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Abstract— This paper investigates robust consensus for a classmissing information on the control gains. Each entry of
of uncertain multi-agent dynamical systems. Specificallyit is  the weighted adjacency matrix is allowed to be a generic
supposed that the system is described by a weighted adjacenc ,q\vnomial function of an uncertain vector constrained in a
matrix whose entries are polynomial functions of an uncertén . . . . .
vector constrained in a semialgebraic set. For this unceria sem'a_IQEb_ra'C set. This framework includes typlcgl _Caﬂehs
topology, we provide necessary and sufficient conditions fo as affine linear dependence of the system coefficients on an
ensuring robust first-order consensus and robust second-der uncertain vector constrained in a polytope. For this uagert
consensus, in both cases of positive and non-positive weigh  topology, we provide necessary and sufficient conditions fo
adjacency matrices. Moreover, we show how these conditions g\g\ring robust first-order consensus and robust secates-or
can be investigated through convex programming by using sta . " -
dard software. Some numerical examples illustrate the propsed CONSENSUS, IN both cases of positive and non-positive weigh
results. adjacency matrices. These conditions are obtained in gener
by exploiting the uncertain Laplacian matrices of the syste
and by introducing parameter-dependent Lyapunov funstion
for a suitably transformed system. Moreover, we show how
these conditions can be investigated through convex pnogra

I. INTRODUCTION ming by using standard software. Some numerical examples

The model of multi-agent dynamical systems has bedfustrate the proposed results.
widely applied in the research of sensor networks, neuralThe paper is organized as follows. Section Il provides
networks and biological networks [1]-[5]. Especially, @cent the problem formulation and some preliminaries. Sectidn |I
years, interests are intensively casted on networkedalantd describes the proposed conditions for robust first-ordesen-
coordinated behavior in multi-agent systems [6]-[12]. k®h sus and robust second-order consensus. Section 1V iflestra
ing consensus is a key problem in this area and as a growifig proposed results with some numerical examples. Lastly,

number of applications of multi-agent system emerges, t@ction V concludes the paper with some final remarks.
research on consensus gains an essential importance ons/ari

areas such as complex dynamical network, filter design for
multiple sensors, synchronization, formation and rendaegy
Traditional research topics focus on the deterministic syA. Problem Formulation
tem to establish static model, while a growing number of Notation:
researches cast attentions on the uncertainties of ngétita '
system according to the unexpected link failure, communica ~ N;R: natural and real number sets;
tion delay, interaction limit and noise interference inteys - 4 - ranspose of; , o . o
[13]-[15]. A simple but compelling mathematic description ~ 4 > 0 (4 > 0): symmetric positive definite (semidefi-
of a group of autonomous agents is the Vicsek model where Nite) matrix 4;
possible changing of the nearest neighbor sets over time is a~ On* Origin of R™; _
inherent property. This model is applied to the interactigth - a2 n x 1 vector with all the entries equal tg
directional information exchange, hence introducing aenor - I: identity matrix (of size defined by the context);
general model where each edge of a weighting matrix has a 1™8&(4): image of matrixA;
positive weighting factor. - ker(A): null space of matrixA; '
In this paper, we investigate robust consensus for uncertai -~ 4 ® B: Kronecker product of matriced and 5;
multi-agent dynamical systems. In particular, it is sugmbs - SP¢(A): set of eigenvalues of A R™*", i.e.
that the weighted adjacency matrix of the closed-loop syste spe(A) = {\ € C : det(\ — A) = 0).
is affected by uncertain parameters, reflecting for inganc

Index Terms— Multi-agent system, Uncertain system, Robust
consensus, Convex programming.

