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Abstract—Detailed large scale simulations require a lot of
data. Residential electrical load profiles are well protected by
privacy laws. Representative residential electrical load generators
get around the privacy problem and allow for Monte Carlo
simulations. A top-down model of the residential electrical load,
based on a dataset of over 1300 load profiles, is presented in this
paper. The load profiles are clustered by a Mixed Model to group
similar ones. Within the group, a behaviour model is constructed
with a Markov model. The states of the Markov models are
based on the probability distribution of the electrical power. A
second Markov model is created to randomize the behaviour. A
load profile is created by first performing a random-walking the
Markov models to get a sequence of states. The inverse of the
probability distribution of the electrical power is used to translate
the resulting states into electrical power.

Index Terms—Data analysis, Markov Models, Clustering, Sta-
tistical distributions

I. INTRODUCTION

The knowledge of consumer electricity consumption is
essential for the development of smart grid integration strate-
gies such as integration of electrical vehicles and distributed
generation. Studies tend to fall back on the aggregated data
when no detailed data is available. The use of aggregated data
is not a problem if the focus is on aggregated results. Examples
of this are total electricity demand [1], discrete load bands [2]
and average load profiles [3]. However, when detail is im-
portant, data can not be aggregated. Valid electricity profiles
of households are required when simulating voltage problems
due to electric vehicle charging at distribution level [4], when
managing a micro-grid with photovoltaic (PV) systems [5]
or when estimating the potential for battery storage in a
distribution grid [6].

Residential electricity consumer data is well protected in
Europe due to privacy concerns [7], [8]. Only a few companies
monitor electricity consumption at residential level and they
are not keen on sharing these load profiles. In stead, they
provide synthetic load profiles that aggregate the consumption
of a wide range of electricity consumers. Individual peaks and
information about the load factors, amongst others, are lost due
to the aggregation. Load profile generators are a solution to
the privacy issues and allow for Monte Carlo simulations.

Various strategies have been developed to model residen-
tial low voltage electricity demand. These attempts can be
categorized in two approaches: bottom-up and top-down. The
bottom-up approach has been implemented in various studies.
The top-down approach is much less encountered in research.
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Bottom-up approaches start from the behaviour of the
individuals in the households. Capasso et al. [9] couple the
probability of being at home with the probability of appliance
load and sum the resulting loads to get the household load.
Yao et al. [10] follow a similar approach, but put more effort in
the ‘being at home’-patterns. Widén et al. [11] define specific
activities, e.g. vacuum cleaning, and generate load profiles
based on the activities. Richardson et al. [12] work with
activity profiles. Stokes [13] uses the behaviour indirectly and
combines the load signature of an appliance with the yearly
and daily patterns of demand for an appliance. Palensky et al.
[14] work with on/off states and drain, store and flush events,
but mainly to reproduce synthetic load profiles.

The downsides of bottom-up approaches are the intensity of
modelling and the risk of missing appliances to model. How-
ever, bottom-up approaches allow for simulation of demand
side management: appliances can be shifted or curtailed.

McLoughlin et al. [15] present a top-down approach. By
using a homogeneous Markov chain, an attempt is made
to re-generate electricity load profiles of five households.
Autocorrelations are not reproduced because the behaviour of
the individuals in the household are not taken into account.

Aggregated load has already been successfully modelled
using top-down methods. Singh et al. [16] model distribution
system load and Valverde et al. [17] model load for load
flow analysis with Gaussian mixture models to capture the
probability density functions. However, autocorrelation found
in electricity demand of households was never incorporated.

Bottom-up approaches have in general good results because
of the incorporation of a behaviour model. Top-down ap-
proaches have a lot of potential because of the lower modelling
intensity: there is no need to model every appliance individu-
ally, which lowers the intensity of modelling significantly.

The detection of behaviour is in general done by pattern
analysis. Techniques have been developed to find similarities
within load profiles [18], [19] as between profiles [20]-[28],
within different domains such as clustering or classification
of profiles [20]-[25], forecasting [18], [26], selecting scenar-
ios for load-wind combinations [19] and selecting demand
response policies [28].

