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Decentralized Planning of Energy Demand for the
Management of Robustness and Discomfort

Evangelos Pournaras, Matteo Vasirani, Robert E. Kooij and Karl Aberer

Abstract—The robustness of Smart Grids is challenged by un-
predictable power peaks or temporal demand oscillations that can
cause black-outs and increase supply costs. Planning of demand
can mitigate these effects and increase robustness. However, the
impact on consumers in regards to the discomfort they experience
as a result of improving robustness is usually neglected. This
paper introduces a decentralized agent-based approach that
quantifies and manages the trade-off between robustness and
discomfort under demand planning. Eight fitness functions are
experimentally evaluated using real data from two operational
Smart Grids. These fitness functions can provide different quality
of service levels for demand-side energy self-management that
capture both robustness and discomfort criteria.

Index Terms—robustness, discomfort, planning, demand, tree
topology, Smart Grid

I. INTRODUCTION

The main operational objective of Smart Grids is to match
energy supply and demand. The extent to which supply can
meet demand or demand can be adjusted to certain supply
is an indication of network and system robustness. Demand-
side energy management plays a crucial role in robustness as
micro-generation via distributed renewable energy resources
and technologies such as electrical vehicles make matching
supply and demand challenging [1], [2]. Yet, in demand-side
energy management, robustness by itself cannot capture the
dynamics of Smart Grids as its impact on human factor is
often neglected or under-emphasized [3], [2], [4], [5].

This paper claims that improving robustness via demand-
side energy management causes a level of discomfort in
consumers. The discomfort cost that consumers undertake in
order to experience a more robust Smart Grid is referred to as
quality of service under demand-side energy self-management.
The goal of this paper is to quantitatively evaluate trade-offs
between robustness and discomfort. These trade-offs can be
managed by different fitness functions introduced as modu-
lar part of a decentralized demand-side energy management
system: EPOS, the Energy Plan Overlay Self-stabilization
system [6], [7]. The performance of fitness functions is ex-
perimentally evaluated with real data from two operational
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Smart Grids. Results show that quality of service, in regards
to robustness and discomfort, is manageable.

This paper is outlined as follows: Section II illustrates the
main concepts of decentralized demand planning discussed
in this paper. Section III illustrates the plan generation pro-
cess. Section IV outlines the coordination mechanism used
for decentralized demand planning. Section V shows how
robustness and discomfort are computed. It also illustrates
how the data of two Smart Grid projects are used in the
experimental evaluation that follows in Section VI. Finally,
Section VII concludes this paper and outlines future work.

II. ROBUSTNESS VS DISCOMFORT IN DEMAND PLANNING

Demand planning of a consumption source is defined in this
paper as the computation of a time series with the amount of
energy intended for consumption by this source in a future
period of time T'. Consumption sources in demand-side energy
management can be defined at different aggregation levels.
For example, the household device, the wall outlet, the meter
of a house or even the feeder of a neighborhood are all
different aggregation levels at which demand can be planned.
For simplicity, this paper studies demand-planning at the level
of household meters, yet, the approach illustrated in this paper
can be extended to other aggregation levels as well.

Planning of demand can be applied as a proactive approach
for creating a more homogeneous demand curve via (i) load-
shifting and/or (ii) load-adjustment. The former action shifts
load from high peak times to low peak times without a
significant influence in the average load over time [3]. The
latter action decreases (or increases) average load via, for
example, incentives mechanisms [4]. Both types of action can
be applied to improve robustness by preventing disruptions,
such as black-out events, or minimize their impact in case they
occur. They can be also used for a more efficient utilization
of energy resources, e.g., renewables [8], [9].

On the other hand, discomfort refers to the impact that con-
sumers experience on their lifestyle due to a higher robustness
via load-shifting and load-adjustment performed by demand-
side energy management systems. This paper distinguishes two
types of discomfort that consumers may experience: (i) shifting
discomfort and (ii) adjustment discomfort. Shifting discomfort
is related to the inconvenience experienced by load-shifting.
For example, if planned demand suggests the availability of
warm water for showering at later or earlier time than the
intended one, this is an indication of discomfort. Adjustment
discomfort is related to the inconvenience experienced by load-
adjustment. For example, if planned demand suggests lower
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demand than the intended one for heating during winter, this is
an indication of discomfort. However, if the planned demand is
higher than the intended one, this is an indication of negative
discomfort, assumed to be perceived as comfort. Section V
shows how discomfort can be computed in the context of two
operational Smart Grid projects.