Il. PRELIMINARIES

. . . - Let¥ = (&7, &, G) be a weighted digraph of order with
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G is called positive ifG;; > 0 for all 7,7, otherwiseG is It is worth pointing out that the uncertain Laplacian matrix

called non-positive. has the diffusion property that

For distinct nodes{;;., k = 1,...,[, let a sequence of edges n
(A, Air) (A, Ai2),...,(Aq, A)) be a directed path from, to Lij(0) =0 Vi=1,...,n. (7)
A;. If there is a directed path between any pair of distinct j=1

notesA; and A; for graph¥, then it is denoted as a strongly
connected graph. Provided that for some nedéhere is a
directed path from to any other node, the nodeis called
a root of the graph. A directed tree is a direct gr&ptwith

For robust second-order consensus problem, we consider
the continuous-time uncertain multi-agent dynamical exyst
described by

the property that there is exactly one root and except the roo zi(t) = pi(t)
every node irng has exactly one parent. For a directed graph ) n
of ordern, a spanning tree of a directed graph is a directed pit) = Z aGi;(0)(x;(t) — z4(t))
tree withn — 1 edges which connect all the nodes of the J=1, jFi (8)
graph. If any subset of edges contains or forms a spanning "
tree, we say that the graph has a spanning tree. + ‘ ;;é BGi;(0)(p;(t) = pilt))
=L JF

In this paper we investigate robustness of consensus to
uncertain parameters. In particular, it is supposed that twherez; € R is the position state of theth node,p; € R is
weighted adjacency matrix of the closed-loop system is dhe velocity state of thé-th node, andy, 3 € R are constants.
fected by uncertain parameters, reflecting for instanceings Different from first-order consensus, second-order cosisgn
information on the control gains. We denote such a matrix &duires that not merely do the position states of agents ten
G(#) whered € R is an uncertain vector constrained as  to be the same, but also the velocity states of agent converge

to a consistent value. Based on this we propose the problem

0 e (1) of robust second-order consensus as follows.
Problem 2. To establish if, for any initial state, the uncertain
where multi-agent dynamical system (8) achieves robust second-
Q= {0ER : 5:(0)>0Vie1,.. h} @ order consensus, i.e.
lim Jz(t) —J,‘j(t) =0
for some functionss;,...,s, : R” — R. In the sequel we e Vi, j VO € Q. 9
will assume that the entries of/(9) and s,(6),...,sn(0) M pi(t) = pi() = 0

are polynomials. Moreover, we say th&t6) is positive if
Gi;(8) > 0 for all ¢,j and for all@ € Q, otherwiseG(6) is
called non-positive.

For robust first-order consensus, we consider the Zi(t) = pi(t)

continuous-time uncertain multi-agent dynamical system . B - N e - - ‘ (10)
described by pl(t) ;QLU (9)1'] (t) J:ZlﬁLlJ (e)pj (t)

In order to address this problem, we rewrite the uncertain
multi-agent dynamical system (8) as

n

. . wherexz € R”™ is the position state vector and € R” is
zit) = ‘ Z ‘G”(o)(xj (t) —i(t), i=1,....n () e velocity state vector. We define the globa?d;tate vedor a
J=t, g y = (2/,p') € R?®", Then, system (10) can be rewritten in

wherez; is the state of the-th node, and~(0) is both positive compact form as _
and non-positive. The robust first-order consensus proldem y(t) = L(0)y(t) (11)
as follows.

Problem 1 To establish if, for any initial state, the uncertai
multi-agent dynamical system (3) achieves robust firseord

wheref(&) is the uncertain extended Laplacian matrix given

=~ 0 1

consensus, i.e. L(9) = —aL(0) —BL(©O) | (12)
lim z;(t) —z;(t) =0 Vi,j V8 € Q. 4)
oo B. SOS Polynomials
In order to address this problem, we rewrite the uncertainLet f(4) be a polynomial of degre2m in # € R”. Then,
multi-agent dynamical system (3) as f(#) can be always written as
#(t) = —L(0)x(t) (5) F(0) = 0t (F + C(8))pt™ (13)
wherez = (x1,...,x,) € R" is the state vector, anl(6) = where 91"} is a vector.contain.ing all monomials of degree
(Lij(8))nxn is the uncertain Laplacian matrix given by less than or equal ten in 6, F' is a symmetric matrix, and

