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An Overview of Recent Progress in the Study

of Distributed Multi-agent Coordination

Yongcan CaoMember, IEEEWenwu Yu, Member, IEEE,
Wei Ren,Member, IEEE and Guanrong CheRellow, IEEE

Abstract

This article reviews some main results and progress inibiiggd multi-agent coordination, with
the focus on papers published in major control systems ahdtigs journals since 2006. Distributed
coordination of multiple vehicles, including unmannedaerehicles (UAVs), unmanned ground vehicles
(UGVs) and unmanned underwater vehicles (UUVs), has beeeana active research subject studied
extensively by the systems and control community. The reesults in this area are categorized into
several directions, such as consensus, formation comiptiinization, distributed task assignment, and
estimation. After the review, a short discussion sectiom@uded to summarize the existing research

and to propose several promising research directions aldtigsome open problems that are deemed

important therefore deserving further investigations.

Index Terms

Distributed coordination, formation control, sensor natky multi-agent system

. INTRODUCTION

Control theory and practice may date back to the beginnintp@fiast century when Wright Brothers
attempted their first test flight in 1903. Since then, corttiebry has gradually gained popularity, receiving
more and wider attention especially during the World War Hem it was developed and applied to fire-

control systems, missile navigation and guidance, as veellaious electronic automation devices. In
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the past several decades, modern control theory was fuathernced due to the booming of aerospace
technology based on large-scale engineering systems.

During the rapid and sustained development of the moderiraaheory, technology for controlling
a single vehicle, albeit higher-dimensional and comples become relatively mature and has produced
many effective control tools such as PID control, adaptiwetol, nonlinear control, intelligent control,
and robust control methodologies. In the past two decadgsaiticular, control of multiple vehicles
has received increasing demands spurred by the fact that beefits can be obtained when a single
complicated vehicle is equivalently replaced by multipkt gimpler vehicles. In this endeavor, two ap-
proaches are commonly adopted for controlling multipleiciels: a centralized approach and a distributed
approach. The centralized approach is based on a basic ptssuitihat a central station is available and
powerful enough to control a whole group of vehicles. Esaéipt the centralized approach is a direct
extension of the traditional single-vehicle-based cdnpfulosophy and strategy. On the contrary, the
distributed approach does not require a central stationcémitrol, at the cost of becoming far more
complex than the centralized one in structure and orgdaizaflthough both approaches are considered
practical depending on the situations and conditions ofréa applications, the distributed approach
is believed more promising due to many inevitable physicaistraints such as limited resources and
energy, short wireless communication ranges, narrow baltdsy and large sizes of vehicles to manage
and control. Therefore, the focus of this overview is plaoadhe distributed approach.

In distributed control of a group of autonomous vehicleshsas UAVs, UGVs and UUVs, the main
objective typically is to have the whole group of vehiclesrking in a cooperative fashion throughout
a distributed protocol. Heresooperativerefers to a close relationship among all vehicles in the grou
whereinformation sharingplays a central role. The distributed approach has manyraagas in achiev-
ing cooperative group performances, especially with loveraponal costs, less system requirements,
high robustness, strong adaptivity, and flexible scalgbitherefore has been widely recognized and
appreciated.

The study of distributed control of multiple vehicles wasrh@ps first motivated by the work in
distributed computingll], management sciencg][ [3], and statistical physicg]. In the control systems
society, some pioneering works are generally referred5ip [B], where an asynchronous agreement
problem was studied for distributed decision-making peaid. Thereafter, some consensus algorithms
were studied under various information-flow constraifis{[L1]. There are several journal special issues
on the related topics published after 2006, including theHH ransactions on Control Systems Technol-

ogy (vol. 15, no. 4, 2007), Proceedings of the IEEE (vol. 9, 4, 2007), ASME Journal of Dynamic

July 31, 2011 DRAFT



Systems, Measurement, and Control (vol. 129, no. 5, 200AMSournal of Control and Optimization
(vol. 48, no.1, 2009), and International Journal of Robumt Blonlinear Control (Vol. 21, no. 12, 2011).
In addition, there are some more recent reviews and progepssts given in the survey42]-[15] and
the books 16-[21].

This article reviews some main results and recent progmesdisiributed multi-agent coordination,
published in major control systems and robotics journalses006. For results before 2006, the readers
are referred toJ2—-[15].

Specifically, this article reviews the recent researchltesn the following directions, which are not

independent but actually may have overlapping to some exten

1. Consensus and the like (synchronization, rendezvous)s&wus refers to the group behavior that
all the agents asymptotically reach a certain common ageaethrough a local distributed protocol,
with or without predefined common speed and orientation.

2. Distributed formation and the like (flocking). Distributddrmation refers to the group behavior
that all the agents form a pre-designed geometrical cordtgur through local interactions with or
without a common reference.

3. Distributed optimization. This refers to algorithmic déeygments for the analysis and optimization
of large-scale distributed systems.

4. Distributed task assignment. This refers to the implentamteof a task-assignment algorithm in a
distributed fashion based on local information.

5. Distributed estimation and control. This refers to disitédl control design based on local estimation

about the needed global information.

The rest of this article is organized as follows. In Sectibnbasic notations of graph theory and
stochastic matrices are introduced. SectidhslV, V, VI, and VIl describe the recent research results
and progress in consensus, formation control, optiminat&sk assignment, and estimation, respectively.

Finally, the article is concluded by a short section of dgssans with future perspectives.

[I. PRELIMINARIES

This section introduces basic concepts and notations @hgifaeory and stochastic matrices.

A. Graph Theory

For a system of. connected agents, its network topology may be modeled a=etell graph denoted

G =V, W), whereV = {v1,v9,--- ,v,} andW C V x V are, respectively, the set of agents and the set
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of edges which directionally connect the agents togethaeciically, the directed edge denoted by an
ordered paifv;, v;) means that agentcan access the state information of age#ccordingly, agent is

a neighbor of agent. A directed path is a sequence of directed edges in the forfw 065), (v2, v3), - - -,

with all v; € V. A directed graph has a directed spanning tree if there ®aisteast one agent that has
a directed path to every other agent. The union of a set ottidegraphs with the same set of agents,
{Gi,, -+ ,Gi, } is a directed graph with the same set of agents and its selgefses given by the union
of the edge sets of all the directed graghs, j = 1,--- ,m. A complete directed graph is a directed
graph in which each pair of distinct agents is bidirectibnabnnected by an edge, thus there is a directed
path from any agent to any other agent in the network.

Two matrices are frequently used to represent the netwqdlagy: the adjacency matrid = [a;;] €
R™*™ with a;; > 0 if (vj,v;) € W anda;; = 0 otherwise, and the Laplacian matrikx = [¢;;] € R"*"
with ¢;; = Z;‘:laij and/;; = —ayj, @ # j, which is generally asymmetric for directed graphs except
complete directed graphs. The Laplacidrhas at least one single zero eigenvalue with a corresponding
eigenvectorl consisting of all numeric 1. Here and throughout, all masiand vectors are assumed to

have comparable dimensions unless otherwise indicated.

B. Stochastic Matrices

A nonnegative square matrix is called (row) stochastic xdtrits every row is summed up to one.
The product of two stochastic matrices is still a stochasi@trix. A row stochastic matri¥’ € R™*" is

called indecomposable and aperiodidiifi,_,., P* = 1y” for somey € R" [22].

[1l. CONSENSUS
Consider a group ofi agents, each with single-integrator kinematics descriped
xz(t) :ui(t)v i=1,---,n, (1)

wherez;(t) andu;(t) are, respectively, the state and the control input ofith@gent. A typical consensus

control algorithm is designed as
wit) =Y aii(t)[z;(t) — it)], )
j=1

wherea;;(t) is the(i, j)th entry of the corresponding adjacency matrix at tim€he main idea behind)
is that each agent moves towards the weighted average ofates ®f its neighbors. Given a switching
network topology, coupling coefficients;;(¢) in (2), hence the graph topologies, are generally time-

varying, due to the continuous motions of the dynamic agénis shown in [LO], [11] that consensus is
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achieved if the underlying directed graph has a directedirsipg tree in some jointly fashion in terms
of a union of its time-varying graph topologies.