Demand-side energy management is often performed in
a centralized fashion with utilities companies having a sig-
nificant level of control in demand planning. This approach
raises several issues related to scalability and privacy. Costly
investments in computing resources are required by utility
companies in order to store and process a large amount of
streaming data originated by consumers. Moreover, detailed
information about household demand can be used to extract
information about the lifestyle of consumers resulting in
violation of their privacy. This paper studies an alternative de-
centralized approach for demand-side self-management: soft-
ware agents represent the demand preferences of consumers,
control their demand by generating a set of possible plans
P, = {p},....p'}, V agent 4, and choose the selected plan
s; € P; for execution according to criteria defined by a fitness
function. Possible plans are actually alternative demand time
series for the same future period of time.

Agents can generate two types of possible plans in regards
to the discomfort that these plans cause to consumers when
executed: (i) equivalent and (ii) non-equivalent possible plans.

Equivalent possible plans are assumed to have an insignif-
icant and equal impact on the discomfort of consumers. For
example, possible plans with an equal level of average demand
(over the planning time) may be equivalent. In contrast to light-
ing sources or television, generating equivalent possible plans
is feasible for thermostatically controlled appliances whose
operation can be planned without significant disturbance in
the lifestyle of consumers [6].

However, possible plans can be non-equivalent as they may
cause different levels of discomfort, e.g., possible plans with
varied level of average demand (over the planning time). This
paper focuses on planning of demand based on non-equivalent
possible plans. By adopting non-equivalent possible plans, two
opposing objectives need to be met: maximizing robustness
of Smart Grids while minimizing discomfort that consumers
experience. If consumers need to decrease their demand as a
response to a power peak that threatens the stability of Smart
Grids, discomfort is unavoidably increased.

ITII. LOCAL PLAN GENERATION

Figure 1 summarizes a high-level overview of the demand-
side energy self-management approach illustrated in this paper.
Possible plans can be locally generated by clustering historical
demand data. Clustering groups time series demand data
sampled every certain time period, e.g., every day, for a total
period of time, e.g., a week or a month. Grouping is based on
the computation of a proximity metric such as the Euclidean
or the Manhattan distance [10]. The number of clusters is
usually part of the clustering parameterization and represents
the number of possible plans that agents generate.

The total period of time from which historic data are used
as input in clustering can be defined by a sliding clustering
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Fig. 1. An overview of the demand-side energy self-management approach
illustrated in this paper.

window. For example, the CAISO demand forecasting method-
ology predicts demand based on the energy consumption of
the past 10 days [11]. The same principle can be adopted for
the generation of possible plans in a following day.

Each possible plan is devised by computing the represen-
tative demand time series of each cluster. More specifically,
each possible plan is the medoid of a cluster and is computed
by the median of the historical time series that belongs to this
cluster. In clustering, the centroid, computed by the mean,
is often employed as the center of clusters. However, this
paper considers the centroid as not appropriate for demand
planning. The centroid is a computed time series that is not
necessarily included in the input historical demand data. The
historic demand can be used to reason that the centroid is
actually a non-possible plan as consumers have not previously
devised such a demand configuration via their consumption
devices.

A critical aspect in the clustering process is the number of
clusters [ that corresponds to the number of possible plans.
Previous experimental work shows that a higher number of
possible plans in demand-side energy management results in
improved robustness for Smart Grids [6], [7]. A higher number
of possible plans means that agents have a higher degree of
freedom to adjust demand according to system objectives.
However, a higher number of possible plans increases com-
putational cost' and causes a lower cluster size on average.
A cluster with a lower size results in a devised possible plan
that is less representative of past energy consumption. This
effect is interpreted as providing a higher level of authority to
agents to autonomously reason about the level of household
demand and is referred to in this paper as the intervention
level of home automation technologies for demand planning.
The intervention level I} of a possible plan j generated by
agent ¢ is defined as follows:

IThe increased computational cost concerns the generation process but also
the optimization performed by EPOS as illustrated in Section IV.
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=1- 1071 (1)
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, where the relative cluster size is computed by the size of
the cluster CY, j € [1,1] and the sum 2221 CY of the total
number of historic time series sampled for clustering.

IV. COORDINATED PLAN SELECTIONS

Agents select and execute one of their possible plans to
meet different system objectives of Smart Grids. Two types of
agent selections are distinguished in this paper: (i) local and
(ii) coordinated selections. A local selection of an agent is
independent of other agent selections. For example, selecting
the plan with the minimum average energy consumption is
a local selection that each agent can perform individually.
However, for more complex system objectives related to load-
shifting, agent selections are interdependent and coordination
between agents is required.

