input node configuration than 
those of the old chromosomes. This GA process repeats until the 
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pre-defined number of generations is reached. The detailed 
operations of the GA can be referenced in [43]. 

Here, two GAs, namely GA-4-27 and GA-20-50, were used. 
The following GA parameters were used in both GA-4-27 and 
GA-20-50: crossover rate =0.8; and mutation rate = 0.1. In 
GA-4-27, the relatively smaller population size with 4 
chromosomes was used, and the pre-defined number of 
generations was set at 27. Hence, there were a total 108 of  
computational evaluations for each run, which was the same as 
the computational evaluations used in the Taguchi method. This 
setting was established in order to investigate any difference in 
performance between the GAs and the Taguchi method, when 
the same amount of computational effort was used in the two 
methods. In GA-20-50, the population size with 20 
chromosomes was used and the pre-defined number of 
generations was set to 50. Hence, there were 1000 
computational evaluations used for each run, where the number 
of computational evaluations used in the GA-20-50 was more 
than that used in the Taguchi method. We established this 
setting, in order to investigate whether GA-20-50 can achieve 
significantly better performance than the Taguchi method, when 
more computational effort is involved. 

In the PSO approach, a swarm of particles is generated 
randomly by a discrete binary representation [45], which is 
identical to the one illustrated in Figure 6. Then, similar to the 
chromosome evaluations of the GA, each particle is evaluated 
based on equation (3) with respect to the input nodes specified 
by the particle, where the neural network weights are 
determined using the Wilamowski’s learning algorithm [46]. 
After that, the positions and velocities of the particles in the 
swarm are improved based on their own best positions and their 
global best position found so far. The improvement process 
continues, until the pre-defined number of generations has been 
reached. The detailed operations of the PSO can be referenced in 
[45]. 

Here, two PSO, namely PSO-4-27 and PSO-20-50, were 
used. The following PSO parameters were used in both 
PSO-4-27 and PSO-20-50: the maximum and minimum inertia 
weights are set to 0.9 and 0.2, respectively; the initial 
acceleration coefficients are set to 2.0. In PSO-4-27, the swarm 
size with 4 particles was used and the pre-defined number of 
generations was set to 27. Hence, there were 108 computational 
evaluations for each run, which was the same as in the Taguchi 
method. By doing this, we can evaluate the performance of the 
PSO and the Taguchi method when the same amount of 
computational effort is involved. In PSO-20-50, the swarm size 
with 20 particles was used and the pre-defined number of 
generations was set to 50. Hence, there were 1000 
computational evaluations for each run, which were more than 
in the Taguchi method. This allows us to determine whether the 
PSO can outperform the Taguchi method, when more 
computational efforts is involved. 

As all the tested algorithms, GA-4-27, GA-20-50, PSO-4-27 
and PSO-20-50, are stochastic algorithms, different results 
could be found with different runs. Therefore, GA-4-27, 
GA-20-50, PSO-4-27 and PSO-20-50, were run for 30 times, 
and the results of the 30 runs were recorded. Results in terms of 
solution qualities obtained by all methods and the computational 
times used for all methods are shown in Figure 7 and Figure 8, 
respectively. Figure 7 shows that the results obtained by both 

GA-4-27 and PSO-4-27 are poorer than those obtained by the 
Taguchi method, where the computational efforts used in the 
three methods, GA-4-27 and PSO-4-27 and the Taguchi 
method, were the same, as shown in Figure 8. Figure 7 shows 
that the results obtained by the Taguchi method are still slightly 
better than the ones obtained by the PSO-20-50, which is better 
than the GA-20-50. However, the computational efforts 
involved by both PSO-20-50 and GA-20-50 were significantly 
greater than those used by the Taguchi method.  

These results indicate that the Taguchi method can obtain 
better results than those obtained by both the GA and the PSO, 
while the same computational efforts were involved in the three 
methods. Both GA and PSO can achieve solution qualities 
similar to those of the Taguchi method only when a significant 
amount of extra computational efforts was used. Therefore, the 
Taguchi method is more effective than both the GA and the PSO 
in searching for the appropriate input node configuration of the 
neural network for traffic flow forecasting. 
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Figure 7 The quality of solutions obtained by the tested methods 
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Figure 8 Computational time used by the tested methods 

B. Type-II Fuzzy Neural Network Implementation 

The effectiveness of the Taguchi method is further demonstrated 
by the determination of input node configurations of a Type-II 
fuzzy neural network (T-II-FNN) used or future traffic flow 
forecasting [47]. As using the data captured by all detection 
stations may not be most useful for the T-II-FNN in forecasting 
future traffic flow, it is essential to select the significant 
detection stations as the data sources of the input nodes. Figure 9 
illustrates an input node configuration of the T-II-FNN with 
respect to the seven detection stations, where s1(t) is the traffic 
flow data captured by the detection station D1; s2(t) is the traffic 
flow data captured by the detection station D2, and so on. It 
shows that that D1, D3, D6 and D7 are used as input nodes of the 
T-II-FNN for traffic flow forecasting, while D2, D4, and D5 are 
not used. The detailed structure of the T-II-FNN can be referred 
to [47]. 
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 Here, the Taguchi method is used to determine the 
appropriate input node configuration of the T-II-FNN. As there 
are seven detection stations, which are either ‘connected’ to or 
‘disconnected’ from the T-II-FNN, an orthogonal array 

(  7
8 2L ) is used here for the design of T-II-FNN, where 

 7
8 2L  is used for system design with seven design factors and 

two levels.  7
8 2L , shown in Table 5, is used to conduct eight 

trials of input node configurations. For the first trial, all 
detection stations are disconnected from the T-II-FNN, so the 
forecasting accuracy is 0%, which is shown in the second row of 
Table 5. For the rest of the trials, four input nodes are connected 
to the T-II-FNN in order to forecast the future traffic flow. For 
the second trial, the detection stations, D1, D3, D5 and D7, are 
connected to the T-II-FNN and D2, D4, and D6, are not 
connected. Based on this input node configuration, the 
T-II-FNN was developed (with the Matlab fuzzy logic toolbox), 
and the forecasting accuracy was found to be 87.03%, which is 
shown in the last column of the third row of Table 5.  The results 
indicate that even if the number of input patterns used on the 
T-II-FNN is the same, the forecasting accuracies obtained are 
different when different input pattern configurations are used. 