The idea behind consensus serves as a fundamental printifile design of distributed multi-agent
coordination algorithms. Therefore, investigating corsses has been a main research direction in the study
of distributed multi-agent coordination. To bridge the dagtween the study of consensus algorithms
and many physical properties inherited in practical systeinis necessary and meaningful to study
consensus by considering many practical factors, suchtaatam, control, communication, computation,
and vehicle dynamics, which characterize some importaitifes of practical systems. This is the main

motivation to the study of consensus.

A. Stochastic Network Topologies and Dynamics

In multi-agent systems, the network topology among all elelsi plays a crucial role in determining
consensus. The objective here is to explicitly identifyessary and/or sufficient conditions on the network
topology such that consensus can be achieved under prapesigned algorithms.

It is often reasonable to consider the case when the netvepiddgy is deterministic under ideal
communication channels. Accordingly, main research onctiresensus problem was conducted under a
deterministic fixed/switching network topology. That isetadjacency matrixi(¢) is deterministic. Some
other times, when considering random communication fedurandom packet drops, communication
channel instabilities inherited in physical communicat@hannels, etc., it is necessary and important to
study consensus problem in the stochastic setting wheréwaoretopology evolves according to some
random distributions. That is, the adjacency matdx) is stochastically evolving. This motivates the
study of the consensus problem under a stochastic netwpdiagy.

In the deterministic setting, consensus is said to be aetiévall agents eventually reach agreement
on a common state. In the stochastic setting, consensuglitodae achieve@lmost surelyrespectively,
in mean-squareor in probability) if all agents reach agreement on a common state almostysurel
(respectively, in mean-square or with probability 1). Néhbat the problem studied in the stochastic
setting is slightly different from that studied in the detémistic setting due to the different assumptions
in terms of the network topology. Consensus over a stoachastivork topology was perhaps first studied
in [23], where some sufficient conditions on the network topologrevgiven to guarantee consensus
with probability 1 for systems with single-integrator kinematicly,(where the rate of convergence was
also studied. Further results for consensus under a sticmeswork topology were reported ir24]—

[32], where research effort was conducted for systems withleimgegrator kinematics2i]—[31] or
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double-integrator dynamics38]. Consensus for single-integrator kinematics under stetith network
topology has been extensively studied, in particular, whsyme general conditions for almost-surely
consensus was derive@q], [27], [30]. Loosely speaking, almost-surely consensus for singjlegirator
kinematics can be achievede., z;(t) — z;(t) — 0 almost surely, if and only if the expectation of
the network topology, namely, the network topology asdediavith the expectatior[A(t)], has a
directed spanning tree. It is worth noting that the condiiare analogous to that idQ], [11], but in

the stochastic setting. In view of the special structurehef ¢losed-loop systems concerning consensus
for single-integrator kinematics, the basic propertieshef stochastic matrices play a crucial role in the
convergence analysis of the associated control algorit@mossensus for double-integrator dynamics was
studied in B2], where the switching network topology is assumed to beedriy a Bernoulli process,
and it was shown that consensus can be achieved if the unial thfe graphs has a directed spanning
tree. Apparently, the requirement on the network topology double-integrator dynamics is a special
case of that for single-integrator kinematics due to théedéhce nature of the final states (constant final
states for single-integrator kinematics and possible dyadinal states for double-integrator dynamics)
caused by the substantial dynamical difference. It is atillopen question as if some general conditions
(corresponding to some specific algorithms) exist for cosge with double-integrator dynamics.

Instead of focusing on analyzing the conditions on the ngtwopology such that consensus can
be achieved, a special type of consensus algorithm, thaltedagossip algorithm33], [34], has been
used to achieve consensus in the stochastic setting. Dusobalglistic pairwise communications, the
gossip algorithm can always guarantee consensus almady suthe available pairwise communication
channels satisfy certain conditions (such as a connectgahgsr a graph with a directed spanning tree).
The way of network topology switching does not play any raolghie consideration of consensus.

The current study on consensus over stochastic networkdgies has shown some interesting results
regarding: (1) consensus algorithm design for various iragkent systems, (2) conditions of the network
topologies on consensus, and (3) effects of the stochastigonk topologies on the convergence rate.
Future research in this topic includes, but not limited he, following two directions: (1) when the network
topology itself is stochastic, how to determine the prolighof reaching consensus almost surely? (2)
compared with the deterministic network topology, what #re advantages and disadvantages of the
stochastic network topology, regarding such as robustaegsonvergence rate?

As is well known, disturbances and uncertainties often teixisnetworked systems, for example,
channel noise, communication noise, uncertainties in oitywarameters, etc. In addition to the stochastic

network topologies discussed above, the effect of storhdisturbances35]-[40] and uncertainties4l],
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[42] on the consensus problem also needs investigation. Stadybben mainly devoted to analyzing
the performance of consensus algorithms subject to destieds and to presenting conditions on the
uncertainties such that consensus can be achieved. Inamgdinother interesting direction in dealing
with disturbances and uncertainties is to design diswidblocal filtering algorithms so as to save energy
and improve computational ability. Distributed local filtey algorithms play an important role and are
more effective than traditional centralized filtering aiftfums for multi-agent systems. For example, the
authors of fi3]-[45] designed some distributed Kalman filters to implement daton. In [46], by
using the analysis of consensus and pinning control in spmération of complex networks, the authors
discussed distributed consensus filtering in sensor n&svdecently, Kalman filtering over a packet-
dropping network was designed through a probabilistic @@ f7]. Today, it remains a challenging
problem to incorporate both dynamics of consensus and pilddi& filtering (Kalman) into a unified

methodology.

B. Complex Dynamical Systems

Since consensus is concerned with the behavior of a grougluthes, it is natural to consider the
system dynamics for practical vehicles in the study of theseasus problem. Although the study of
consensus under various system dynamics is due to the maést# complex dynamics in practical
systems, it is also interesting to observe that system digsaplay an important role in determining
the final consensus state. For instance, the well-studiedersus of multi-agent systems with single-
integrator kinematics as inL) often converges to a constant final value (i.e., a time fangtinstead.
However, consensus for double-integrator dynamics mightiaa dynamic final value. These important
issues motivate the study of consensus under various syltaamics.

As a direct extension of the study of the consensus problensyfstems with simple dynamics, for
example, with single-integrator kinematics or doublegrator dynamics, consensus with general linear
dynamics was also studied recent§8F-[53], where research is mainly devoted to finding feedback
control laws such that consensus (in terms of the outpuestatan be achieved for general linear
systems

&; = Ax; + Bu;, vy; = Cuxy, 3)

where A, B, and C are constant matrices with compatible sizes. Apparertly, well-studied single-
integrator kinematics and double-integrator dynamics special cases of3] for properly choosing
A, B, andC.
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As a further extension, consensus for complex systems Badakn extensively studied. Here, the term
consensus for complex systeimaised for the study of consensus problem when the systemnuga
are nonlinear 34]-[56], [56]-[87] or with nonlinear consensus algorithm88[-[90]. Examples of the

nonlinear system dynamics studied in the consensus proibielode:

« Nonlinear oscillatorsg9]. The dynamics are often assumed to be governed by the Kuosegoation
. K&
Hi:wi—FNZSin(Hj—Hi), i=1,2,---,N, (4)
j=1

where §; and w; are, respectively, the phase and natural frequency ofitthescillator, N is the
number of oscillators, an& is the control gain. Generally, the control gdihplays a crucial role
in determining the synchronizability of the network.

o Complex networksg7], [69-[73], [82]-[84], [86], [91]. The dynamics are typically represented as

N
j=1,j#i
where z; = (a1, 2, - ,xm)T € R" is the state vector of théth node,f : R" — R"™ is a

nonlinear vector functiong is the overall coupling strength(t) = [a;;(t)] is the outer coupling
matrix with a;;(t) = 1 if node ¢ and node;j are connected at time but otherwisea;;(t) = 0,
with a;;(t) = k; (degree of node), andI" is a general inner coupling matrix describing the inner
interactions between different state components of agdinis easy to see that model)(with
control input @) is a special case ob) with f = 0.