Centralized coordination is not a scalable approach as the
complexity for computing the optimum combination of agent
selections is exponential. More specifically, in a network of
n agents with [ number of possible plans per agent, the
complexity of a brute-force operation is O(I™). A brute-force
operation computes the sum of all combinations between
the possible plans of agents. The sum of each combination
computed by an agent 7 is referred to as the combinational
plan c]. This paper focuses on large-scale decentralized co-
ordination of agent selections using EPOS, the Energy Plan
Overlay Self-stabilization system [6], [7]. In EPOS, agents
are organizationally structured in a tree topology through
which they interact and coordinate their selections. EPOS
decreases computational complexity to O(I¢), where c is the
number of children per agent for a c-ary tree. Fault tolerance
can be provided with self-organization mechanisms such as
AETOS [12] that builds and maintains reconfigurable tree
topologies in dynamic distributed environments.

Coordination in EPOS is performed in bottom-up consec-
utive coordination steps between children and their parents.
During a coordination step, the children of a tree level provide
to their parents their possible plans together with the summa-
tion of all selection performed in the branch underneath. For
each agent ¢ with c children, this summation is the aggregate
plan a; = 330 a, = >, g, Sh, V agent h belonging to
the branch B; underneath agent 2. The possible and aggregate
plans are input in a fitness function. The output of the fitness
function indicates the selected plan of each child. The process
of consecutive coordination steps repeats up to the root that
broadcasts to each agent i the global plan g = Z?:l S;
of the system that is the summation of all agent selections.
The broadcast completes the coordination phase after which
each selected plan s; can be executed. More details about the
algorithm execution and the agent interactions are illustrated
in earlier work [6], [7].

This paper studies and evaluates the fitness functions of
Table I. Note that the fitness functions based on local selections
receive as input local information such as each possible plan
p? and intervention level I]. MAX-DEMAND and MIN-DEMAND

are the actual upper and lower bound of demand adjustment.
They also represent the maximum adjustment comfort and
discomfort that consumers can experience respectively as
illustrated in Section V. The fitness functions for coordinated
selections receive for input the aggregate plan a; and each
combinational plan ¢]. The homogeneity of the planned de-
mand over time is captured by these functions with various
metrics such as the standard deviation (MIN-DEVIATIONS), the
relative standard deviation (MIN-RELATIVE-DEVIATIONS), the
load factor [13] (Max-LoAD-FACTOR) and the entropy [5]
(MAX-ENTROPY).

TABLE I
FITNESS FUNCTIONS FOR DEMAND-SIDE ENERGY MANAGEMENT.
Fitness Function Definition
i
RANDOM: r_anld(l, o)
J=
[ ;
Local MIN-DEMAND: arg min{avg(p?)}
j=1
7 -
Saeny MAX-DEMAND: ar%iliax{avg(pg )}
[
MIN-INTERVENTIONS: arg min(7;)
F=1
i° ;
MIN-DEVIATIONS: argmin{o(a; + ¢J)}
j=1
. a0 o(a; +¢l)
Coordinated | MIN-RELATIVE-DEVIATIONS: argmin { ——
j=1 avg(a; +c7)
. c avg(a; + ¢’
Selections MAX-LOAD-FACTOR: | argmax M
=1 max(a; + c’)
T
i
MAX-ENTROPY : arg max(— Z ul log ub)
J=1 t=1
P al4ct

u; = m is the demand utilization at planning time ¢.

For the purpose of this paper, the functionality of EPOS is
significantly extended. More specifically, the contributions of
this paper to EPOS are the following: (i) Scope extension from
the aggregation level of single devices to the aggregation level
of household. (ii) Scope extension from equivalent to non-
equivalent possible plans. (iii) Introduction of several other
fitness functions besides MIN-DEVIATIONS and REVERSING-
DEVIATIONS [6], [7]. (iv) Evaluation of EPOS using real data
from operational Smart Grids instead of synthetic data.

V. VALIDATION IN SMART GRID PROJECTS

The actual robustness and discomfort that consumers expe-
rience via demand planning is validated a posteriori using real
consumption data from two operational Smart Grid projects,
the Electricity Customer Behavior Trial’ in Ireland and the
Olympic Peninsula Smart Grid Demonstration® in the USA.
The data of the projects are referred to in this paper as
CoNTROL-DATA d and are used for (i) generating possible
plans from historic CONTROL-DATA and (ii) comparing the
future CONTROL-DATA that represent the actual demand with
the global plan g.