 
Figure 9 Input node configuration of the T-II-FNN 

 
Trial D1 D2 D3 D4 D5 D6 D7 Forecasting 

accuracies 
1st 0 0 0 0 0 0 0 0% 
2nd 1 0 1 0 1 0 1 87.03% 
3rd 0 1 1 0 0 1 1 79.05% 
4th 1 1 0 0 1 1 0 85.56% 
5th 0 0 0 1 1 1 1 80.78% 
6th 1 0 1 1 0 1 0 87.06% 
7th 0 1 1 1 1 0 0 82.39% 
8th 1 1 0 1 0 0 1 84.99% 

Table 5 The orthogonal array  7
8 2L  and the trial results 

After the eight trials have been conducted, the main effects of 
these detection stations can be calculated, and the most 
appropriate input node configuration is determined based on the 
calculated main effects. It has been determined that, when D1, 
D3, D4 and D6 are connected and D3, D5 and D7 are 
disconnected, the largest forecasting accuracy (87.10%) is 
obtained.  

If the full factorial design is used, 128 ( 72 ) trials are 
required to be carried out, as there are seven design factors and 
each of them has two options either ‘connected’ or 
‘disconnected’. Based on the 128 trials, the largest forecasting 
accuracy is found as 87.68%, when D1, D3, and D4 are connected 
and D3, D5, D6 and D7 are disconnected. Both the forecasting 
accuracies obtained by the Taguchi method and the full-factorial 
design method, as well as both the computational time used by 
the two methods, are shown in Figure 10. These two figures 
clearly demonstrated that the forecasting accuracies obtained by 
the full-factorial design method are only slightly better than the 
one obtained by the Taguchi method. However, the 
computational time used by the full-factorial design method is 
560.15 seconds, which is much longer than that required by the 
Taguchi method, which requires only 13.81 seconds. A 
significant amount of computational effort and time can be 
saved by using the Taguchi method. Based on this T-II-FNN 
design, the effectiveness of the Taguchi method can be once 
again demonstrated. 
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Figure 10 Forecasting performance obtained by the T-II-FNN 

VI. CONCLUSIONS AND FURTHER WORKS 

In this paper, the Taguchi method, which is a robust 
optimization procedure for the design of high quality products 
or robust manufacturing processes, was proposed to be used for 
the topology design of neural network based short-term traffic 
flow predictors. The following four advantages were identified 
for the design of short-term traffic flow predictors, based on the 
Taguchi method:  
1) It uses robustness as a significant design criterion of the 

short-term traffic flow predictor of which signal-to-noise ratio 
is used to evaluate the performance of the short-term traffic 
flow predictors. It intends to increase the solution quality in 
term of the accuracy of short-term traffic flow predictors.  

2) It can address the relative importance of the design factors of 
short-term traffic flow predictors, where the design factors in 
terms of both the input node configurations and NN structures 
can be considered. This enables designers to evaluate the 
importance of the design factors concurrently, and to further 
refine the design factor ranges so as to achieve a better 
short-term traffic flow predictor. 

3) It uses orthogonal arrays to systematically design a NN for 
short-term traffic flow forecasting. Thus, the design and 
development time for NNs can be reduced tremendously 
compared with the time required by the full factorial design 
and stochastic methods, such as genetic algorithms and 
particles swarm optimization. 
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4) It is not strictly confined to the design of NNs for short-term 
traffic flow forecasting. It has also been demonstrated that it 
can be used to develop short-term traffic flow predictors 
based on fuzzy neural networks such as T-II-FNN. Results 
show that the Taguchi method can assist in the rapid 
development of the best short-term traffic flow predictor to 
suit a particular traffic configuration. 
This paper employs the Taguchi method to select appropriate 

input patterns of data captured by sensors, for the modeling and 
prediction of the traffic flow. The proposed method can be used 
in the following industrial applications: 
a) Many industrial or manufacturing processes involve huge 

amount of sensor data for quality and operation control of 
new products. As not all captured sensor data is relevant for 
a specific purpose, the selection of useful sensor data is 
essential. Therefore, the Taguchi method presented in this 
paper can be applied very well in such industrial and 
manufacturing processes, in order to assist the quality and 
operation control for new products [48].  

b) In order to identify and predict the lifetime of industrial 
cutting tools, data captured by sensors have to be used [50]. 
Not all data features captured by the sensors are helpful for 
the tool wear identification and prediction. The selection of 
significant features is important to reduce the effort in signal 
processing, as well as reduce the number of required sensors 
which will in turn reduce the costs. The Taguchi method is a 
very appropriate method to select significant features for 
such purposes. 

c) For vehicle testing and diagnosis, huge amounts of data 
captured by sensors are required. Not all of the possibly 
captured data can be stored, because of the limited memory 
available in the tested vehicle. What is needed is an on-board 
preprocessing of data, in order to select useful data. The 
Taguchi method is a very good method for on-board 
preprocessing of data and can be successfully used for 
selecting useful data for vehicle testing and diagnosis 
purposes [49]. 
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