« Nonholonomic mobile robots5p], [79], [85], [92]. The dynamics are described by
B =ujcost;, gi=uising;, 6;=w;, i=1-- N, (6)

where[x;, y;] denotes the location of théh agent, and,; andw; denote, respectively, its translational
and rotational velocity. Note that there are three statdswa control inputs. Therefore, the dynamics
for nonholonomic mobile robots are underactuated. Thispasibstantial difficulties in designing
proper consensus algorithms with corresponding stalalitglysis.

« Rigid bodies and the like6b—[68], [80], [81], [87]. One typical (but not unique) description of the
dynamics is

M;i(qi)di + Ci(qi, ¢i)di + 9i(qi) =7, i=1,--- N, (7)

whereq; € R? is the vector of generalized coordinatéd;(¢;) € RP*? is the symmetric positive-

definite inertia matrix,C;(q;, ¢;)¢; € RP is the vector of Coriolis and centrifugal torqueg(q;) is
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the vector of gravitational torques, angde RP? is the vector of torques produced by the actuators

associated with théth agent. In practice, the dynamics of many mechanical systere similar

to (7). A notable property regarding the dynamics of rigid bodi@shat M;(q;) — 2C;(qi, ¢i) is

skew-symmetrici(e., 27 [M;(¢;) — 2C;(¢;,¢:)]z = 0 for all z € RP), which plays a crucial role in

finding Lyapunov functions and the subsequent stabilitylyesmsa
Although the aforementioned system dynamics are diffefrem the well-studied single-integrator kine-
matics and double-integrator dynamics, the main reseamblgm is same, namely, to drive all agents
to some common states through local interactions amongtag®imilarly to the consensus algorithms
proposed for systems with simple dynamics, the consengastims used for these models are also based
on a weighted average of the state differences, with somgi@ul terms if necessary. Main research
work has been conducted to design proper control algorithrms derive necessary and/or sufficient
conditions such that consensus can be achieved ultimately.

Note that although the objective is same,, to guarantee reaching agreement on some final states,
the problem is more complicated due to the nonlinearity ef ¢fosed-loop systems. In addition, most
properties of stochastic matrices cannot be directly appto their convergence analysis. The main
technigues used in their stability analysis include diiity theory p4], nonsmooth analysis8p],
[92], [93], and especially Lyapunov function89], [65], [67], [68], [92], [94].

One particular interesting topic is synchronization in b networks which has been widely in-
vestigated in the past decad#h], [96]. Mathematically, the definitions for synchronization inneplex
networks and consensus in multi-agent systems are verlasisd to differentiate these two definitions
and promote research exchanges in these two topics, tHieredices are briefly summarized below.

1) Different Asymptotic Stat€dlonlinear Dynamics versus Linear Dynamics). In the stsidiesynchro-
nization in complex networks, researchers focus on symibation with self-nonlinear dynamics where
each single system is unstable and thus the final asympyotahsonization state is typically time-varying
[99], [97]. However, in the investigations of multi-agent systenie individual self-dynamics on each
system is usually linear or zero and therefore the asynmptmthsensus state is usually a constait [
[9].

2) Different FocusegKnown Connectivity versus Time-varying Distributed Rratl). In synchroniza-
tion of complex networks, the aim is to reveal how the netwsirkcture, which is known in priori, affects
the nonlinear collective dynamic®99], [96], while the aim of consensus in multi-agent systems is to
figure out how the designed distributed local protocol comicgy mobile time-varying network structure

affects the consensus behavidat, [[9], [10].
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3) Different ApproachegLyapunov Method versus Stochastic Matrix Theory). Sinoghbcomplex
networks and multi-agent systems are networked systergepiaic graph theory9p] is a common
approach to use. Because of the nonlinear terms in syndation of complex networks, Lyapunov
function method is usually used together with matrix the@y], [91], [97]. In order to show consensus
in multi-agent systems with time-varying network struetirstochastic matrix theorp]f[7], [10] and
convexity analysis]1] are often applied.

4) Different Inner MatricesI' (General Inner Matrix versus Particular Inner Matrix). mettypical

simple consensus model, the inner matriéesire usually an identity matrix and a rank-one matrix
0

00
[99-[101], respectively. In consensus models with higher-orderadyics [L0Z], the inner matrix is

for multi-agent systems with single-integrator kinemafié] and double-integrator dynamics

similar. However, the inner matrix in systerf) (is a general one.
In summary, synchronization in complex networks focusesamnlinear dynamics while consensus in
multi-agent systems focuses on distributed cooperatinéraly and thus different approaches are utilized.
The current research on consensus with complex systemsds@n fully-actuated systems although
consensus for nonholonomic mobile roboz8][ [85], [92], which is a typical underactuated system, has
also been studied. Note that many mechanical systems aceilbabs by systems with underactuation.

Therefore, it is important to develop appropriate consergdgorithms for underactuated systems.

C. Delay Effects

Time delay appears in almost all practical systems due terakreasons: (1) limited communication
speed when information transmission exists; (2) measuretim@e required by the sensor to get the
measurement information; (3) computation time required dgenerating the control inputs; and (4)
execution time required for the inputs being acted. In gainéme delay reflects an important property
inherited in every practical systems due to actuation,robntommunication, and computation.

Knowing that time delay might degrade the system perforraanceven destroy the system stability,
studies have been conducted to investigate the effect @f diefay on system performance and stability.
A well-studied consensus algorithm fot)(is given in @), where it is now assumed that time delay
exists. Two types of time delagommunication delaynd input delay have been considered in the
literature. Communication delay accounts for the time fdoiimation being transmitted from its origin

to its destination. More precisely, if it takes tirfig; for agent: to receive information from agent the
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closed-loop system oflf using @) under a fixed network topology becomes
Z aij(t)[e;(t = Tij) — i(t)]. ®)

An interpretation of §) is that at timet, agentz receives information from ageyitand uses data; (t—7;;)
instead ofz;(¢) due to the time delay. Note that agentan get its own information instantly, therefore,
input delay can be considered as the summation of compntttiee and execution time. More precisely,

if the input delay for agent is given by}, then the closed-loop system dif) (using @) becomes
Z“w [j (¢ = TP) = i(t = TP)). )

Clearly, @) refers to the case when onIy communication delay is consiiehile ©) refers to the case
when only input delay is considered. It should be emphadizatboth communication delay and input
delay might be time-varying and they might co-exist at theadime.

In addition to time delay, it is also important to consideclket drops in exchanging state information.
Fortunately, consensus with packet drops can be consideyexd special case of consensus with time
delay because re-sending packets after they were dropmeblecaasily done but just having time delay
in the data transmission channels.

Thus, the main problem involved in consensus with time diaay study the effects of time delay on
the convergence and performance of consensus, refer corsensusability103).

Because time delay might affect the system stability, itnipartant to study under what conditions
consensus can still be guaranteed even if time delay ekisssiother word, can we find conditions on the
time delay such that consensus can be achieved? For thisgayrpeveral papers investigated the effect
of time delay on the consensusability df) (using €). When there exists only (constant) input delay, a
sufficient condition on the time delay to guarantee consensuler a fixed undirected interaction graph
is presented ing]. Specifically, an upper bound of the time delay is derivedamwhich consensus can
be achieved. This is a well-expected result because tingy aelrmally degrades the system performance
gradually and will not destroy the system stability unldsstime delay is above certain threshold. Further
studies can be found in, e.g1J4—-[114], which demonstrate that fofl) using @), the communication
delay does not affect the consensusability but the inputyddbes. In a similar manner, consensus with
time delay was studied for systems with different dynamiglere the dynamicsl) are replaced by
other more complex ones, such as double-integrator dysaamd the like 100, [115-[122, complex
networks 123-[126], rigid bodies and the likel27], [12§, and general nonlinear dynamics2{d.
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In summary, the existing study of consensus with time delajnim focuses on analyzing the stability
of consensus algorithms with time delays for various typesystem dynamics, including linear and
nonlinear dynamics. Generally speaking, consensus wité tlelay for systems with nonlinear dynamics
is more challenging. For most consensus algorithms witle titelays, the main research question is to
determine an upper bound of the time delay under which tint@yd#oes not affect the consensusability.
For communication delay, it is possible to achieve consensder a relatively large time delay. A notable
phenomenon in this case is that the final consensus statassacd. Considering the linear/nonlinear sys-
tem dynamics in consensus, the main tools for stabilityyaisbf the closed-loop systems include matrix
theory [LO5, [106], Lyapunov functions 123, [124], frequency-domain approactQ9, passivity [L25,
and the contraction principlelp4].