The possible plans of agents are generated by clustering
time series consumption data of the past 10 days that is the
length of the sliding clustering window. The number of plans

Zhttp://www.ucd.ie/issda/data/commissionforenergyregulationcer/ (last ac-
cessed September 2013)
3https://svn.pnl.gov/olypen/
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is selected based on two different criteria: (i) By assigning a
default number of plans to each agent and (ii) by computing
the number of plans based on project data. In the former
case, the minimum number of [ = 2 is selected. This number
minimizes the intervention level and the computational cost
in each agent. In the latter case, the number of possible plans
is computed by letting agents reason about the preferences of
consumers based on selections they made in the context of
each project, e.g., survey answers and temperature setpoints.

A robustness metric is introduced in this paper to compare
the demand stabilization achieved with each fitness function.
Robustness can be quantified by the distance of each demand
value in the computed global plan g from its average avg(g)
that represents the optimum ‘flat” demand curve. This distance
can be compared with the respective distance of CONTROL-
Data d. The robustness R between the two demand curves is
computed by the mean square error as follows:

T
% Z(gt _ dAt)Q if gz‘ > dt
R= 7 (2)
%Zi(gt dt)Z if gt < th
t=1
, Where:
t . dt _ d
gt — 1 o |g a’Vg(g)| and dt — 1 o ‘ a‘vg( )| (3)
avg(g) avg(d)

Shifting discomfort is computed by the root mean square
error between the selected plans and CONTROL-DATA for each
agent 4:

“4)

i=1

Note that the weight w} of each agent i quantifies the
interest of each consumer for load-shifting. A high value of
w; shows that a consumer is not so self-interested in load-
shifting or the impact of shifting discomfort is perceived more
‘negative’ compared to consumer with a low w{. The value of
this weight is selected in the context of the Smart Grid projects
illustrated in the rest of this section.

Adjustment discomfort is computed by summing positive
and negative errors between the selected plans and CONTROL-
Data for each agent i:

D, =

%

n T
a t t
wiy (st —db) ©)
=1 t=1
The weight w? of each agent ¢ is related with how ‘negative’
different consumers perceive the adjustment discomfort due to
demand reduction. Similarly to w;, values are selected within

the context of the Smart Grid projects.

A. The Electricity Customer Behavior Trial project

This project is a cost-benefit analysis that assesses the
impact on electricity consumption of consumers in Ireland.

The project ran in the period 2009-2010 with 5000 residential
and business consumers participating. The data are cleaned
from missing values and filtered out to contain the energy
consumption time series of 782 residential consumers that
belong to the control group*.

Agents reason about the number of possible plans based on
the following two questions”:

Question 1. My household may decide to make minor changes
to the way we use electricity.

Question 2. My household may decide to make major changes
to the way we use electricity.

The answer q, in each of the above question ¢ belongs in
the range [1, 5], where 1 stands for a strong agreement and 5
stands for a strong disagreement. Algorithm 1 of Appendix A
illustrates how agents reason about the number of possible
plans they generate®. Note that the number of plans computed
by this algorithm is referred to in this paper as [ = f1(z = ).
The seed z is used as a scaling factor in the plan generation
process for the different experiments performed.

The weights of robustness and discomfort are computed by
the answers of consumers to the following two questions:

Question 3. I am interested in changing the way I use
electricity if it helps environment’.

Question 4. [t is too inconvenient to reduce our usage of
electricity®.

Based on the range [1,5] of answers, where 1 stands for
a strong agreement and 5 stands for a strong disagreement,
the weights w; and w? for each agent ¢ are computed by
normalizing the answers in the range [0, 1]

B. The Olympic Peninsula Smart Grid Demonstration project

This project assesses the adjustment of individual energy
use based on price signal exchanged within a two-way bidding
market [14]. The project concerns the period March 2006 to
March 2007 with 112 household participants regionally dis-
tributed in the Olympic Peninsula of the USA. The data subset
from November 2006 to March 2007 is selected during which
the fewest number of missing values is observed. The demand
of each consumer is captured every 5 minutes. Demand data
are aligned to the sampling rate of the Electricity Customer
Behavior Trial project by aggregating 12 consecutive demand
bids of each hour to a single hourly demand bid.