Bruckner et al. use hidden Markov models to capture
behaviour in households. Sensor values are modelled with
Markov models to extract semantic concepts. The goal is
to learn daily routines. [29] Wind power output now is
also correlated with previous measurements. Papaefthymiou
et al. created a Markov chain Monte Carlo method to create
synthetic series of wind power. [30] The probability density
functions and the autocorrelation was regenerated in their
approach.



This paper presents a model that is able to regenerate resi-
dential electrical load. The method is intended for larger sets
of data, where each item has autocorrelation. Similar items are
grouped together to cluster resembling behaviour. A Markov
model is created for each group to capture the behaviour.
Other Markov models are developed to add variation to the
behaviour. The variation is needed to make the regenerated
data more realistic.

II. APPROACH

The research presented in this paper uses the top-down
approach to generate load profiles. The model of the load
profile generator is built in six steps:

o At first the load profile of each residential customer
is transformed into a load curve, which represents the
electrical demand during an average day.

e Clustering is applied to the transformed dataset. The
cluster centres represent the artificial types of customers.

« For every cluster, a cumulative probability density func-
tion of the average fifteen minute power is calculated.

o The cumulative probability density function is made
discrete via states with each an equal probability.

« A second order non-homogeneous Markov chain for each
cluster is calculated to create a model that represents the
behaviour of a household.

o A non-homogeneous Markov decision process for each
weekday is put in place to spread the behaviour across a
week.

A large dataset of load profiles of residential customers is
the basis for modelling. Each load profile is a sequence of
measured data, with a resolution of fifteen minutes, over a
duration of a year. The data was provided, after the approval
of the privacy commission, by the Flemish Regulator for the
Electricity and Gas market'. The regulator keeps records of
the monitored consumption of over thousand households.

Load curves are an aggregated form of load profiles. They
are built by aggregating load profiles on a time basis, e.g.
the average day of the week. Aggregation removes peaks in
consumption, but keeps the underlying trend. Load curves
are hence able to capture the consumption patterns and, as a
consequence, the life patterns of a household. The life pattern
of most people is in general relatively constant.

A fuzzy clustering technique is applied to the load curves
to group together similar ones. A similar load curve implies
resembling behaviour. Households are part of multiple clusters,
depending on how likely the load curve belongs to the cluster.
The clustering results, i.e. the cluster centres, are load curves
that represent the cluster members. The load curves are also
called ‘typical consumption patterns’.

A distribution of the electrical power is calculated for
each household. The probability of belonging to a cluster
for a household is used to weight the distribution for that
particular cluster. The electrical power distribution of a cluster
is determined by calculating the normalised sum of those
weighted distributions. The cluster’s power distributions are
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parametrised by fitting a curve through them. The distributions
are split into ten equal parts. These parts are the states for the
Markov models. The interval edges of each part are the limits
of the states for the Markov models.

A ‘behaviour’ Markov chain and seven ‘variation on be-
haviour’ Markov decision processes are built for each cluster.
Autocorrelation in load profiles indicates that the power de-
mand of any of the preceding days is correlated with current
power demand. The behaviour Markov chain is constructed on
the data of Mondays and is used to keep the power demand
over the different days consistent. The preceding day is
hence always the preceding Monday. Variation on the general
behaviour for the different days of the week is generated with
a Markov decision process that takes the general behaviour
as input and gives specific day behaviour as output. Such a
Markov decision process is trained on the data of the specific
day and the corresponding previous Monday.

III. TYPICAL CONSUMPTION PATTERNS

Typical consumption patterns describe the way a group
of customers uses electricity. There are multiple ways to
aggregate customers in typical ones: family size, housing
type, etc. However, it is also possible to define customers
in an artificial way. By applying cluster analysis, similar
consumption patterns are grouped together. The centre of the
cluster represents the consumption pattern of all similar ones.

Amongst the different clustering techniques for load profiles
and load curves are k-means clustering [21]-[24], [26], fuzzy
c-means (FCM) clustering [21]-[23], hierarchical cluster-
ing [21], [23], modified follow the leader [21], self organising
maps (SOM) [21], [22], [25], [28] and Expectation Maximiza-
tion (EM) clustering [20].

