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A Data-Based State Feedback Control Method for a
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Abstract—In this paper, a data-based state feedback control
method is developed for a class of nonlinear systems. It is a
real-time control method, which requires little prior knowledge
about the system dynamics, and does not need to know or to
build the mathematical model of the system. We apply a fast
sampling technique to sample the state signal, which contains
useful information of the system. The zero-order hold (ZOH) and
the control switch are also used to obtain system information.
The feedback gain matrix is calculated and adjusted according to
these sampled data. Theoretical analysis on the convergence and
simulation results demonstrate the feasibility of this data-based
control method.

Index Terms—Control switch, data-based state feedback control,
fast sampling technique, nonlinear systems, real-time control, sam-
pled state data, zero-order hold.

I. INTRODUCTION

A S the development of information sciences and technolo-
gies, modern industries have undergone great changes in

the past few decades. Industrial systems have become more
and more complex. Many of them, for instance, chemical in-
dustrial systems, electrical power systems, and metallurgical
systems, etc., have strongly coupled characteristics, uncertain
boundary conditions, and adverse operating environments [1].
In these cases, engineers often encounter great difficulties in
system modeling based on physical and chemical mechanisms
[2], [3]. Sometimes, it is even impossible to analytically build
their mathematical models. As a result, using the traditional
model-based methods to deal with all the control issues in these
systems would become impractical.
With the development and extensive applications of digital

sensor technologies, these industrial systems are producing vast
amounts of data every day, which contain important informa-
tion about the system [4], [5]. Then, how to effectively uti-
lize these measured data, both on-line and off-line, to directly
control the industrial systems, would have great significance.
Consequently, the establishment and development of data-based
control theory and methods is an urgent issue not only in theo-
ries but also in applications [1], [4], [6].
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Up until now, some typical data-based control methods have
been developed, for example: iterative feedback tuning (IFT),
iterative learning control (ILC), model free adaptive control
(MFAC), simultaneous perturbation stochastic approximation
(SPSA), and virtual reference feedback tuning (VRFT), etc. We
can divide them into two broad categories: the first one needs
to perform system identification and establish the approximate
models with the measured data first, using approaches such as
neural networks (NN) [7]–[9] [10] and support vector machines
(SVM) [11]–[13], and then designs the controllers according
to these approximate models; the other one could directly
control the system with the measured data, where no model
identification of the plant is needed, but it is subject to some
kind of restrictions or prior assumptions.
The second category of the data-based control methods has

some typical examples: ILC [14]–[16], MFAC [17], [18], and
VRFT [19], [20]. For ILC methods, they involve two basic
assumptions: the global Lipschitz condition and the strict re-
peatability of system dynamical behaviors and the control task.
MFAC methods employ a dynamic linearization technique
with the concept called pseudo-partial derivative. The dynamic
behaviors of the nonlinear systems suitable for MFAC methods
are assumed to have continuous partial derivatives with respect
to control inputs, and satisfy some generalized Lipschitz con-
ditions. For VRFT methods, the control schemes are restricted
by some optimality criteria.
In this paper, we develop a data-based state feedback con-

trol method for a class of nonlinear systems, which have un-
known mathematical models. To obtain the corresponding Jaco-
bian matrices, we employ a fast sampling technique to measure
the state signal. The control switch and ZOH are also applied
for the same purpose. To ensure that the system state converges
to its desired value, the feedback gain matrix is calculated and
adjusted in real-time with measured data.
This method belongs to the second category of the data-based

control methods. It is a real-time control method, which only
needs some basic prior knowledge about the system, while re-
quiring neither repeatability of the system behaviors, nor con-
ditions that satisfy any optimality criteria.

II. SYSTEM DESCRIPTION AND BASIC ASSUMPTIONS

In this paper, we study a class of nonlinear systems, which
can be described in the following form:

(1)

where , and are the input
and the state of system (1), respectively, , ,
and . The explicit expression of is
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unknown and . is piecewise continuous in .
The values of and can be measured and stored, and
we can set the value of .
Since in modern control engineering, computer technology

is often used in control systems, we sample the input and state
signals of system (1) to obtain digital data for numerical com-
putation. Suppose that the sampled input and state data have the
following relationship:

where is the sampling period, is also
unknown, and . For abbreviation, we use

(2)

instead of the above system.
In order to control system (1), a digital-to-analog converter is

needed at the input terminal to convert the digital signals back to
continuous-time signals. We employ the zero-order hold (ZOH)
for this purpose. Furthermore, we have the following assump-
tion for system (2).
Assumption 1: Function given in (2) has the

following properties.
1) It is in both and , while its Jacobian matrix
with respect to has full column rank.

2) and ,

where and , and
represents the Euclidean norm.