4These consumers are not affected by the dynamic pricing schemes applied
for the purpose of the project.

SThe question block ‘55122’ of the pre-trial residential survey contains
these two questions.

®Note that from the total number of 782 residential consumers, 132 of
these do not participate in the pre-trial survey. For 116 of these consumers,
the question block ‘54132’ of the post-trial survey is used for computing
Algorithm 1. This question block is the respective post-trial question block
55122 of the pre-trial survey (My household made minor/major changes to
the way we use electricity.). For the final 16 residential consumers that do
not participate in neither of the pre-trial nor post-trial surveys, the number of
possible plans is computed by the median number of possible plans in the the
rest of the 766 consumers.

"This is question ‘4331” in the residential pre-trial survey.

8This is question ‘4352’ in the residential pre-trial survey.
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Demand data are filtered out to contain 29 consumers that (i)
either belong to the CONTROL group or have a FIXED type of
contract and (ii) have lower than 20% of their values missing.
Two extra consumers are excluded as their demand time series
contains a large proportion of zero values. Therefore the final
number of consumers used is 27. The missing values in the
final consumers are interpolated by computing the average
demand values in the past and future 10 days.

In the context of this project, the demand adjustment is
achieved by dynamically modifying the temperature setpoints
of various household devices. Motivated by this approach, the
number of possible plans | = fy(z = x) is defined by a
function that captures the selected temperature setpoints of
consumers during project runtime. More specifically, the range
of minimum and maximum temperature setpoints selected is
normalized to the range [ € [z, z + 4] for a given seed 2.

VI. EXPERIMENTAL EVALUATION

This section quantitatively evaluates the trade-off between
robustness and discomfort under different fitness functions.
EPOS is re-engineered as a distributed application of Pro-
topeer [15] that is a prototyping toolkit for large-scale dis-
tributed systems. Each coordination phase of EPOS runs for
10 different 3-ary tree topologies. Each topology is built by the
AETOS overlay service [12]. AETOS self-organizes agents in
different random positions for each tree topology to capture
the effect of topological positioning. The effect of different
types of tree topologies is evaluated in earlier work [16], [7].

Each coordination phase of EPOS concerns a random day
of the week and simulates one demand-response event. An
implementation of the hierarchical clustering algorithm [17]
in Weka® is used for generating the possible plans of agents.

Two seed values are evaluated for each project'?: z = 2, z =
3 for the Electricity Customer Behavior Trial project and z =
1, z = 2 for the Olympic Peninsula Smart Grid Demonstration
project. The probability distributions for each seed value and
weights of discomfort are shown in Appendix A.

A. Robustness vs discomfort

Table II and III summarize the performance of the fitness
functions in each project. Performance is measured by the
three metrics introduced in this paper, robustness, shifting dis-
comfort and adjustment discomfort. Three planning generation
schemes are evaluated in each project, one static with [ = 2
and two dynamic.

Robustness improves for every fitness function that per-
forms coordinated selections in both projects and every
generation scheme. The highest improvement is achieved
by the MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS. MIN-
INTERVENTIONS does not have a significant influence on ro-
bustness. Note that as the number of possible plans increases,
robustness also increases in average 52%, for [ = f1(z = 2),
61% for I = f1(z = 3), 30%, for | = fo(z = 1), and 39%,

%http://www.cs.waikato.ac.nz/ml/weka/ (last accessed September 2013)
10Note that if I < 1, then agents select the median time series from the
historic sliding window

for | = fo(z = 2), confirming earlier findings concerning
equivalent possible plans [16], [7].

Shifting discomfort maximally decreases under MIN-
INTERVENTIONS and MIN-DEMAND. MAX-DEMAND, MAX-
ENTROPY and RANDOM cause the highest shifting discomfort.
The high robustness of MAX-ENTROPY is actually achieved
through an increase in shifting discomfort. The lowest shifting
discomfort under coordinated selections is achieved by MIN-
DEevVIATIONS. Note that shifting discomfort is influenced by
the increase in the number of possible plans as follows: 0.4%
average increase for [ = fi(z = 2), 0.3% average decrease
for I = fi1(z = 3), 14% average increase for [ = fo(z = 1)
and 11.4% average increase for | = fa(z = 2).