Chicco et al. [21] compared k-means, FCM, hierarchical,
modified follow-the-leader and SOM clustering. The best
results were obtained by modified follow-the-leader and hi-
erarchical clustering, k-means and fuzzy c-means performed
slightly worse and SOM gave the worst results. Zhang et
al. [22] compared k-means, FCM and SOM and found that in
general, k-means performed slightly better than FCM which
performed better than SOM. Zhang et al. applied clustering to
load curves, Chicco et al. normalized the load curves before
clustering. Coke et al. [20] pointed out that mixture models are
better in smoothing out random effects and used a modified
Expectation Maximisation clustering to group electrical load
series. Clustering itself is done on the correlation structures
and trends in the load profiles.

A clustering technique is called soft clustering or fuzzy
clustering, if every customer belongs to more than one clus-
ter [31]. The likelihood of belonging to a cluster is then the
weight the customer has in that cluster. To scale up the data
for the Markov models, clustering techniques with weights are
preferred. The load curve clustering techniques with weights
are FCM, EM clustering and SOM. SOM was not considered,
because it had the worst performance of those three in other
work. EM clustering is, in contrast with FCM (which is a
centroid based technique), a density based technique. Density
based techniques are better at handling randomness in data.
Therefore, EM clustering is selected as clustering algorithm.



A. Data transformation

A clustering algorithm regards each measurement of a load
profile as a dimension. Given the duration of a profile (a year)
and the frequency of measuring (every fifteen minutes) this
results in 35040 dimensions. The more dimensions, the harder
it gets for a clustering algorithm to reject an item from a
cluster, which results in a higher computational cost [32]. An-
other problem is that the clustering algorithm could find more
clusters than there actually are by finding some similarities in
the less relevant dimensions.

Chicco et al. [33] introduced representative load patterns
(RLP) to cope with this problem. A representative load pattern
is a normalised load curve. The approach has a big disadvan-
tage: the magnitude of consumption is lost, only variations in
electricity consumption are considered. Zhang et al. [22] used
the same approach, but didn’t normalise the load curves and
named them typical load profiles (TLPs).

In the proposed method of this paper, the dimensionality
is lowered by using load curves without normalisation. Load
curves are an intuitive way of representing the electrical
demand of customers and hence there behaviour. The load
curves are constructed by using the average power every
fifteen minutes of the day, for every day of the week, for a
joint week every quarter, resulting in 2688 dimensions. Other
combinations of time dimensions have been tried to construct
load curves, but the results were less satisfying. The use of
power every hour, for example, gave similar results, but the
load curve is less smooth than in the fifteen minute case.

B. Clustering

The purpose of clustering is the formation of representatives
of a whole group. The cluster centres in EM clustering are
defined by the normal distribution over each dimension of the
members of the cluster. Tenfold cross validation ensures the
generalisation properties of the model.

The EM clustering algorithm [34] requires knowledge about
the number of clusters to group the data into. To find the num-
ber of clusters, the algorithm initiates the k-means clustering
algorithm for different values of k. k-means clustering divides
the instances, i.e. the training examples, in k clusters by trying
to reduce the sum of the square distances between the instance
and the closest cluster centre. The value of k with the lowest
overall square error is picked as the amount of clusters for
EM clustering.

After initialisation, the EM clustering algorithm iterates
between the expectation and the maximization steps. The
iteration stops when the difference over the overall log-
likelihoods, i.e. the sum of the log-likelihoods of all instances,
of successive iterations is lower than a predefined threshold.

In the expectation step, the normal probability density value
(pdf) of an instance (k) with corresponding load curve vector
(x1) in each dimension (d) for each cluster (¢) is calculated
as shown in Equation 1. The normal distribution requires the
mean (u) and the standard deviation (o) of the dimension
of the cluster to find the probability density value. To limit
the amount of multiplications inside the algorithm, the log

probability density
Equation 2.

(log pdf) is calculated, as presented in
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In the maximization step, the joint log probability density
value of an instance for a cluster (log jpdfy, .) is calculated.
The value is the sum of the log probability density values over
each dimension divided by the number of dimensions (n).
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The EM clustering algorithm iterates between determining
the weights and recalculating the cluster centres until the
weights are stabilised, i.e. the difference in the sum of all
log joint probability values between the current step and the
previous step is below a threshold. Once the algorithm finishes,
the mean and the standard deviation of each dimension of each
cluster is known.