C(9) is a linear parametrization of the subspace
Lij(0) = —Gy(0) Vi#j
n 6 _ _ . m} my
Lu(®) = -3 Lii(0). (6) c={c=c: o™ cot — o}

J=1, j#i i



The representation (13) is known as Gram matrix metheeeighted digraph) can be achieved if and only if there exists
and square matrix representation (SMR). This representata symmetric functionP; : R — R*»~ 17~ sych that

allows one to establish whether a polynomial is SOS via LMIs. P(0) > 0
Indeed,f(0) is SOS if there exist polynomialg (9), f2(9), ... { = ~ Vo € Q. 17
such tha’E : 0): 72(9) Pi(0)L(0) + L(0)' P1(0) > 0 (17)

FO) =3 (6

In order to investigate the condition of Theorem 1, we can
] - ) ) _ exploit SOS matrix polynomials introduced in Section II-B.
and this condition holds if and only if there exigtsuch that Indeed, it is easy to verify that (17) holds if there exist rixat

the following LMI feasibility test holds: polynomialsP; (6), G1;(#) and a scalar > 0 such that
F+C(5)>0. G1,(0) is SOS
This technique can also be used in the case of matrix 21 ((99)) B IcIIsisSggs (18)
1(0) —

polynomials. Specifically, let\/(6) be a symmetric matrix
polynomial of sizes x s of degree2m in 6 € R" (this means where

that all the entries of\/(#) are polynomials whose highest h
degree ind is 2m). Then, M (¢) can be written as R1(0) = PL(0)L(0) + L(0)' P () — ZGM(@)SM(H). (19)
M(0) = A(M + D(8),m,s) (14) o

In fact, whenever the constraints in (18) hold with- 0, for
where any 6 € Q it follows that Gy;(0) > 0, P1 () > 0 and

A(M + D(6),m,s) = (0™ @ I)'(M + D(5))(01™ & I), N A h

. . _ o . . 0 < Pi(0)L(0)+ L(0) P(F) — Z G1i(0)s1:(0)
1 is the s x s identity matrix, M is a symmetric matrix, and i1
D(9) is a linear parametrization of the subspace —cl

D={D=D": A(D,m,s)=0}.

- _ _ _ , < P(0)L() + L(0) P, (0)
Similarly to the scalar casé/ (6) is SOS if there exist matrix ie. (17) holds.

polynomialsizy (0), Mz (6), .. such that The condition (18) can be formulated via a convex optimiza-
M(0) = Z M;(0) M;(0) tion problem by using the representation of matrix polyraisi
7 reported in Section Il. Indeed, it directly follows that §17

holds if ¢ > 0, where c¢* is the solution of the convex

and this condition holds if and only if there exigtsuch that S
optimization problem

the following LMI feasibility test holds:
_ = sup c
M + D(é) > 0. ¢,G1i, P16

See for instance [16]-[18] and references therein for Wetai Gi1 >0

; . h (20)
and algorithms about SOS polynomials. st { B+ Dy(0)— el — Z 01i(Gas) > 0
=1

[1l. CONDITIONS FORROBUST CONSENSUS trace(P;) = 1.

In this section, the robust first-order and second-ord¢he matrices involved in this problem are defined by
consensus conditions are derived respectively. _
Gu(0) = A(Gu,min—1)

G1i(0)s1:(0) = U1i(G1i),mo,n — 1)

0 A
A. Robust First-Order Consensus Pi6) = AE Pym,n—1)
Lyapunov stability theory is widely used to study the Ri(0) = A(Fy+ Di(8),mo,n —1).