Adjustment discomfort maximally decreases under MAX-
DEMAND and MAX-ENTROPY. MIN-DEMAND and MIN-
DEVIATIONS cause the highest adjustment discomfort. Note
that the high robustness of MIN-DEVIATIONS is achieved
through an increase in adjustment discomfort, in contrast to
MAaX-ENTROPY that achieves high robustness by increasing
shifting discomfort. The increase in the number of possible
plans influences adjustment discomfort as follows: 19% av-
erage increase for [ = fi(z = 2), 23% average increase for
I = f1(z = 3), 30.3% average increase for [ = fo(z = 1) and
15.9% average increase for [ = fo(z = 2).

This section also illustrates the cumulative distribution func-
tions of robustness and discomfort for each fitness function and
project. A cumulative distribution function Fx (z) = Pr(X <
z) for X = R, D; or D, shows how robustness and discomfort
are distributed during the runtime of the projects. Therefore,
they provide detailed observations compared to the results of
Table II and III. Cumulative distribution functions focus on
f1(Z = 2) and fQ(Z = 2)

Figure 2 illustrates the cumulative distribution functions of
robustness for the two projects. The fitness functions that per-
form coordinated selections are shifted to positive robustness
values, whereas, local selections and especially MAX-DEMAND
are shifted towards negative robustness values. Note that the
Electricity Customer Behavior Trial project concerns data of
a higher number of consumers and a longer period of time
than the Olympic Peninsula Smart Grid Demonstration project.
This explains the higher overlap of the cumulative distribution
functions in the second project.
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(a) Electricity Customer Behavior
Trial project.

(b) Olympic Peninsula Smart Grid
Demonstration project.

Fig. 2. Cumulative distribution functions of robustness R for z = 2.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. ?, NO. ?, MONTH 2013

TABLE I
PERFORMANCE OVERVIEW FOR THE ELECTRICITY CUSTOMER BEHAVIOR TRIAL PROJECT.

Fitness Function R (x * 10~—9) Dy D,
l: 2 f1 (Z = 2) f1 (Z = 3) 2 f1 (Z = 2) f1 (z = 3) 2 fl(Z = 2) f1 (Z = 3)
RaNDOM: | -0.50 -0.08 0.08 83.11 81.75 82.08 -349.64 -327.46 -311.32
Local MIN-DEMAND: 2.72 5.08 6.68 66.90 67.51 68.07 821.63 1053.52 1187.48
Selections MAX-DEMAND: | -5.37 -5.31 -5.65 99.42 96.48 97.39 -1516.07 -1679.63 -1809.30
MIN-INTERVENTIONS: 0.98 1.17 1.08 65.74 66.59 67.68 594.17 609.74 586.83
MIN-DEVIATIONS: 7.79 14.28 19.18 69.03 69.51 70.18 614.72 752.65 830.76
Coordinated MIN-REL-DEVIATIONS: 9.23 16.22 21.11 74.26 74.02 74.83 143.83 169.42 196.09
Selections MAX-LOAD-FACTOR: 4.83 8.17 10.68 79.30 79.30 79.30 -188.86 -188.86 -235.40
MAX-ENTROPY: 9.64 22.05 22.04 99.42 99.42 99.42 -1516.07 -1516.07 -1516.07
Low performance l:] High performance
TABLE III
PERFORMANCE OVERVIEW FOR THE OLYMPIC PENINSULA SMART GRID DEMONSTRATION PROJECT.
Fitness Function R (z * 10~9) Dy D,
l: 2 fa(z=1) | fa(z=2) 2 fa(z=1) | fa(z2=2) 2 fa(z=1) | fo(z=2)
RANDOM: 21.57 47.99 47.13 47.40 40.54 42.08 -108.95 -80.56 -96.92
Local MIN-DEMAND: -2.83 33.28 17.60 38.32 33.57 34.15 119.27 153.76 191.33
Selections MAX-DEMAND: 38.37 55.34 60.51 57.03 48.18 51.37 -338. 55 -314.20 -405.29
MIN-INTERVENTIONS: -11.36 46.76 36.68 38.59 32.19 32.60 90.26 87.86 95.12
MIN-DEVIATIONS: 70.97 113.13 133.68 39.54 34.37 35.06 73.98 91.31 111.62
Coordinated MIN-REL-DEVIATIONS: 127.38 138.38 168.16 46.0 39.48 41.09 -123.49 -95.60 -117.12
Selections MAX-LOAD-FACTOR: 112.07 119.80 152.95 47.12 41.04 41.49 -136.66 -110.16 -113.85
MAX-ENTROPY: 123.53 134.24 165.85 45.09 39.39 40.41 -97.74 -96.14 -103.80

Figure 4 illustrates the cumulative distribution functions of
shifting discomfort for the two projects. MIN-INTERVENTIONS

c

8
and MIN-DEMAND are positioned to lower shifting discomfort ¢
. . .. 2

values in contrast to MAX-DEMAND that is clearly positioned %

. . . . . [
to higher values of shifting discomfort. The fitness functions  §*°
that perform coordinated selections are positioned to higher  £,,
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Fig. 3. Cumulative distribution functions of shifting D; for z = 2.