Although consensus with time delay has been studied extysit is often assumed that time delay
is either constant or random. However, time delay itselfhmigbey its own dynamics, which possibly
depend on the communication distance, total computatiad émd computation capability, etc. Therefore,
it is more suitable to represent the time delay as anotheesysariable to be considered in the study
of the consensus problem. In addition, it is also importantansider time delay and other physical

constraints simultaneously in the study of the consensoisigm.

D. Sampled-data Framework

The previous three subsections describe the main researghimthe study of the consensus problem.
The following introduces a few other aspects, namely, sathipghta framework, quantization, asyn-
chronous effect, convergence speed, and finite-time cgewee, that have been considered in the con-
sensus problem as well. Among these topics, sampled-datgefvork, quantization, and asynchronous
effects are considered due to some physical limitationgactral systems while convergence speed and
finite-time convergence are concerned with the performdmceome proposed consensus algorithms.

Due to the limitations in the measurement and control uiiis often impossible to acquire information
measurements at an arbitrarily fast speed and to executtiiel inputs instantaneously. Accordingly,
the closed-loop systems are modeled in a hybrid fashiont iBhahe system plant is described in a
continuous-time setting while the measurements and danpats are described in a piecewise constant
fashion. For instance, in a sampled-data settiGgpbecomes

uz(t) = UZ(kT) = Xn: CLZ](]CT)[.Z'](]CT) — I'Z(kT)], KT <t< (k? + 1)T, (10)
j=1
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whereT is the sampling period and is the discrete-time index. Essentially,0f is a zero-order-hold
version ofu;(t) in the sense that the control inputs remain unchanged deenh sampling period. Under
this circumstance, consensus is studied in a sampled-datework, calledsampled-data consensus
which reflects the limitations inherited in physical mea&snent and control units. Meanwhile, it is also
important to point out that the sampled-data consensusitiges require much less information exchange
and computational power than the continuous-time conseakgorithms. Accordingly, consensus under
the sampled-data framework deserves certain consideratio

Sampled-data consensus was investigated in, €l@g,[[130-[134, [134-[139. Consensus for
systems with single-integrator kinematic§ (vas studied under a sampled-data framework with a fixed
or a switching network topology, inlB1], [132], where some necessary and/or sufficient conditions were
presented to guarantee achieving consensus. Sampledateansus of systems with double-integrator
kinematics was studied under fixed or switching network togies in [L1§], [130, [133-[138, [13§],
[139. Due to the fact that an infinitely large sampling periodlwduse no information exchange among
the agents, the main research question is to find conditionghe sampling period”, which might
be time-varying, such that consensus can be achieved. Tihditioms on the network topology for
the sampled-data closed-loop systems are mostly similahdb for the continuous-time closed-loop
systems. Note that the existing research on consensus impleshdata framework mainly focuses on
the simple system dynamics and thus the closed-loop systéembe represented in terms of a linear
matrix equation. The corresponding network stability canamalyzed by investigating the properties
of the system matrices constructed based on the proposeersus algorithms and the given network
topology. Various approaches, including Lyapunov funwidl3Q, [134], matrix theory [L1§], [135,
[138, [139, stochastic matrices 3§, and linear matrix inequalitiesl B3], [134], have been adopted, and
some necessary and/or sufficient conditions have beenedeior guaranteeing sampled-data consensus.

It is natural to consider the sampled-data effect for cosssmith general linear or nonlinear dynamics.
In addition, it is meaningful to consider the case when alieles do not necessarily share the same
sampling period or the sampling period is not necessarilystamt. Accordingly, it is expected that
a careful design of the sampling periods (associated wighpttoposed algorithms) might lead to the
optimization of the closed-loop systems under the prop@dgakithms subject to certain cost functions,
such as maximum convergence rate and minimum total infeomagxchange. In another word, it is
intriguing to move from analysis to design when investigatihe consensus problem in a sampled-data

framework.
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E. Asynchronous Effects

In most existing research of the consensus problem, it isnasd that all agents update their states
synchronously, which requires a synchronized clock for wimle group of agents. However, such a
synchronized clock might not exist in real applicationsisTiotivates the design of consensus algorithms
in an asynchronous fashion; that is, each agent updatewitsstates regardless of the update times of
other agents.

In most studies of the asynchronous consensus problem faored systems, due to the intrinsic
technical difficulties, usually only single-integratomkimatics {) and double-integrator dynamics are
considered. In 106, such an asynchronous consensus problem with time delayinvastigated by
utilizing some basic properties of stochastic matricemil@rly in [140, the asynchronous consensus
problem was studied by using matrix theory and graph themorg, in [L41], by employing the paracon-
tracting theory. In 142, the authors studied the asynchronous consensus probledotible-integrator
dynamics and presented sufficient conditions to guarardasensus, where a condition based on linear
matrix inequalities was given.

Note that consensus in an asynchronous fashion has beema®us mainly for single-integrator
kinematics and double-integrator dynamics but not for oflystem dynamics. For certain linear systems,
it might be expected that asynchronous communication doesffect the consensusability as shown
in [10€], [14Q for single-integrator kinematics. However, a similar clusion may not hold for systems
with general dynamics, especially nonlinear dynamicsslimportant to quantify the effects of the

asynchronous communication on the consensus problem.

F. Quantization

Quantized consensus has been studied recently with motivkbm digital signal processing. Here,
quantized consensus refers to consensus when the measatsare digital rather than analog therefore
the information received by each agent is not continuousraigiht have been truncated due to digital
finite precision constraints. Roughly speaking, for an agaignals, a typical quantizer with an accuracy

parametew, also referred as quantization step size, is described by

Q(S) = Q(875)7 (11)

where Q(s) is the quantized signal angl-, -) is the associated quantization function. For instance, a

quantizer rounding a signalto its nearest integer can be expressedld§][
Q(s)=mn, ifselln—1/2)5,(n+1/2)], neZ, (12)
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where Z denotes the integer set. Note that the type of quantizertrbigidifferent for different systems,
hence@(s) may differ for different systems. Due to the truncation of gignals received, consensus is
now considered achieved if the maximal state differencentslarger than the accuracy level associated
with the whole system. A notable feature for consensus withntjization is that the time to reach
consensus is usually finite. That is, it often takes a finitéopeof time for all agents’ states to converge
to an accuracy interval. Accordingly, the main researclo igwestigate the convergence time associated
with the proposed consensus algorithm.

Quantized consensus was probably first studied143| where a quantized gossip algorithm was
proposed and its convergence was analyzed. In particiiarbbund of the convergence time for a
complete graph was shown to be polynomial in the network. $izg¢144], coding/decoding strategies
were introduced to the quantized consensus algorithmsrenbavas shown that the convergence rate
depends on the accuracy of the quantization but not the gfénoding schemes. 45, [144,
guantized consensus was studied via the gossip algorithth, beth lower and upper bounds of the
convergence time derived in terms of the network size. Furtesults regarding quantized consensus
were reported in47-[154], where the main research was also on studying the convesgéme for
various proposed quantized consensus algorithms as welkeaguantization effects on the convergence
time. It is intuitively reasonable that the convergencestidepends on both the quantization level and the
network topology. It is then natural to ask if and how the giration methods affect the convergence
time. This is an important measure of the robustness of atiieahconsensus algorithm (with respect
to the quantization method).

Note that it is interesting but also more challenging to gtadnsensus for general linear/nonlinear
systems with quantization. Because the difference betweetruncated signal and the original signal is
bounded, consensus with quantization can be consideredspscgal case of one without quantization
when there exist bounded disturbances. Therefore, if cmusecan be achieved for a group of vehicles
in the absence of quantization, it might be intuitively eatrto say that the differences among the states
of all vehicles will be bounded if the quantization precrsis small enough. However, it is still an open

question to describe the quantization effects on consemghsyeneral linear/nonlinear systems.