property of dynamical system. For the first time, we asseciat r 4 .
the robust consensus with Lyapunov stability theory, and ageégi?ﬁslst;gedizgieoﬁléf )_ Zn 's the degree of1 6),

provide a nl;aw caondmon for. mvest;g_atmg rOb.l]f.St Ifl'rszgqe For an interaction topology with positive weighted interac
consensus isxi_?n matrix inequalities. Specifically, elefin , topology but without parametric uncertainties, it hagn
matrix V1 € R such that found that the topological structure determines whether th
img(V1) = ker(1%). (15) consensus can be achieved. The following theorem extends
to the case of uncertain multi-agent dynamical systemsethre
Then we get the transformed uncertain Laplacian matrixexisting conditions found for the case of multi-agent dynam
3(9) — VIL(O)V. (16) ical ;ystems without uncertainty [19], anq provides a ferth
condition in terms of zeros of a polynomial.
Theorem 1: Robust first-order consensus for uncertain Theorem 2: For a given uncertain Laplacian matdx6) in
multi-agent system (with both positive and non-positivé6) and a network? = (<7, &, G(9)) with a positive weighted



digraph, i.e3e;; € & if and only if G;;(6) > 0, the following

statements are equivalent. In order to investigate the existence of a functify(6)
a) Robust first-order consensus can be achieved. satisfying condition (27), we can exploit SOS matrix polyno
b) V6 € Q, L(#) has exactly one simple eigenvaldeand mials. It is easy to verify that (27) holds if there exist nvatr
all the other eigenvalues have positive parts. polynomialsP (), G'3;(¢) and a scalar > 0 such that
c) Vo € Q, the directed grap has a spanning tree. Ga:() is SOS
4(0) = %Z(A,G) (21) R2(0) — cI is SOS
A=0 where
and h
I(\,0) = det(A — L(6)). (22)  Ro(6) = Pa(0)L(0) + L(6) Pa(6) — Y Gi(0)s3i(0).
=1

One way of checking the condition of Theorem 2 consists . ) i
of using SOS polynomials and amounts to solving an | Mpefore concluding this section, let us remark that the psepo
problem. Specifically, statement d) in Theorem 2 holds ifaheresults for establishing robust consensus in uncertairtimul

exist polynomialsy;(9) and a scalar > 0 such that agent systems require the solution of optimization proklem
) in contrast to existing conditions for establishing corssen
gi(0) is SOS . in uncertainty-free multi-agent systems where one justisee
& . (23) to check the eigenvalues of the Laplacian matrices. Urdortu
(=1)%q(0) — e~ Zgi(ﬁ)smw) Is SOS nately, this is unavoidable, as it happens also for the gmpl
_ .@:1 problem of establishing robust stability of uncertain &ne
wherek € {0,1} is defined by systems, see for instance [17].
k= 0 if g(6p) >0
~ ] 1 otherwise IV. NUMERICAL EXAMPLES
andd, is any vectord in 2 which can be freely chosen. This section presents some illustrative examples where

robust first-order and second-order consensus are ingé=tig
for uncertain multi-agent dynamical systems. The optitidzra
B. Robust Second-Order Consensus problems are solved with the standard Matlab toolbox SeDu-

Let us consider the problem of establishing robust secongi. The SMR matrices are built using the algorithms reported
order consensus. For this_problem, we exploit the uncertain[17] and references therein.

expanded Laplacian matr&(&). Extending the results given
in [12] for the case of multi-agent dynamical systems withou
uncertainty, one has that robust second-order consensstigefo A. Bxample 1
uncertain multi-agent dynamical system (11) can be obthine
if and only if —L(6) has only one zero eigenvalue of algebraic ° @
multiplicity two and all the other eigenvalues are in the ope
right half plane.
Starting from this result, we provide a new condition for
investigating robust second-order consensus based olixmatr
inequalities. Specifically, define vectors as

e () e () e OO

On 1n
Fig. 1: Digraph of a four-agent system

Let Vo € R#x2n=1 gnd V3 € R?"~1x2n=2 phe matrices such
that . . .
img(Va) = ker(u)) In this example we consider the uncertain four-agent system
img(V3) = ker(ub). (25 shown in Figure 1. It is assumed that the network is affected
, . an uncertain parameter, specificall
Let us define the transformed uncertain expanded Laplac% P P y
matrix: N 1 2—-20 546 246
L(0) = —V3Vy L(0)Va V5. (26) _ 30 1 0 0
G(O) = 0 4 — 30 1 0
Theorem 3: Robust second-order consensus for uncertain 2130 0 0 1

multi-agent system with both positive and non-positiveghei
ed digraph can be achieved if and only if there exists where@ is constrained in the seé® chosen as? = [0, 1].
symmetric functionP, : R™ — R2%~2%27=2 gych that Hence, we haven = 4 andr = 1. Moreover, ) can be

described as in (2) with
P2(9) >0
{ Po(O)L(0) + Loy Po(0) >0 0 €% D) s1(6) = 6(1 — 0).