Figure 4 shows that under local selections the cumulative
distribution functions of adjustment discomfort are shifted to
negative values, yet, MIN-INTERVENTIONS and MIN-DEMAND
cause adjustment discomfort and that is why their distributions
are shifted to positive values. Under coordinated selections the
distributions vary significantly, with MAX-LOAD-FACTOR and
MAX-ENTROPY shifted to negative values that cause comfort
to consumers, whereas, the rest of the fitness functions are
mainly located in between positive and negative values.

This observation can be explained by the fact that co-
ordinated selections acquire a flat demand curve by either
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Fig. 4. Cumulative distribution functions of adjustment D, for z = 2.

increasing or decreasing the average demand, e.g., 19/01/2010
and 28/05/2010 respectively for the Electricity Customer
Behavior Trial project. Therefore, adjustment discomfort is
highly influenced by temporal factors related to the weather
and different choices that consumers make in different seasons
of a year. The demand curves illustrates in the next section
confirm this explanation.

B. Demand curves

Figure 5 illustrates the demand curves of CONTROL-DATA
and the global plans of each fitness function on 19/01/2010
and 28/05/2010 under [ = 2. These data concern the Electricity
Customer Behavior Trial project. CONTROL-DATA has two main
demand peaks, one low peak in the morning between 06:00-
08:00 and one high peak in the evening between 17:00-21:00.
The morning peak is more distinguishable on 28/05/2010 than
19/01/2010, whereas, the evening peak is higher and more
distinguishable in the winter day.
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Fig. 5. The actual demand curve and the demand of the global plans for the
Electricity Customer Behavior Trial project under | = 2.

Figure 6 illustrates the demand curves of CONTROL-DATA
and the global plans of each fitness function on 16/01/2007
for the Olympic Peninsula Smart Grid Demonstration project.
The minimum number of possible plans [ = 2 is selected in
this case as well. The high winter peak is observed in the
morning, with a low evening peak following.
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Fig. 6. The actual demand curve and the demand of the global plans for the
Olympic Peninsula Smart Grid Demonstration project on 16/01/2007 under
l=2.

The Max-DEMAND and MIN-DEMAND in Figure 5a, 5Sc
and 6a are the upper and lower bounds that form the demand
envelope of planning within which the performance of all fit-
ness functions lies. MIN-INTERVENTIONS results in plan selec-
tions with low energy consumption. This means that possible
plans with extreme high values are not the cluster with the
largest size. In Figure 5b and 5d, the global plans are observed

above the CONTROL-DATA during most hours on 19/01/2010
compared to 28/05/2010. This means that robustness requires
a demand increase for a longer period of time during a winter
day compared to a spring day. Note that this demand increase
is the actual load-shifting performed to suppress the high
power peak. MIN-DEVIATIONS decreases the high peak up to
9% on 19/01/2010 and 16% on 28/05/2010 for the Electricity
Customer Behavior Trial project and 44% on 16/01/2007 for
the Olympic Peninsula Smart Grid Demonstration project.

C. Quality of service

This section shows how performance trade-offs between
robustness and discomfort can determine quality of service
in demand-side energy self-management. More specifically,
assume that consumers, utility companies or system operators
need to select one of the fitness functions that satisfies certain
robustness and discomfort criteria. Selection is performed as
follows:

arg Thax = art + Brs +~rd (6)

o=1

, where 7 rS r2 € [0,7] are the ranks of a fitness function

o € [1, 8] for the three respective performance metrics: robust-
ness R, shifting discomfort Dg and adjustment discomfort D,.
Ranking is derived by the results of Table II and III with the
value of zero corresponding to the lowest performance and the
value of 7 to the highest performance. The weights «, /3 and =y
indicate the relative ‘importance’ of each performance metric
and it holds that o + 8 + v = 1.