C. Results

All profiles of the data-set have been converted into load
curves. EM clustering with tenfold cross validation is applied
to the load curves. The algorithm found ten clusters in the
load curve dataset. The clusters and their probability can be
found in Table I. Two of them have a very low probability
and are considered outliers. However, the focus of load profile
generation is on the clusters with a high probability. An
example of the load curve of a cluster centre for week and
weekend of the first quarter of the year (ql) is shown in
Figure 1.



TABLE 1
CLUSTERS WITH THEIR PROBABILITY

cluster | % of customers | outlier | focus

1 27.81 v
2 25.90 v
3 15.41 v
4 14.09 v
5 7.70

6 3.23

7 2.93

8 2.27

9 0.51 v

10 0.15 v
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Fig. 1. Plot of the centre of cluster 2 for week and weekend of the first
quarter.

IV. CREATING CUSTOMER MODELS

The electricity demand of a customer can be derived from
historical information. An autocorrelation plot shows in-signal
cross correlations. The signal for the autocorrelation plot in
Figure 2 is from a randomly picked load profile. The plot
indicates that the most useful information for the prediction of
electricity demand is the demand of the last fifteen minutes and
the demand of any day of the preceding week. The correlation
between successive measurement points in the given load
profile is 0.780. Peaks in the autocorrelation plot are noticeable
when points are one day apart, resulting in a autocorrelation
for the selected load profile of 0.167 for a distance of one day
between two points. The behaviour of one day is similar to
the behaviour on other days, i.e. the behaviour during a week
can be modelled based on the behaviour of one day.

Behaviour and autocorrelations have been captured suc-
cessfully with Markov models [29], [30] and are hence the
modelling choice. A Markov model is a mathematical system
defined by a set of states. States are interconnected with
transitions and each transition has a certain probability which
doesn’t depend on the past. The event that causes a transition
is, in this case, a new time step.

A. States

The electricity demand in load profiles is discrete in the
time domain but continuous in power. The power has to be
discrete to create states. Each state represents an interval in
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Fig. 2. Load profile autocorrelation

power. For an optimal use of the Markov models, each state
should in general be equally probable.

The discrete states for the Markov models are created by
first defining the power distribution for each cluster. Each load
curve belongs to multiple clusters. The weight with which a
load curve belongs to a cluster is calculated using Equation 4.

Defining the power probability distribution of a group of
customers is done by fitting a curve through the histogram
of the power distribution. The most common distribution over
power or total consumption is Weibull [35], [36]. Equation 8
and Equation 7 show respectively the probability and the
cumulative probability density functions of the Weibull dis-
tribution. % is the shape parameter, )\ is the scale parameter
and z is the random variable (in this case average power) in
both equations.

The more observations available to create the histogram, the
better the power distribution will be estimated. A way to scale
the quality of the histograms up is by using fuzzy ones [37].
The softening of the histograms is done by using the cluster
weight of an instance in order to build up the power histogram
of that cluster. A customer with a large weight in a cluster,
will have a large impact on the histogram of that cluster, while
a customer with a very small weight will still have a small
influence on the histogram.
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Figure 3(a) represents the cumulative probability fit ‘single
fit" (Equation 7) and the histogram of the ‘data’ with a bin
width of 0.01 kW. As shown in Figure 3(a), the Weibull curve
does not fit the data perfectly, which is confirmed by the plot of
the probability density fit (Equation 8) in Figure 3(b). The fit
got improved by using a joining of two Weibull curve fits. Each
of the two curve fits are specialized in one part of the data. Fit
1 targets the first 65 % of the data, while fit 2 targets the tail
which contains the remaining 35 % of the data. Both are fitted
on the cumulative distribution. In Figure 3(b), both fits are
shown as probability density functions by using the resulting A
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and k values of the cumulative fits, i.e. the parameters found by
fitting to Equation 7 are used to plot according to Equation 8.
The joint fit in Figure 3(b) is the result of taking the first fit
for the first 65 % of the data and the rest for the remaining
values and normalizing the data so that the sum of all values
equals one.