According to (6), the Laplacian matrik(6) is given by:

matrix is given by

0 0 0 0 1 0 0 0
9 —2420 -5—-0 —-2-40 0 0 0 0 0 1 0 0
—360 36 0 0 0 0 0 0 0 0 1 0
L) = 0  4-30 4-30 0 0o 0 0 0 0 0 0 1
-2 — 360 0 0 2+ 36 9 1 ly I3 -9 l1 lo I3
ly =ly O 0 ly -y O 0
0 Iy —Is O 0 Ils =I5 0
We observe thati(0) is positive since all its entries are non- lg O 0 —ls g 0 0 —lg
negative for allé € . This implies that we can use either
condition (17) or statement d) of Theorem 2 to investig::1§’é<herm1 =2-20,1p =5+0,13 =2+0,14 = 30,1 = 430,
robust first-order consensus. 6 =2+30.
First, we use condition (17) by looking for a constant matrix
function P, (6). By solving (20) we can find* = 0.9792. B. Example2

Therefore, robust first-order consensus is achieved.
Then, let us use statement d) of Theorem 2. In particuléﬂy

In this example we consider the uncertain mai%) given

the polynomialg(6) is given by ) 54200, 2300 30,0,
202 — 3610, 1 0 0
G) = 2
q(0) = 186° + 66% — 1126 — 56. 0 4+ 262 1 0
30102 + 6 0 0 1

here® € R? is constrained in the se&® chosen ag) =
—1,1]2. Hence, we have, = 4 andr = 2. Moreover,( can
be described as in (2) with

According to statement d) of Theorem 2, robust first-ord
consensus is achieved if and only{®) # 0 for all 6 € [0, 1].
In this case, it is easy to see thgt) satisfies this property
sinceq(6) is an univariate polynomial with roots 2.79, -1.3316
and -1.7917 which are all lying outsidé, 1]. Nevertheless,
let us use condition (23). In this cage= 1 and by simply In this caseG(0) is not positive, hence let us use condition
choosing a multiplierg, (9) of degree2 we find that this (17) to investigate robust first-order consensus. We loak fo
condition holds with: = 56, which proves that statement d) ofa constant matrix function?; (¢) satisfying (17), and by
Theorem 2 is satisfied. Figure 2 shows the process of robgetving (20) we findc* = 0.769. Therefore, robust first-order

first-order consensus with the initial states ahdandomly Cconsensus is achieved.
chosen inj0, 1] for five times. Next, let us consider the problem of establishing whether
this uncertain network is able to achieve robust secondrord
consensus witlw = 1, § = 0.25 in the system (8). We look
. ‘ ‘ ‘ ‘ ‘ for a constant matrix functio () satisfying (27). Let us
ool ] use the condition (28), and we find = —0.0024, which
i ——— 1 does not prove (28). We repeat the procedure by looking for
\ a matrix functionP(#) of degree2, and we find a positive

c*. Therefore, robust second-order consensus is achieved.