G. Convergence Speed

In addition to the study on the consensus problem with playsionstraints mentioned in the previous
subsections, it is also important to study the control peremce of the consensus problem. From the

control’s perspective, it is natural to propose proper drdlgorithms and analyze the stability, and to

July 31, 2011 DRAFT



16

optimize the proposed control algorithms under certainrobiperformance indexes. In this subsection,
the convergence speed problem is reviewed, which is an tapoperformance measure for consensus
algorithms.

For dynamics 1) using algorithm 2) in a connected undirected graph, the worst-case conveggen

speed was shown irf] to be the Laplacian spectral gap:
XTrx
X;é(ﬁiTnX:O W = Ao, (23)
where 0 is an all-zero column vectorX = [z1,---,x,]7, £ is the Laplacian matrix witt\, being
smallest nonzero eigenvalue. Here, one should recall feasmallest eigenvalue of a Laplacian matrix
for a connected undirected graph is zero and all the oth@ne&ues are positive.

In order to increase the convergence speed, therefore, i aspectral gap should be enlarged.
For this purpose, an iterative algorithm was proposedlBB[to maximize the above spectral gap, by
employing a semidefinite programming solver.

Other than the smallest nonzero eigenvalue of the Laplauiatnix, another commonly used measure
for the convergence speed is the following ratio, introduize[156), [157):

. (HX(t) - X*H)”t
oo X2x \[X(0) — X))
where X* represents the final equilibrium given Iy, whereo is a constant.

(14)

In [156], this problem of finding the fastest convergence speed wated into a semidefinite program-
ming problem. Furthermore, the convergence speed defingd4)ywas studied in both deterministic
and stochastic settings. In the deterministic setting, as wtudied in I57-[159 with estimation of
lower bounds. In the stochastic setting, this problem wasdistl in R3], [26], [160, with a per-step
convergence factor introduced and discussedl80] which itself can be considered a measure of the
convergence speed.

The existing study mainly focuses on the analysis of the emyance speed under various network
topologies and optimization of the convergence speed faaicegiven network topologies. Considering
the fact that consensus under different network topologiag demonstrate different convergence speeds,
a natural question arising to this topic is how to design atinegd (switching) network topology with

proper adjacency matrix such that optimal convergencedspae be achieved.

H. Finite-time Convergence

As an extension of the study of convergence speed for theeosns problemiinite-time consensus

reaching consensus in a finite time, has also been studiedthecCompared with most existing research
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in the consensus problem, finite-time consensus demoes@adisturbance rejection property and robust-
ness against uncertainties. In addition, due to the fintte-tonvergence, it is often possible to decouple
the consensus problem from other control objectives whewy #re considered simultaneously.

For a group of: agents, e.g. with dynamic$)( the objective is to desigm; (¢) such thatr;(t) = x;(t)
for t > T, whereT is a constant. Here[ is also called the consensus time.

Finite-time consensus for networked systems with singlegirator kinematicslj in the continuous-
time setting was solved in8f], [93], [161]-[164]. Finite-time consensus for networked systems with
double-integrator dynamics in the continuous-time sgttias studied in165. An important common
characteristic of the proposed algorithms is the use of igpeusn function. It is well known that linear
consensus algorithms can normally guarantee asymptoticecgence, but not finite-time convergence.
On the contrary, the finite-time consensus algorithms dg@es in B8], [93], [161], [162], [165, which
utilize the signum function, are able to do so.

Note that the existing research on finite-time consensusilyndocuses on systems with simple
dynamics, such as single-integrator kinematics and denbdgrator dynamics. Because many practical
systems are better and more proper to be described by gdinealnonlinear dynamics, it is natural to

study finite-time consensus for systems with general lineatinear dynamics in the future.

. Remarks

In summary, the existing research on the consensus proldsmdvered a number of physical properties
for practical systems and control performance analysisvéder, the study of the consensus problem
covering multiple physical properties and/or control pariance analysis has been largely ignored. In
another word, two or more problems in the aforementionedsettipns might need to be taken into
consideration simultaneously when studying the consepeaslem. In addition, consensus algorithms
normally guarantee the agreement of a team of agents on som@an states without taking any group
formation into consideration. To reflect many practical laggions where a group of agents are normally
required to form some preferred geometric structure, iteisirdible to consider a task-oriented formation
control problem for a group of agents, which motivates thelgtof formation control presented in the

next section.

IV. FORMATION CONTROL

Compared with the consensus problem where the final statdbazfents typically become a singleton,

the final states of all agents can be more diversified underfahmation control scenario. Indeed,
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formation control is more desirable in many practical agations such as formation flying, cooperative
transportation, sensor networks, as well as combat igégltie, surveillance, and reconnaissance. In
addition, the performance of a team of agents working cadpely often exceeds the simple integration
of the performances of all individual agents. For its bropdli@ations and advantages, formation control
has been a very active research subject in the control sgstemmunity, where a certain geometric
pattern is aimed to form with or without a group referencerdorecisely, the main objective of formation
control is to coordinate a group of agents such that they chieee some desired formation such that
some tasks can be finished by the collaboration of the ag&wserally speaking, formation control
can be categorized in terms of a group reference. Formatatra without a group reference, called
formation producing refers to the algorithm design for a group of agents to resmhe pre-desired
geometric pattern in the absence of a group reference, wdachalso be considered as the control
objective. Formation control with a group reference, ahfiermation tracking refers to the same task
following the predesignated group reference. Due to thetemce of the group reference, formation
tracking is usually much more challenging than formatioodaicing and control algorithms for the latter
might not be useful for the former. As of today, there arel stihny open questions in solving the
formation tracking problem.

In the following, recent research results and progressrmdtion control, including formation produc-
ing, formation tracking, and connectivity maintenancedonsensus and formation control, are reviewed

and discussed.

A. Formation Producing

The existing work in formation control aims at analyzing themation behavior under certain control
laws, along with stability analysis.

1) Matrix Theory: Considering the nature of multi-agent systems, matrix héas been used fre-
guently in the stability analysis of their distributed cdioration.

Note that consensus input to each agent (see 8)yis(essentially a weighted average of the differences
between the states of the agent’s neighbors and its own. Astansion of the consensus algorithms, some
coupling matrices were introduced here to offset the cpording control inputs by some angld6p—

[169. For example, given the single-integrator kinematicsl the control input 2) is revised as

wi(t) =Y aij(1)Clz;(t) — wi(t)), (15)
j=1
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where(C is a coupling matrix with compatible size. 4 ¢ R3, thenC can be viewed the 3-D rotational
matrix. The main idea behindl®) is that the original control input for reaching consenstigsatated
by some angles. The closed-loop system can be expressed ectar yorm, whose stability can be
determined by studying the distribution of the eigenvaloés certain transfer matrix. Main research
work was conducted in166-[169 to design proper algorithms and analyze the collectiveionstfor
systems with single-integrator kinematics and doublegrdator dynamics.

Note that the collective motions for nonholonomic mobildats were also studied recently, in,
e.g., [L70, [17]]. Although the study in 166-[169 is different from that in 170Q, [171], similarities
exist in the sense that all agents will not move to the weijleeerage of the states of neighboring
agents, but to some offsetted state. Noticeably, the tdidettate in 166-[169 is properly designed,
yet the offsetted state irlyQ, [17]] is induced by the special nonlinear system dynamics.

In the study of formation producing with linear closed-logystems, it is observed that the associated
system matrix has two interesting properties: (1) the erist of at least one zero eigenvalue, and (2) the
existence of at least one pair of eigenvalues on the imagimes. The two properties play an important
role in the formation producing problem under a fixed netwtmology. However, the two properties
might not be able to solve the formation producing problerdeura switching network topology, which
is still a challenging problem due to the complexity in thelgsis of switching systems.

2) Lyapunov Function ApproachAlthough matrix theory is a relatively simple approach ftalkslity
analysis of the formation producing problem, it is not apgtile in many formation producing scenarios,
especially with nonlinear systems. It is then natural tosider the Lyapunov function approach, a
powerful and efficient approach that has been used frequengberform stability analysis.