For a practical control system, its dynamics is either described
by a single smooth function, or by a piecewise smooth func-
tion. If there is at least one component in the control system,
which has intrinsic nonlinear characteristics, such as dead zone,
backlash, jumping, and amplitude limiting, etc., such that its dy-
namics can only be described by a piecewise smooth function,
then we can consider this control system unsmooth; otherwise,
we can consider it smooth. In practice, we may verify whether a
system has intrinsic nonlinear components by knowledge or by
experiment.
By Assumption 1 and Lagrange’s mean value theorem, for

any , and , , where the two
pairs and satisfy (2), respectively, we
have

(3)

In (3), we denote

(4)

where

(5)

Obviously, and . Thus, (3) can
be re-written as

(6)
Let a constant vector denote the desired state, where

. By Assumption 1, there exists a control input
, which is also a constant vector, such that and

satisfy

(7)

However, we cannot analytically obtain since the mathemat-
ical model of system (2) is unknown. In this situation, our objec-
tive is to find a method for given and , which can adjust

in real time, to make (or, ,
where is the maximum tolerable error) as .

III. DATA-BASED FEEDBACK CONTROL

In this section, we design the control law for system (2) as

(8)

where is the feedback gain matrix, which will
be adjusted at each time . Similar to (6), and by (8), we shall
have

(9)

where

Let

(10)

and define

(11)

Therefore, and (9) becomes

(12)

As a result, the problem of controlling system (2) is transformed
into the problem of how to calculate and adjust , to make

for all . Therefore, will keep on de-
creasing until it is less than . The calculation of becomes
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Fig. 1. Block diagram of the data-based state feedback control using fast sampling, control switch, and ZOH.

the key to solve the present control problem, and should be com-
pleted before time . Otherwise, we may not adjust and
control the system on time.
From (11), we can see that in order to obtain , one needs

to determine , and first. However, we cannot
analytically compute them due to the unknown mathematical
model. To overcome this difficulty, we need to estimate these
matrices directly from the measured state data. To ensure the
feasibility of this data-based method, we make the following
assumption.
Assumption 2: During each , ,
, and can be considered constant matrices.

For a nonlinear autonomous system, people used to employ a
linear time-invariant system to approximate it in a neighborhood
of the equilibrium point. Obviously, this approximation method
can also be extended to other neighborhoods, which do not con-
tain the equilibrium point. Assumption 2 is proposed under this
consideration.
On the other hand, Assumption 2 indicates that the system

is slowly time-varying. But, the system changing rate (fast or
slow) is just a relative concept comparing with the value of
the sampling period . With the development of technologies,
the speed of computers and the sampling frequency of samplers
can be very fast. In such case, those systems, whose dynamics
used to be regarded as fast, can now be controlled by using our
method.
Under Assumption 2, (12) provides a piecewise linearization

method to deal with system (2). It should be noted that ,
, and have different values for different , al-

though they are considered constant matrices during the same
time interval . Then, these matrices will be esti-
mated by using the following data-based method.
We introduce a fast sampling technique to collect information

about the system. It samples the state signal as measured data
with a higher frequency during each , and stores
these measured data. The new sampling period is ( ,
where is an integer. , where is the time
spent on computing , , , and ). It should
be pointed out that the time interval between two successive
adjustments of is still .
Furthermore, we put a control switch between and the

ZOH (see Fig. 1). This control switch uses a counter with the

period of to control its opening and closing. When a sample
arrives at the control switch at time , the counter begins to
count the number of samples. The first sample is counted at .
After counting samples, turn off the control switch. Then,

will be disconnected from the ZOH, while the counter
is still counting samples. In the mean time, the ZOH keeps

until the number of counted
samples becomes at time . Then, turn on
the control switch to make connected to the ZOH again.
The counter keeps working until the th sample is counted at
time , and then reset the counter to zero. We
can repeat the above procedure until time .
In the above process, measure and store the values of

. With these data, we can calculate
and adjust the feedback gain matrix in real-time.
Since is very small as compared with , then by Assump-

tion 2 and (12), we shall have

...
(13)

Define

(14)

From (13) and (14), we can obtain

(15)

As introduced above, after time , the value of
will be kept by the ZOH until time

. By Assumption 2, and are constant
matrices during this time interval. In addition, will not be
adjusted before time . Therefore,

(16)

where . By (9) and (16), we can obtain
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(17)

where . Define

(18)

From (17) and (18), we have

(19)

To calculate and with and , respec-
tively, we make another assumption.
Assumption 3: For each , there exist two integers

and , where . Such that

(20)

Lemma 1 ([22, Chap. 3]): Let the matrix be partitioned as
follows

(21)

We have the inequality

(22)
Then, by Assumption 3 and Lemma 1, we can obtain

(23)

Since

and are both invertible. Then,
and can be computed as follows

(24)

Remark 1: When calculating and , there are some
points for attention.
1) From (14) and (18), we can see that each time interval

is divided into two parts. The first part is
, during which the state data are measured.