@:'_‘:@

Fig. 3: Digraph of a six-agent system

s:(0)=1—06? Vi=1,2.

states

C. Example 3

Fig. 2: Trajectories of robust first-order consensus

Next, let us consider the problem of establishing whether
this uncertain network is able to achieve robust seconérord
consensus witlh = g = 1 in the system (8), and we look for
a constant matrix functioi, (0) satisfying (27). Nevertheless,
let us use the condition (28), and we can fitid= 0.0913.
Therefore, robust second-order consensus is achieved withVith a topology shown in Figure 3, an uncertain six-agent
choseny andg. In this case, the uncertain extended Laplaciasystem is considered in this example. It is assumed that the



network is affected by two uncertain parameters, f,eand

~

6. Specifically the uncertain matri(6) is given by spe(L(6)) U {0} = spe(L(6)) (29)
1 0 0 0 0 0 Let us define a dynamical system
3+ 26, 1 0 0 0 0
0 3— 0, 1 0 201+ 06, 0 i(t) = —L(0)2(t). (30)
0 0 5420, 1 0 0 '
0 0 0 5 1 3 — 46, We observe that = ~1,, is the equilibrium point of (30)y~ €
0 5 2-30; 0 2—0, 1 R. Hence the robust first-order consensus can be achieved is

. ) _ equivalent to the statement that (30) is asymptoticallpplsta
wheref € R” is constrained in the sét chosen as) = {0 :  According to (29) and the Lyapunov stability theorem, (30)
1]l < 1}. Hence, we haves = 4 andr = 2. Moreover,©) s asymptotically stable for alt € Q if and only if () has
can be described as in (2) with exactly one simple eigenvalieand all the other eigenvalues
s1(0)=1— 62 — 2. have positive parts. From Lyapunov stability theorem foedr
L2 systems, this is equivalent to say that there exi§t@) such
Also in this caseG(6) is not positive, hence let us usethat (17) holds for alp € ). Therefore, the theorem holds.
condition (17) to investigate robust first-order consen¥us
look for.a constant matrix functiof?; (9) satisfying (17), and g Proof of Theorem 2
by solving (20) we findc* = 0.1135, i.e. robust first-order ) ) .
consensus is achieved. Assume the Laplacian matrik(6) is constructed by (6).
Next, let us consider the problem of establishing wheth&hen' the first three statements are equivalent and folloyv
this uncertain network is able to achieve robust seconerordiréctly from the analogous ones found for the case of multi-
consensus withy = 1, 8 = 0.6 in the system (8). We look agent dynamical systems without uncertainty [19]. From Lem
for a constant matrix functiorP,(6) satisfying (27). Let us Ma 3.3 in [19], one has that(A:(L(0))) > 0, Vi = 1,2...,n,
use the condition (28), and we find < 0, which does not 0 € Q. Molreover, statement d) implies thatd) has exactly
prove (28). We repeat the procedure by looking for a matr1€ Z€ro eigenvalu&d < . Thus, statements b) and d) are
function P»(6) of degreel, and we finde* = 0.0034, i.e. ©duivalent. Therefore, the theorem holds.
robust second-order consensus is achieved.
C. Proof of Theorem 3

V. CONCLUSIONS Observe that, is an eigenvector of.(9) corresponding to

In this paper we have addressed robust first-order consendigseigenvalue zero. Moreover, observe thak (6)V> has the
and robust second-order consensus for a class of uncer&@fe eigenvalues d@f(¢) except that the algebraic multiplicity
multi-agent dynamical systems. Specifically, we have abnsiof the eigenvalue zero has been decreased of one. Similarly,
ered a generic framework where the system is described ibyollows that ViV5L(0)V2V5 has the same eigenvalues of
a weighted adjacency matrix whose entries are polynomia{?) except that the algebraic multiplicity of the eigenvalue
functions of an uncertain vector constrained in a semialjeb z€ro has been decreased of two. Hence, it follows that robust
set. For this uncertain topology, we have provided necgss&econd-order consensus can be achieved if and orly.{)
and sufficient conditions for ensuring robust consensus s all the eigenvalues in the open right half plane for all
both cases of positive and non-positive weighted adjacen&ye €. From Lyapunov stability theorem for linear systems,
matrices. Moreover, we have shown how these conditio¥ys is equivalent to say that there exigts(¢) such that (27)
can be easily investigated through convex programming bBglds for allé € Q. Therefore, the theorem holds.
using standard software. Various future directions can be
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