By using the Lyapunov function approach, several typicainfation producing scenarios have been
studied, including the inverse agreement probléi?], leaderless flocking and stabilizatioh73—[183,
and circular formation alike1[7Q, [171], [184—[187]. In the inverse agreement problert7p], the
objective is to force a team of agents to disperse in spaceglity speaking, for the single-integrator

kinematics (), the corresponding control input has the form given by
wi(t) =3 b (|| — 2] [ (t) — (1), (16)
j=1

whereb;;(-) is a nonnegative function. Assuming that each agent can corniwaite with all other agents
within a radiusR, the agents will disperse in space with the relative distdmetween any pair of agents
larger thanR.

For the case of leaderless flocking, research has been deddocstabilize a group of agents towards

July 31, 2011 DRAFT



20

some desired geometric formation, where the inter-ag¢atdntion is described directly or indirectly by
some nonnegative potential functidfy(||z; — x;||) regardless of the final group velocity. Some notable
properties forVj;(||z; — x;||) includes: (i)V;;(||x; — =;||) achieves its minimum whejfe; — z;|| is equal
to the desired inter-agent distance between agéemisd j, (i) Vi;(|lz; — z;||) increases agx; — z;||
decreases from the desired distance to zero §nd|xz; — z;||) could approach infinity agz; — «;||
approaches zero, and (iii);;(||z; — z;||) increases a$jz; — z;|| increases from the desired distance
to the maximum communication range. The basic idea behiadotitential functionV;(||z; — z;|) is
to drive the inter-agent distance to the desired value wénileiding possible inter-agent collision. The
corresponding control law for each agent is usually chogdaetthe same as the corresponding consensus
algorithm except that the; — z; term is replaced by ,,V (||z; — z;||) here. A fundamental limitation is
that all agents will normally converge to some (constarigriagent configuration locally in the sense that
some nonnegative potential function achieves its localimmim. Accordingly, the inter-agent distance
might not converge to the desired value globally. It is aeriesting future research topic to ensure that
the desired inter-agent distance can be achieved globatlgruproperly designed control algorithms. In
addition, the network topology associated with a team ofnégés usually assumed to be undirected,
which is not applicable to many practical systems which arected.

For the case of circular formation and the like, the mainaesein [L70, [171], [184], [18€], [18§
was devoted to the collective motion for nonhonolomic mebibots with the dynamics given iB)(

Denoter; = z; + ty;, where. = /—1. Then @) becomes
7 = ue’, 0 =w; i=1,--- N. 17)

Due to the nature of the nonlinear dynamics, a consensesaliforithm often renders a circular-like
ultimate formation where the trajectories of all agents ereular and the relative phase difference
(namely, 6; — 6;) is constant. The current work mainly focuses on the casenvalleagents share a
common unit speed. Similar circular-like formation was lgped in [185, [187], where the system
dynamics are different from6] but share a similar nonlinearity. Due to the nonlinearifyttee system
dynamics, it is a challenging task to incorporate time detiigturbances, quantization, etc, into the
existing research.

3) Graph Rigidity: For a network with a given number of agents, the edges arelglaslated to
the shape of formation. Roughly speaking, if enough infdgiomaregarding edge distances for a team of
agents is available, the geometric structure of all agentietermined. Then the graph for the agents is

rigid. According to [L89, a graph ofn agents is rigid if at leastn — 3 edge distances are available.
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Motivated by the graph rigidity, research has been conduaie[190-[194] to drive a group of
agents to the desired inter-agent configuration by ensuhiaga certain number of edge distances are
identical to the desired ones. The graph rigidity recovédigrdoss of an agent has also been investigated.
Compared with other formation producing algorithms whieguire edge vector information€., z; —z;),
less information is required in edge distance informatio®,(|z; — x;||). As a tradeoff, some unstable
equilibria, such as a collinear initial configuratiahé initial states of all agents are linearly dependent
and a common initial statehe initial states of all agents are identigatather than the desired inter-agent
configuration, might exist. In practical applications, stimportant to design proper control algorithms
such that a team of agents can avoid converging to the upestajlilibria.

4) Receding Horizon ApproachReceding horizon control (RHC), known also as model praatct
control, has been introduced into the formation stabilimaproblem. By nature, RHC is a finite-horizon
optimization problem. The employment of RHC in the formatigtabilization problem is motivated by
the fact that RHC is more capable of dealing with constraints

The main research in this topid99-[197] has been devoted to deriving proper distributed control
algorithms for a team of agents such that they can reach sasieed formation by optimizing some
finite-horizon cost functions in scenarios with or withoirhé delay. Because RHC is essentially an
optimization-based control strategy, the distributed tadnalgorithms are typically given by solving
optimization problems. Therefore, more computationaletim required by RHC than other control
approaches. Therefore, the potential computation-inditioge delay needs to be taken into consideration

in practical applications.

B. Formation Tracking

Although formation control without a group reference iseneisting in theory, it is more realistic to
study formation control in the presence of a group referdremuse it may represent a control objective
or a common interest of the whole group. This scenario is rewiewed in this subsection.

1) Matrix Theory: Similarly to the case of formation producing, matrix theasyoften used in the
study of formation tracking problem.

An interesting problem in formation tracking is to design iatributed control algorithm to drive a
team of agents to track some desired state. For example) tieesingle-integrator kinematics, control
algorithms were designed 198, [199, where the algorithms are similar to those consensus ittgas
except that an extra term is introduced here due to the existef the group reference. If properly

designed, all agents can track the group reference actuesaeported in 198 while, with bounded
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tracking errors analyzed in199, where a discretized version irn9g was considered. It is worth
mentioning that the group reference can be arbitrarily eh@s long as its derivative is bounded.20{—
[202, the synchronization of a group of linear systems to thgoubf another linear exosystem was
investigated with or without parameter uncertainties. 18g, [199, a general group reference was
discussed while inJ00—[202 a general system model was considered. How to solve foomatacking
for general linear systems with a general group referenstilisan open problem.

The formation tracking problem can be converted to a trawi#i stability problem by redefining the
variables as the errors between each agent’s state anddbp mference. Then, the formation tracking
problem is solved if the corresponding errors can be drieerero. However, the formation producing
problem, in general, cannot be solved in this way. Therefongler a switching network topology, the
formation tracking problem is generally easier than thenion producing problem.

2) Lyapunov Function ApproachDue to the broad applications of the Lyapunov function appho
in the stability analysis, it has become an important todhia study of the formation tracking problem
as well.

Flocking with a dynamic group reference has been studieentgc[203-[20€], where the objective
is to design distributed control algorithms such that a tedragents move cohesively along the group
reference. Compared with leaderless flocking, the studyoakihg with a dynamic group reference is
much more challenging both theoretically and technic#llgnough information of the group reference is
known, such as acceleration and/or velocity informatiohef group reference, flocking with a dynamic
group reference can be solved by employing a gradient-bessdol law P03—-[205. Another approach
was proposed in206§, where a variable structure-based control law was usedokee ghe problem
with less information required. Similarly to the study ofetleaderless flocking problem, the existing
research on flocking with a dynamic group reference can oaéichi a local minimization of certain
potential functions because the potential function is gaheunspecified but satisfies the conditions
stated in Subsectiofiv-A. Accordingly, the inter-agent distance is not identicalthe desired one.
However, the potential based control can be easily designgdarantee collision avoidance and maintain
the initial inter-agent communication patterns. Nevddhs, it is still an open problem to consider the
task with global inter-agent distance stabilization, isah avoidance, and initial communication pattern
maintenance.

Formation control with a group reference was studied in tiatkar systemsZ07]-[209 and nonlinear
systems 210-[218 when the potential functio’V (||z; — z;||) is replaced by some known functions,

generally in the form ofjz; — z; — dij||2, whered;; denotes the desired distance between ageausl ;.
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Briefly, the nonlinear systems studied in this case incluolehwlonomic mobile robots (seé)f [217-
[216], rigid bodies (seeq)) [217], [21§], and linear systems with nonlinear tern24.(), [211]. Compared
with the flocking problem, the problem studied here is reddyi easier due to the knowvi(||z; — z;]|).

In general, the inter-agent distance can be driven to thieediesne. As a tradeoff, the collision avoidance

and initial communication pattern maintenance need to bsidered separately.