The second part is , during which the
corresponding matrices are calculated. In practice, if the
computation time is adequate, then the larger portion of
the first part is, the more accurately and will

be estimated. Therefore, when T is fixed, one should use a
as large as possible.

2) Observe (16) and (17), the control switch and the ZOH are
indispensable for our method. This is because we need to
eliminate the effect caused by and , which are
contained in the feedbacks. Thus, we can compute
and , separately.

Since is an matrix, comparing with , there
are two cases to be studied.
Case 1 :
Step 1 Set Initial Values, When , 1:
In the initial stage, we have not collected sufficient data to

determine and . Our method will set and
before the computation starts. It is also necessary to set the initial
values of , so as to control the system when the proper
controller has not been obtained yet. The first two feedback gain
matrices are set as follows

...
...

. . .
...

...
...

(25)

where are selected so that
.

When , set as in (25). During , measure and
record . Then, calculate and
by (24). Since

(26)

is invertible. With , and , we can
obtain by

(27)

During , we can compute in the same way:

(28)

where and are computed by (24).
Step 2 Calculate and Adjust When :
It is not practical to calculate and before time
arrives, since (14) and (18) can only be constructed after

and , respectively. However, we have
to determine before arrives and replace with
it at time , in order to control the system on time. To solve
this problem, we make one-step predictive estimations of ,

, and . With these predictive estimations and the
following assumption, we can design .
Assumption 4:

(29)

For all , the one-step predictive estimations of
and are

(30)

, , , and
have been computed and stored during
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and . The control task during is
to estimate , , and , and calculate based
on them. Since it is desired that , we preset the
desired by using the previous results as follows

(31)

where , and is the identity matrix. We may
adjust to improve the convergence rate, and choose proper
to make and satisfy

(32)

The choice of is always possible for the following reasons. Let

Then, . For given , , ,
and are all constant matrices. There always exists
a nonsingular matrix , such that

where

. . .
...

...
...

. . .

is an Jordan block, ,
is an eigenvalue of , and .

Therefore, . In this
case, if , choose ; otherwise,
since , there is at least one , and we can always
find such a , that makes , while not making other
non-zero become zero. As a result,

will increase, and we can continuously
try different values of , until (32) is satisfied.
It can be seen from (31) that

(33)

In our method, will be calculated according to this .
Similar to (11), the matrices , , , and

have the following relationship:

(34)

By Assumption 4 and (30), exists, since

Then, is calculated as

(35)

On the other hand, by (32) and (34), we have

(36)

According to (35), . There-
fore, , and is invertible.
After applying to the system at time , measure and

store the state data. Then, compute the real and by
(24). Because given in (35) will stay unchanged until time

arrives, the real can be obtained by

(37)

Store the computed , , and for computing
, , and during the next time interval.

Step 3 Check the Result:
At the time instant , check whether (or, whether

). If , keep on using the same from
then on; otherwise, repeat the procedure illustrated in Step 2,
until this condition is satisfied.
Case 2 :
Case 2 is similar to Case 1, while there are a few differences

between them. The first different point is that, when setting the
initial values in Step 1, we now set

(38)

where are selected to make
.

The second different point is that, and are both
square matrices. Thus, we have

(39)

When computing , it is a little different from (35):

(40)

Then, we can obtain the real by

(41)

The rest of Case 2 are the same as those of Case 1, and will
not be discussed here.
In summary, this data-based state feedback control method

can be depicted using the block diagram shown in Fig. 1.
Remark 2: There are some points need to be noted.
1) In Assumption 2, the smaller the is, the more accurately

and will be estimated. It will be easier to sta-
bilize the original continuous-time system. However, in
order to calculate before time , it is required that

, where represents the computation
time. But, and are limited by the sampler and com-
puter speed. Therefore, cannot be arbitrarily small, and
should be carefully selected.
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2) If Assumptions 1 and 2 can be satisfied, our method is also
applicable to the system, whose desired state is a slowly
time-varying signal . For this case, we divide the time
domain into a group of sections, making sure that during
each time section, all the elements of are monotone.
The final value of in each time section will be used
not only as the desired value for the current time section,
but also as the initial value for the next time section. Then,
we can apply our method to control the system, making

track .

IV. CONVERGENCE ANALYSIS

In this section, we will study the convergence condition,
under which guarantees . Define

(42)

where

Then, we have the following theorem.
Theorem 1: If

(43)

where and are introduced in (31), then the state of
system (2) will converge to its desired value as .

Proof: It is clear that (43) is equivalent to

(44)

From (11), (30), (34), and (42), we can infer that

(45)

From (33), (44), and (45), we can obtain that ,

(46)

Since , from (10)
and (46), we can conclude that as .