The relation between a certain selection of a fitness function
and the threshold values of «,  and -~ that result in this
selection can be computed and visualized using decision trees
built by the C4.5 algorithm [18]. Learning is performed by
a 10-fold cross-validation of a training set generated using
formula (6) with 66 different threshold combinations of «, £,
and  under a step-wise increment of 0.1.

Figure 7 illustrates the decision tree for the performance
results of the Electricity Customer Behavior Trial project.
This tree contains two fitness functions that perform local
selections (MAX-DEMAND and MIN-INTERVENTIONS) and two
fitness functions that perform coordinated selections (MIN-
RELATIVE-DEVIATIONS and MAX-ENTROPY). MAX-DEMAND is
selected when 3 < 0.3 and @ < 0.1. MIN-INTERVENTIONS 1is
selected under 8 > 0.3 and o < 0.3. However for criteria that
define high o, MAX-ENTROPY and MIN-RELATIVE-DEVIATIONS
are selected depending on the values of discomfort. In this
case, lower shifting discomfort values result in selections of
MAX-ENTROPY over MIN-RELATIVE-DEVIATIONS.

Figure 8 illustrates the respective decision tree for the
Olympic Peninsula Smart Grid Demonstration project. This
tree has lower complexity than the tree of the Electricity Cus-
tomer Behavior Trial project. It provides selections between
three fitness functions, MAX-DEMAND, MIN-INTERVENTIONS
and MIN-RELATIVE-DEVIATIONS that are determined by the
shifting discomfort and adjustment discomfort.

Note that these decision trees concern the aggregate results
of all temporal demand data in each project, yet, these trees
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can be computed for more specific time periods, e.g., seasons
or months.

D. Summary of findings

The main findings of this paper are summarized as follows:

1) MaX-ENTROPY and MIN-RELATIVE-DEVIATIONS achieve
the highest robustness.

2) MIN-INTERVENTIONS achieves the lowest shifting dis-
comfort and MAX-DEMAND the lowest adjustment dis-
comfort.

3) MiIN-DEVIATIONS achieves the highest peak shavings.

4) A higher number of possible plans increases robustness
at a cost of higher discomfort.

5) Peak shaving is achieved either via an overall demand
increase or decrease over time.

6) Quality of service under demand-side energy self-
management can be managed by decision trees that
compute trade-offs between robustness and discomfort.

VII. CONCLUSION AND FUTURE WORK

This paper concludes that the trade-off between robustness
and discomfort in demand-side energy self-management is
quantifiable, manageable and can provide different quality
of service levels. More specifically the experimental valida-
tion with real data from two operational Smart Grid project
confirms the load-shifting and load-adjustment potential of
various fitness functions but also their discomfort impact on
consumers. These fitness functions can become a highly mod-
ular element of decentralized demand planning mechanisms

such as EPOS [6], [7], in future Smart Grids. Other factors
related to malicious agents and fairness in discomfort between
consumers are part of future work.
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APPENDIX A
SUPPLEMENTAL MATERIAL

Figure 1 illustrates how the number of possible plans is
generated for the Electricity Customer Behavior Trial project.
The main intuition behind this algorithm is that as the number
of plans increases, the intervention level also increases in
average. If a consumer chooses in the Question 2 for major
changes in his/her electricity, then a higher intervention level
is introduced by increasing the number of possible plans (lines
1-6 in Algorithm 1).

Algorithm 1 Computing the number of possible plans for the
Electricity Customer Behavior Trial project.

Require: a seed z representing a default value for [

1: if as = 1 then

2 l=2+3

3: else if as = 2 then
4: l=2z+2

5: else if ap = 3 then
6: l=z+1

7: else if as = 4 then
8 if a; = 3 then
9: l==z

10: else if a; < 3 then
11: l=z+1
12: else // a1 > 3
13: l=z—-1
14: end if

15: else if ac = 5 then
16: if a; = 3 then

17: l=z-1

18: else if a; < 3 then
19: l=z

20: else // a1 > 3

21: l=2z—-2

22: end if

23: end if

Ensure: number of possible plans ! for each agent

Figure 9 illustrates the probability distribution of the number
of possible plans ! in the two Smart Grid projects. Two
distributions generated by different seed values are shown for
each project.
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Fig. 9. The probability distribution for the number of possible plans [.
Figure 10 illustrates the probability distribution for the two

weights of discomfort based on the answers of consumers in
Question 3 and 4.
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Fig. 10. The probability distribution of shifting w? and adjustment w? dis-
comfort weights derived from the pre-trial survey of the Electricity Customer
Behavior Trial project.