C. Connectivity Maintenance for Consensus and Formationt©b

In both consensus and formation control problems, it isrofissumed that the network topology
satisfies certain fundamental conditions, for example,dsnected or has a directed spanning tree.
However, a practical communication model is typically digte-based, i.e., two agents can communicate
with each other if and only if their distance is smaller thaceatain threshold, calledommunication
range This is particularly true for sensor networks. In order t@ntee consensus or formation control
be achieved asymptotically, a connectivity maintenancehaeism is essential, which has been studied
recently.

The main approach to maintaining the connectivity of a tednagents is to define some atrtificial
potentials (between any pair of agents) in a proper way shahit two agents are neighbors initially
then they will always communicate with each other thereg266], [219-[228). In general, the artificial
potential between a pair of agents grows to be sufficienttyelgcould be unbounded) when the distance
between them increases to be equal to the communicatior r&ogproperly designed control algorithms,
which are usually composed of the gradients of the artifipiatientials, the total artificial potential is
nonincreasing. This then indicates that the initial comivation patterns can be preserved because
otherwise the total potential will become larger than thigahtotal artificial potential, as soon as some
communication pattern is broken. Although this approadbvigies a systematic way to guarantee the
connectivity, the corresponding control algorithms miggquire infinite large control inputs, which is not
practical. Meanwhile, it is not even necessary to alwaysntaai the initial communication patterns in
order to guarantee the connectivity. Therefore, how to fintbee effective way to guarantee connectivity
deserves further investigation. In contrast to the studie$20€, [219-[229, the authors in 229
investigated an interesting problem where the number tally existing communication patterns plays a
role in the connectivity maintenance for the consensuslenolwith single-integrator kinematic4)(and
control input @). Roughly speaking, if the initial graph is “sufficientlybonected in the sense that each
agent has at least a certain number of neighbors, conseasusecguaranteed to be achieved. Note that

the result can only be applied to systems with single-irggrkinematics therefore further investigation
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is expected for systems with high-order linear dynamicsanmlinear dynamics.

D. Remarks

Current research in formation control mainly focuses onedfiformation where the inter-agent distance
is fixed. Considering practical applications, however, igim require that the formation be adaptive with
respect to the events performed by the team of agents. Iti@uddti is important to consider constraints,
such as input saturation, quantization, and power linaitgtin the formation control problem. Meanwhile,
the robustness is another important factor that deservesidagrable attention in real applications where
noise and disturbances exist.

In terms of connectivity maintenance for consensus anddtiom control, research has been devoted to
continuous-time systems but practical systems are motabdaito be modeled in a discrete-time setting,
which makes the study of connectivity maintenance for @igctime systems more meaningful. In general,
the connectivity maintenance for discrete-time systemsdse challenging due to the fundamental

limitation of the corresponding control input, which is afly piecewise constant rather than continuous.

V. OPTIMIZATION

Optimization is an important subject in the studies of consystems. The main objective of opti-
mization is to find an optimal strategy subject to some givemstraints such as cost functions. Recently
optimization in distributed multi-agent coordination Hzeen studied concerning convergence speed and

some specific cost functions, which are respectively restwelow.

A. Convergence Speed

As discussed above, one important problem in consensus ottvergence speed, which characterizes
how fast consensus can be achieved therefore is desiralogtitnize. In this regard, the convergence
speed is the cost function to be optimized.

Consider a group aof agents with dynamics described by the single-integratuerkiatics {). Equipped

with (2), the dynamical equatioriL) can be written in a matrix form, as
X(t) = —LX (1), (18)

where X (t) = [z1(t), - ,z,(t)]7 and £ is the Laplacian matrix. For a network with a fixed topology,

L is a constant matrix.
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Motivated by the observation that the smallest nonzerore®mae of the Laplacian matrix\s (L),
determines the worst-case convergence sp8eddsearch has been conducted to maximize the conver-
gence speedlp5, [23( by choosing optimal weights associated with edges. Inreshto [L55, [230,
where the systems are assumed to have single-integratem&iics, optimization of the convergence
speed for double-integrator dynamics was considere@3i]] where the convergence speed is defined
in a similar way to the\y(L£) for the case with single-integrator kinematics. It is wamtkentioning that
optimal convergence for general linear systems and nalingstems is still an open problem.

As mentioned above, other than (L), another commonly used measure for the convergence speed is

given by (L4). The corresponding optimization problem is

max p, (19)

wherep is defined in {4). Existing research inlj5€, [232 focuses on the case when all agents converge

to the average of the initial statese., X* = [2 3" | 2;(0)]1. For an arbitrary fixed or switching

network topology, the optimization problert9) is challenging if X* is unknown. But if X* is chosen

as[L>°"  x;(t)]1, then the problem becomes much easier.

n

B. Specific Cost Functions

In addition to the fastest convergence speed requiremanus cost functions are also subject to
minimization.

One interesting problem studied in this setting is distéldumulti-agent optimization, which is mo-
tivated by solving one challenge in wireless sensor netgorlamely, to estimate the environment
parameters and/or some functions of interest, such as tatope and source locatio233. As a simple
strategy, each sensor node can send its data to some existiigal location which can then process
the data if the central location is sufficiently powered. dwer, due to the limited power resources and
communication capabilities, this strategy is often notligpple. An alternative approach to achieving a
similar objective is to estimate the environment paranseded/or some functions of interest locally, which
requires much less communication bandwidth and power. lel@gs sensor network®33, the estimation
problem is usually modeled as a distributed multi-agentnapation problem. Roughly speaking, the

objective of distributed multi-agent optimization is toogeratively minimize the cost function

Z fi(x)’
i=1

where the functionf; : R” — R represents the cost of agehtknown by this agent only, and € R™

is a decision vector. In233, an incremental subgradient approach was used to solveftiemization
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problem for a ring type of network. It should be noted th283 does not provide much discussion on
the optimization problem under other types of network topas.
Ref. [234] was probably the first paper studying the distributed rratdggnt optimization problem under
a consensus-based framework. The problem considerednther®rmulated as
minimize >, fi(z)
s.t. e R",
where eacly; : R™ — R is assumed to be a convex function. Inspired by the averaggeosus algorithm

and the standard subgradient method, a consensus-liketlilgavas proposed as
zilk+1) = aij(k)a;(k) — agi(zi(k)) (20)
j=1

where« is the step size ang(x;(k)) is the subgradient of;(z) atx = z;(k). In [233, Z;L:I a;j(k)x;(k)
in (20) was replaced byr;_1(k) with zg(k) = x,(k — 1). Note that the algorithm2Q) can only
find sub-optimal solutions, determined by the constant step«. Further results in this topic can be
found in 235-[237], where a similar distributed multi-agent optimizatioroplem was studied within
various scenarios, such as under constra§][ over random networks2B6], and with broadcast-based
communications in an asynchronous settigg7. In the existing research, time delay and disturbances
have not been taken into consideration. Therefore, it ioitamt to consider time delay and disturbances in
the distributed multi-agent optimization problem due teitlwide existence in wireless sensor networks.
In addition to the distributed multi-agent optimizationoptem where the cost function is a sum of
a series of convex functions, distributed optimization hs® been considered for both infinite-horizon

cost functions 238-[247 given by

Ji = /0 OO[XT(t)QX(t) +UT(t)RU(t)]dt
and finite-horizon cost function243-[246 given by

5= | Y IXT(0QX (1) + UT()RU (D)o,

where X ¢ R" is the state/' € R" is the control input, and is a positive constant. It is worth
mentioning that the RHC approach discussed in Sedtiof typically has finite-horizon cost functions.
Different from the research reported i234-[237], which is to find the optimal estimated state, the
objective here is to find the optimal control laws subjecthe minimization of certain cost functions.
Due to requirements of optimizing the cost functions whesigtgng the control laws, the computational

complexity becomes an important problem to study. Meareyliile network topology plays a significant
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role in the optimization problem with certain cost funcsonherefore it is also useful to optimize the

network topology subject to certain cost functions.

VI. DISTRIBUTED TASK ASSIGNMENT

Distributed task assignment refers to the study of taslgassént of a group of dynamical agents in a
distributed manner, which can be roughly categorized iot@rage control, scheduling, and surveillance.
Compared with the previous studies discussed in SectibnsV, andV, distributed task assignment

focuses on the three task-oriented research problemsgevdash topic has its unique features.