Table II shows the comparison of the single and the joint fit
of the density functions for cluster 8. Because the first value
of the single fit is infinity, all values are calculated from the
second value (0.01 kW); the last data point is at 22 kW. The
average power in the data set is 0.45 kW. The average power
in the joint fit is closer to the average power of the data than
the single fit. The difference in median compared to the data
is almost the same for the single and the joint fit. The median
of the joint fit is higher than the median in the data, while the
single fit has a smaller median. The root mean square error
(RMSE) is found to be much smaller for the joint fit case,
compared to the single fit.

States of a Markov model of a cluster are chosen to have
the same probability. For the Markov models in this paper, 10
states are considered. The boundaries for each state are set at
the power of a multiple of 10% of the cumulative probability

TABLE I
EVALUATION OF SINGLE AND JOINT FIT FOR CLUSTER 8

| data single fit  joint fit
average | 045 kW 041 kW  0.44 kW
median | 0.26 kW 022 kW  0.29 kW
RMSE 0 0.0021 0.00086

of the fit. Given the probability density function, this means a
lot of detail for the frequently occurring low powers and lesser
detailed high powers which aren’t frequent.

Markov models consist of transition matrices. The size of
the matrices scales with the order of the Markov models. The
behaviour is modelled with second order chains, the detail is
captured with decision processes. In both cases, this results in
a transition matrix of S, where S represents the number of
states. The more states, the larger and the sparser the matrices
become. Moreover, a higher number of states means less data
to calculate the probability of each transition between states
and more risk of over-fitting the data. On the other hand,
few states results in lower detail. The number of transitions is
chosen as a trade-off between over-fitting and having enough
detail.

B. Transitions

The probability of a certain fifteen minute average power
varies during a day. In cluster 2 for example, the average
fifteen minute power at 12h00 is more likely to be higher than
at 04h00, as shown in Figure 1. This means that the fit of the
cumulative probability cannot be used to determine the state
to start at. The probability of each state at the start needs to
be calculated separately, again taking into account the cluster
weight of that instance.

The transition probabilities need to change at each time step
because of the variation in probability of the power between
different time steps. The change in transition probabilities
make the Markov models non-homogeneous ones. For the
models themselves, best results were obtained by using a
second order Markov chain and Markov decision processes.
A second order Markov chain involves using data of current
and previous step to predict the next step. Markov decision
processes take the current state and a given state to predict
the next step.

For each time step, a transition matrix is constructed. A
transition matrix contains the probabilities to go from one state
to another state at the next time step. The main difference of
the Markov models used in this paper and regular Markov
models is the use of the cluster weights of the instances to
calculate the probabilities. An instance with a large cluster
weight for the given cluster, will have a larger impact on the
transition matrices for that cluster. It also ensures that instances
with a low cluster weight are still able to impact transitions
in contrast to using regular frequency counting.

The general behaviour in a cluster is determined by the
behaviour on Mondays. As mentioned before, consumption is
made discrete in 10 states, each representing 10 % of the data
of that cluster. Let be X (¢) a stochastic process with 96 time
steps with one time step ¢ for each fifteen minutes of a day.



The behaviour is modelled by (Pr?), presented in Equation 9,
which represents the probability of going to state ¢ at current
time step ¢ from state j at previous time step (¢ — 1) and state
k at the state before that (¢t — 2). Each time step has its own
transition matrix P(¢,t—1,¢— 2). Each transition matrix has
a 10x10x10 dimension, given that there are 10 states. Each
cluster has its own behaviour model.

The models of the different days of the week are built in
the same way as the behaviour model and are called detailed
models. The purpose of the detailed models is to include day
specific information in the sequence of states, e.g. the time of
electricity demand is different during weekdays compared to
weekends. The state at current time step (X ?(t) = i) depends
on the state at the same time step (X°(¢) = j) of the behaviour
model and previous step (X ¢(¢t—1)) in the current sequence, as
expressed by Pr? in Equation 10. Again, each time step has its
own transition matrix P%(¢,¢,¢ — 1) of dimension 10x10x10.
Each day of the week has its own range of transition matrices.
Also, each cluster has its own range of detailed models.