V. SIMULATION STUDIES

In this section, a smooth mathematical model, which repre-
sents the three-tank system (TTS) DTS200 [23], is adopted for
computer simulation. The layout of this system is illustrated
in Fig. 2, which consists of three cylinders: tank 1 , tank
3 and tank 2 , having the same cross section area

cm . These cylinders are connected in series with
each other by two cylindrical pipes, which have cross section
area cm . The nominal outflow valve with cross sec-
tion area is located at tank 2. The outflow liquid is collected
in a reservoir, which supplies pump 1 and pump 2. Denote

as the liquid level (in cm) of tank ( , 2, 3),
whose measurements will be carried out by difference pressure
sensors. and are the supplying flow rates (in cm )
of pump 1 and pump 2, respectively. Under the assumption that

, we have the following nonlinear con-
tinuous-time model:

(47)

where , , and denote the outflow
coefficients; while cm , cm
and cm are the maximum values of ,
and , respectively. Here, represents the
gravity acceleration.
Let ( , 2) and ( , 2,

3) denote the inputs and the states of system (47), respectively.
Thus, the dimensions of the input vector and the state vector are

and .
In this example, we use Euler method to approximate the sam-

pled system (47) as follows

(48)

where is the fast sampling period in our method, and
other terms in (48) are

(49)

and

(50)
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Fig. 2. The layout of the three-tank system DTS200.

TABLE I
, , AND CONVERGENCE TIME

Now, we set the desired state, the initial liquid levels, and
, as

(51)

We then design the controller with the state data, which are gen-
erated by model (48). Note that, the state data used to calculate

, , , and are not actual measurement re-
sults, but are generated by Matlab programs using model (48)
and the initial values in (51). The corresponding methods to cal-
culate the above matrices are illustrated in Section III.
The following figures illustrate the simulation results. They

have the same initial conditions, but different , , and . In
these figures, the horizontal axis represents the time (in sec-
onds), while the vertical one represents the liquid levels (in cm).
The solid lines are the desired liquid levels , and the dash dot
lines are the states ( , 2, 3).
Observe the curves shown in these figures, all of the states

starting from converge to as time goes to infinity, which
illustrate the feasibility of our method. The values of , , and
the corresponding convergence times are listed in Table I. We
can see that, our method is applicable to control the system even
with different values of . As discussed in Remark 1, when
is fixed, a smaller will cause larger estimation errors. As a
result, will converge to at a slower rate. The curves in
Figs. 3 and 4 match this conclusion. It also can be seen from

Fig. 3. Simulation result when , and .

Fig. 4. Simulation result when , and .

these curves that, different values of , , and will cause
different overshoots.



WANG AND LIU: A DATA-BASED STATE FEEDBACK CONTROL METHOD FOR A CLASS OF NONLINEAR SYSTEMS 2291

Fig. 5. Simulation result when , and .

Fig. 6. Simulation result when , and .

These simulation results indicate that our approach can guar-
antee stability of the controlled system when the sampling pe-
riod is sufficiently small. Thus, in order to avoid the feedback
stabilization problem caused by discretization method as dis-
cussed in [24], we should use a as small as possible.

VI. CONCLUSIONS

In this paper, we developed a data-based state feedback con-
trol method for a class of nonlinear systems, which have un-
known mathematical models. The principle of this method is
first to calculate the feedback gain matrix in real-time, by
using the measured data during each , and then
replace with it when time arrives. This will
make the system state converge to its desired value as time goes
to infinity.
There are three advantages of our method. The first advan-

tage is that, it provides an approach to approximate the nonlinear
system with a linear time-invariant model during each time in-
terval , which does not have higher order infinites-
imals that need to be ignored. Thus, this dynamic linearization
is accurate, and can be applied to nonlinear systems, which are
continuous and have continuous first-order partial derivatives.

In engineering practice, there are many systems satisfying As-
sumption 1, for instance, liquid level control systems, pneumatic
control systems, thermal control systems, and hydraulic con-
trol systems, etc. [25, Chap. 4]. According to this situation, our
method may have broad application prospects.
This data-based state feedback control method employs a fast

sampling technique to collect the state data. With these data, we
can calculate the corresponding matrices , , ,
and . Therefore, the second advantage is that, we can di-
rectly control the system without modeling it.
The third advantage is that, is related to the previous

results and , and the adjustment of
is a process of estimating, updating and correcting. So it can
be inferred that, our method has the adaptive capacity against
uncertain changes of system dynamics.
Computer simulation results demonstrated the effectiveness

of this control method. These results also showed the influences
of the parameters , , and on the convergence rate and the
overshoot.
The systems studied in this paper are deterministic, while in

practical terms, the measurement noise often exists in sampled
data. We will extend this data-based control method to deal with
the systems with measurement noise in future research, by using
least squares estimation approaches.
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