A. Coverage Control

Coverage control is an active research direction in mol@leser networks, where the objective is to
properly assign the mobile sensors’ motion in order to méeénthe detection probability.

Let Q be a convex space withh represent the distribution density function which indésatthe
probability that some event takes place oe@r[247. Consider a group of, mobile sensors whose
locations are specified b¥ = [p1,--- ,ps]. The sensor performance at a pointlegrades with respect
to the distancegq — p;||, which are all described by a nondecreasing differentidibtection, f. The
coverage control problem is to find a local controller forleawbile sensor such that the following cost

function is minimized:

1= [ la-plis@da. (21)
=1

This coverage control by nature is an optimization problitain research in this topic was reported in,
e.g., R48-[255, where the coverage control problem was considered in twartibns, namely, analysis

of coverage control under various practical constrainishsas limited sensing/communication capac-
ities [248], load balancing 254, and nonholonomic mobile robot2%5, and algorithms for coverage
control [251]. Noting that time delay and uncertainties have not beersidened in the coverage control
problem, it is interesting to consider the effect of timeayeand uncertainties in the coverage control
problem. Moreover, the density functiah might be time-dependent in real systems, which is another

interesting research topic for further study.

B. Scheduling

Another interesting topic in distributed task assignmeandistributed scheduling, which refers to the

scheduling of a group of dynamical agents in a distributechmea Distributed scheduling has many
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potential applications in military and civilian sectorsidacan be roughly categorized into two typical
problems, namely sequence optimizati@d§ and task allocation457]-[261]. The objective of sequence

optimization is to schedule a team of agents such that sontécsean be optimized. For instance,
in [256], an optimal scheduling sequence was designed to fuel pgUAVs via dynamic programming,

where the metric is the total spending time. The objectivsk allocation is to distribute certain number
of tasks to a team of agents such that they can balance thé¢atska. If the number of tasks for each agent
is considered a variable in the consensus problem, the teslaion might be viewed as a consensus
problem except that a limitation on the total number of tafksall agents exists. A notable feature
of the distributed task assignment problem is that variomsstraints may exist due to the physical
properties associated with the agents. In view of the diffee objectives for sequence optimization
and task allocation, it is an interesting topic to considenbining both objectives of the two problems

simultaneously.

C. Surveillance

Distributed surveillance means to monitor a certain areadiiyg a group of mobile agents in distributed
coordination. Distributed surveillance has a number ofeptial applications, such as board security
guarding, forest fire monitoring, and oil spill patrolling.

The main motivation of distributed surveillance is that anteof agents can monitor a given (large)
area more effectively than a single agent when the team ofitageorks in a cooperative fashion.
Accordingly, an important research problem in distribugediveillance is to design environment-based
cooperative control laws for all coordinated agents suel tie given area can be monitored efficiently.
Recent research in distributed surveillance has beentszbur 262-[269, where a number of physical
limitations were identified and considered such as timeydaled uncertainties2p65, [268), collision
avoidance between agen®6f, and heterogeneously distributed ager#6g. The current research is
conducted under the assumption that each agent has enowghqah that any designed control law can
be applied. However, due to the power constraints, eacht agight be subjected to constraints such as
bounded control input, limited distance to travel, and éirdtcuracy level, etc., therefore it is interesting

and important to consider these limitations in the distéusurveillance problem in the future.

VIl. ESTIMATION

Due to the absence of global information, used for achiegraup coordination in many cases, a

distributed estimation scheme is needed for estimatiow. first problem is to design local distributed
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estimators such that some global information can be estinasymptotically or in finite time. The
second problem is to design local controllers based on tbal lestimators such that the closed-loop
system is stable. The estimation-based distributed costessentially a combination of both centralized
control and distributed control in such a way that distd@sltontrol is used in the estimation of some
global information and the centralized control is used mltital controllers design. The estimation-based
distributed control strategy often inherits the merits oftbcentralized control and distributed control.
However, it is worth emphasizing that a closed-loop systeith distributed estimators is much more
complicated to design than one without distributed estimsat

Main research in this topic has been reportedl6d, [270-[275, where the joint estimation and
control problem was considered subject to disturban2éq[[272, [273 or without disturbancesle3,
[271, [274, [275. In [163, [270-[27Y, a joint estimation and control problem is solved in thesgen
that the distributed estimator is used in the design of prapetrol algorithms such that certain global
objective can be achieved. Without the aid of distributetinestors, the control design is very hard
and even impossible. As can be noticed fra27§—[282, the distributed estimation problem has been
considered without much discussion on specific control lerab. In general, the joint estimation and
control idea has been an important approach in the studystfiliited multi-agent coordination where
only neighbor-based information is not sufficient for thentcollers design. On the other hand, in real
applications properly designed distributed estimatorghinbe used to replace some expensive sensor.

In general, it remains a challenging problem to study tasénted coordination control systems where
the use of distributed estimation is either necessary orpgmo@riate replacement of certain expensive
measurement devices, at the costs of difficult control sysiesign and complex system stability anal-
ysis. Moreover, physical limitations such as bounded @britrput, asynchronous communication, and
information quantization, could potentially enhance tippleability of the joint estimation and control

scheme in various distributed multi-agent coordinatiostems.

VIII. DISCUSSION

This article has reviewed some recent research and develtpmdistributed multi-agent coordination.
In addition to the theoretical results reviewed above, nexperiments were also conducted to validate the
theoretical designs and analysis, as can be foung88+4[289, to name just a few representative reports.
Although the existing theoretical research and experimbate solved a number of technical problems
in distributed multi-agent coordination, there are stilhmy interesting, important and yet challenging

research problems deserving further investigation. Sohteewmn are briefly summarized as follows:
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« Quantization effects in distributed coordination algbris. The current research efforts focus on
studying distributed coordination problems with contrgbuts and measurements being analog sig-
nals with continuous values. However, digital signal pesiieg techniques require digital inputs and
sampled-data measurements. Although quantization sffeste been studied in several coordination
problems, the quantization effect in some other distrithuiteordination problems remain unsolved
and even untouched.

« Optimization with integrated individual and global costfiions. Optimization problem in dis-
tributed coordination has been studied with various casttions. In real systems, each individual
agent has both local and global objectives, contributin@rointegration of both individual and
global cost functions. Therefore, optimizing a combinegeotive is more realistic but also more
challenging. Another interesting problem is to investigabdw to balance the individual cost functions
and the global cost function toward a common objective.

« Intelligent coordination.Intelligent coordination refers to the distributed coowtion of a team
of agents in the presence of (artificial) intelligence, ngmeach agent is intelligent, therefore
can choose the best possible responses based on its owrnivaebjéatelligent coordination has
potential applications not only in engineering and techgygl but also in economics and social
studies. Although research problems, such as pursuedényaroblem 289—[292 and the game
theory in distributed coordinatior2®3-[298], have been studied recently, there are still many open
questions, especially the understanding of group betauiathe presence of agent intelligence. One
interesting problem is how to interpret the underlying ceermetworks as well as to stabilize and
optimize the network in the presence of agent intelligence.

« Competition and cooperatiofoday, most research is conducted based on local coopeiatinot
competition. This posts an obvious limitation because agitipn not only exists but also plays an
positive role in group coordination. For example, due to Itk of competition, the final states of
the traditional consensus algorithms are always limitedeiavithin some region in the state space
determined by the initial agent states. One interestingtipre is how to introduce competition into
distributed coordination so as to arrive at different regi@nd to improve the system performance
that rewards different agents with different benefits.

« Centralization and decentralizatiodlthough decentralization shows obvious advantages oser c
tralization, such as scalability and robustness, dedé@tion also has its own drawbacks. One
shortcoming is that, under decentralized protocols, sogesta cannot predict the group behavior

based only on the available local information. Conseqyestime group behavior cannot be con-
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trolled. As a sensible example, current economic crisisialgt illustrates some disadvantages of
behavioral decentralization. One interesting questibarefore, is how to balance decentralization

and centralization so as to further improve the overalleyst performance.
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