Pro{X(t) =il Xb(t —1) = 5, X"(t — 2) = k}
PPt t—1,t—2) ©9)

Pra{X(t) = i|X°(t) :Zj, Xt —-1)=k} =
Pttt —1)

3

(10)

V. PROFILE GENERATION

The basis for a generated load profile of a cluster is
constructed by a random walk through a behaviour chain and
by using that sequence to random walk the detailed model.
The result is a sequence of a week, or the sequence of multiple
weeks if the detailed models are walked multiple times. The
state are made continuous again by taking a random sample
in the interval of the state and passing it to the inverse of the
joint distribution fit. The outcome of the inverse distribution is
the actual power in that state. When applied to the sequence of
states, the load profile is generated. The process is described
more formally in following 4 steps:

o Select a cluster to generate a profile from.
o Create the general behaviour of the customer.

— Randomly select two start states (X°(to — 1) and
X"(t0)) according to the probability of both states.

— Random-walk the behaviour Markov chain until all
behaviour states (X°(t)) are generated.

o Create the behaviour of the customer on different days.

— Randomly select a start state for the day (X%(t)),
according to the probability of the state.

— Use the start state of the day (X(to)) and the start
state of the model (X°(¢y)) to create the next state
(X%(t1)).

— Random-walk the detail Markov model of that day
until the detailed behaviour of the customer during
that day is generated.

— Repeat for all days of the week and repeat multiple
times if more than one week is needed.

o Convert the states into power.

dlata R
generated

Density

Average power [kW]

Fig. 4. Power distribution of generated profiles of cluster 4.

— Randomly sample a value from the power distribu-
tion within the limits of the state.

— Repeat for each state until the load profile is gener-
ated.

To make a representative set of generated profiles, the
amount of profiles for each cluster needs to be in proportion to
the probability being part of the cluster, as defined in Table I.

VI. VALIDATION

The evaluation of the presented method is done by com-
paring the measured profiles with the generated profiles. Four
aspects of the profile are checked:

o The average power of the cluster centre should be the
same as the average power of all generated profiles of
that centre.

o The power distribution of a all measured and generated
profiles of a cluster should be the same.

o The shape of the cluster centre from the EM-clustering
algorithm and the aggregation (average) of the generated
profiles of that cluster should be the same.

e Load profiles with a similar autocorrelation should be
found in the measured and the generated profiles.

The data of only very few customers are used to build up
the Markov models for the outlier clusters (clusters 9 and 10).
The models for these clusters are bad, given the limited amount
of data. The lower the probability of a cluster, the less data
is available to train the Markov models, hence the worse the
Markov model of that cluster will perform.

The power distribution of the real data and the generated
profiles of cluster 4 are shown in Figure 4. The difference in
the power distribution is marginal in this case, but Table III
shows that the average power is in general a bit lower in the
case of the generated profiles.

An overview of the power distributions is presented in
Figure 5 by depicting a box-plot of the measured (left) and the
generated (right) data for all clusters. The minimum value in
the plot represents the fifth percentile of the data, the ninety-
fifth percentile is the maximum value. The box itself is bound
to the lower quartile (first 25 % of the data) and the higher
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Fig. 5. Box-plots of clusters 1 up to 5 (a) and clusters 6 up to 10 (b)

quartile (75 % of the data). The median is indicated by a thick
line inside the box.

The box-plot confirms the power distribution comparison of
cluster 4 in Figure 6: the distributions clearly resemble each
other. The power distribution of measured and generated data
of clusters with focus on (i.e. clusters 1, 2, 3 and 4, see Table I)
are very similar. For cluster 5 and 7, median, higher quartile
and ninety-fith percentile are lower in the generated data case
in comparison to the measured data. Cluster 6 is a special case
because power is 86.7 % of the time zero. The generated data
in cluster 6 is 95 % of the time zero, which is reflected in the
low maximum value in the box-plot. The power distribution
of the generated data of cluster 8 is bad. For clusters 9 and
10, the distributions do not resemble the original data.

The average power over a year gives an idea about the
total electricity consumption during that year. It can be seen
as a proxy of the total electricity consumption. The average
power in watt of the cluster centres and the generated data is
shown in Table III. The average power of the clusters with a
high probability, i.e. the clusters with focus on as indicated in
Table I, are a bit lower but close to the real average power. This
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Fig. 6. Cluster 1 load curve for the actual and the generated data (from the
joint fit model) for an average week in the second quarter.
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Fig. 7. 13 week autocorrelation of a measured and a similar generated load
profile.

is a very good result: given the skewness of the probability
distribution, it is hard to get the average correct without over-
fitting the data.

However, there are some problems. Cluster 5 represents
7.7 % of the data and the average power is only half of what
it should be. Another problem is the average power of cluster
7 and 8. Combined, they represent 5.2 % of the data. The
average powers of both are only a third of the average power
they should be. The results are, unsurprisingly, bad for the
outlier clusters. For cluster 10, the generation of load profiles
even failed. Since the outlier clusters only represent 0.66 %
of the data jointly, this is not really a problem.

Figure 6 shows, for cluster 1, the average power during
the week plotted against the time of the day. The joint power
distribution fit has about the same shape as the data. A large
group of generated load profiles of a cluster has a similar load
curve as the given cluster.

The autocorrelation of a 13 week (3 months) load profile
can be found in Figure 7. A generated profile that looks like
the selected load profile is chosen. The autocorrelation is very
similar to the autocorrelation of the real profile.



TABLE III

AVERAGE POWER [W] OF THE CLUSTER CENTRES AND DATA GENERATED FORM THE MARKOV CHAIN

cluster Ql Q2 Q3 Qs
data generated data generated data generated data generated

1 534 434 444 374 433 372 538 457
2 314 289 265 253 257 253 317 303
3 848 583 684 491 647 478 848 608
4 101 109 82 100 81 104 104 121
5 1550 814 1204 639 1111 635 1440 842
6 1332 1421 389 483 122 345 987 1436
7 1546 494 648 376 412 376 1386 499
8 3781 1177 2965 809 2675 782 3523 1240
) (7871) (1845) (8120) (1299) (7549) (1152) (8430) (1711)

(10) (20748) (435) (21538) (286) (22315) (379) (21964) (220)

The overall electricity demand will be underestimated by
using the generated profiles instead of the real data. Also, the
use of the generated data in detailed simulations will have
an impact. When the same cluster probabilities of the data
are chosen, 86.44 % of the generated profiles will jointly
have a slightly lower average power and a power distribution
that fits the original data well. 12.9 % will have an joint
average power that is only half or a third of what it should be.
0.66 % will have a joint average power that is a fifth or lower.
The problems are mainly situated in less frequently occurring
situations, like very high electricity demand at residential
level. It is possible to test standard neighbourhoods, but more
extreme situations will be underestimated.

VII. CONCLUSIONS

Detailed information about the electricity demand of resi-
dential customers is needed for the development of smart grid
integration strategies. Finding voltage problems at distribution
level through simulations requires full customer load profiles
and can not be based on aggregated data. Load profiles from
the residential sector are hard to get due to privacy concerns.
The proposed method bypasses the problem of the availability
of data provided by electrical companies by transforming a
large dataset of residential load profiles into a model that
is able to create a set of synthetic non-aggregated profiles.
The model is based on statistical information, which ensures
that the original customer load profiles cannot be traced back
using the synthetic profiles. With this method, companies that
monitor electricity consumption have a way to provide data,
just as they do with aggregated data, without having to worry
about privacy issues. An extra advantage of the method is the
possibility to use the models for Monte Carlo simulations.

Current best practice load profile generation techniques
work bottom-up: apparatuses and home activity are modelled
and used to create load profiles. The disadvantage of these
techniques is the intensity of modelling. A top-down technique
has been proposed before, but the results were poor because
behaviour was not incorporated into the method. The method
in this paper copes with this problem by clustering and
modelling similar consumption behaviour.

Behaviour is expressed in load curves. Grouping of similar
behaviour is done with a fuzzy clustering algorithm. In this
way, each customer has a weight in every cluster. The cluster

weights are used to construct the probability density functions
of the electrical power and to build the Markov models that

capture the behaviour and the variation of the behaviour of
customers.

A load profile of a cluster is generated by randomly walking
the Markov models of the cluster. The found states are
translated into electrical power with the use of the inverse
probability density function.

The load profile generation works properly for simulations
of standard neighbourhoods. 86.44 % of the data has a power
distribution that fits the data well. More extreme cases, like
very high electricity demand (e.g. a small enterprise in a resi-
dential area), are underestimated in the load profile generation.
12.9 % of the generated data has an average power that is half
or a third of the expected average power. Only 0.66 % of the
data has an average power that is a fifth or lower than what it
should be.
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