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Lean Sensing: Exploiting Contextual Information
for Most Energy-Efficient Sensing

Borja Martı́nez, Member, IEEE, Xavier Vilajosana, Senior Member, IEEE, Ignasi Vilajosana, and Mischa
Dohler, Fellow, IEEE

Abstract— Event-driven applications are used to monitor the
occurrence of certain events. In general, events are inherently
stochastic, and the main function of the system is precisely
to detect and report the occurrence of such events. Those
cyber-physical technologies are being widely deployed in cities
around the world and one of their critical aspects is energy
consumption, as they are mostly battery powered. One of the
most representative examples of such applications is Smart
Parking. Since parking sensors are devoted to detect parking
events in almost-real time, strategies like data aggregation are
not well suited to optimize energy consumption. Furthermore,
data compression is pointless, as events are essentially binary
entities.

Therefore, this article introduces the concept of Lean Sensing,
which enables the relaxation of sensing accuracy at the benefit
of improved operational costs. To this end, the article departs
from the concept of randomness and it explores the correlation
structure that emerges from it in complex systems. Then, it
examines the use of this system-wide, aggregated, contextual
information to optimize power consumption, thus going in the
opposite way: from the system-level representation to individual
device power consumption. The discussed techniques include
customizing the data acquisition to temporal correlations (i.e,
to adapt sensor behavior to the expected activity) and inferring
the system-state from incomplete information based on spatial
correlations. These techniques are applied to real-world smart
parking application deployments, aiming to evaluate the impact
that a number of system-level optimization strategies have on
devices power consumption.

I. INTRODUCTION

MOST of us suffer the experience of driving into town
looking for some spot to park. This is a very familiar

problem that citizens around the world face every day. As
a result, citizens have developed some (sometimes rather
efficient) strategies to deal with it. These strategies are usually
based on prior experience turned into intuitions to deal with
the complexity of urban living.

In theory, the state of an individual parking bay can be
considered a stochastic process [1]; thus, the occupancy of a
specific spot is intrinsically unpredictable. However, we intu-
itively understand that parking availability depends strongly on
the quantity and diversity of spaces, time of the day, number of
drivers in the vicinity, specific area regulations and many other
undetermined variables which yield to specific characteristic
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behaviors. For instance, on a city-level scale and using a down-
town area as an example, parking demand tends to increase
early in the day, holds at a relatively high level throughout the
mid-day, and then spikes in the evenings when drivers pursue
leisure activities (restaurants, cinemas, theaters, etc.).

There have been many studies in the past to analyze the
structure of the parking availability in cities [2]. Whilst data
has traditionally been collected manually, the usage of auto-
mated instrumentation through on-street parking sensors has
become popular in different cities around the world, with the
aim to improve the efficiency of the operation and management
of public parking [3]. Representative examples are San Fran-
cisco, Los Angeles, Moscow, Nice, London and Barcelona,
among many others. In there, small sensing devices have been
deployed in every parking spot within large monitored urban
areas. The benefits of these devices are undeniable; they have
proven to be very useful in helping cities to better understand
parking patterns, and they have become a very valuable tool
in optimizing parking operations as well [4]. Moreover, they
are enabling new services to the citizens as help drivers to find
parking spaces more efficiently, reduce the hustle and bustle
of traffic [5], and on-street parking reservation [6], [7], among
others, thus providing an improved urban user experience.

However, in many cities, there is a common concern about
the cost-benefit trade-off of this solution. The deployment of
thousands of sensors in each parking bay involves a large
upfront investment by public administrations or parking oper-
ators, and it imposes additional complexity on the operational
side. As a result, some previous studies have analyzed the cost-
benefit relationship of such a solution [8] Some other studies
take a more conceptual approach and have built a model to
reduce deployment costs by providing sensor readings on only
a fraction of the parking spots in a given area [9], followed
by the use of extrapolation to calculate city-wide saturation
levels [10].

Nevertheless, none of them have centered their efforts to the
trade-off between the total cost of the device (including the
cost of sensor itself, mostly determined by the battery size,
but also the maintenance cost) and the application detection
accuracy (how precise is the representation of the system
provided by the application), given a service level agreement
(SLA) established between city/operator and smart parking
solution provider.

In a classical approach, applications parameters (e.g., sam-
pling rate, network throughput, etc.) determine the energy
consumption of the device which in turn limits its lifetime. In
our study we propose an inverse approach, fixing the agreed
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lifetime of the device and determining the configuration pa-
rameters accordingly so the lifetime is met. What we evaluate
then is not the expected lifetime but the impact in the recon-
struction of the information due to a more relaxed capabilities
of the device. Even more, we explore a set of system-level
optimization strategies to impact on energy consumption. This
approach deals with the balance between sensing accuracy
and energy usage and we show how energy can be optimized
by adapting sensing to application behavioural patterns. This
proposal has been validated with real-world datasets from
two different cities, each having several hundred of sensors
deployed.

The article is organized as follows. Section 2 examines the
datasets from a system-level point of view, in order to extract
and visualize behavioral patterns. Contextual information is
analyzed to better understand the application itself, with the
confidence that this system-wide perspective can be used to
optimize the energy efficiency of the system. Additionally,
system-level metrics are defined. Section 3 provides a de-
scription of existing commercial of-the-shelf technologies and
formalizes the device energy consumption model. Finally,
in Section 4, the article proposes and validates an adaptive
sensing approach which customizes the sensing performance
according to the specific spot activity, but targeting an overall
system optimization. Section 5 concludes the article.

II. DATA STRUCTURE

Enormous efforts have been made to reduce the energy (and
bandwidth) consumption of devices [11] by compressing the
information to be transmitted [12] [13], aggregating data [14],
or even by not distributing the information at all but making
the right decisions that are locally based on the information
available [15]. However, in event-driven applications, there is
no reasonable alternative to transmitting every single event. In
addition, events are often expressed as boolean variables and
rendering realtime compression techniques useless.

Consider the example of parking sensors. When a car is
detected, the sensor communicates the event to the data-
collection center so that system managers can keep track of
the state. The parking event must be reported (as opposed
to be aggregated to safe energy), as the main function of
these devices is precisely to monitor the occurrence of these
events in (almost) realtime. Besides, a minimum amount of
information is encapsulated at each message, which is usually
incompressible considering that the state can be codified using
a single bit. Even more, we cannot consider the parking
application to be an alarm-based system as those addressed
in [15], because all events are reported and not only those
that have a special meaning or relevance.

Under these circumstances, it seems difficult to find al-
ternatives to save energy other than using more efficient
technologies. However, little attention has been paid to the
application itself and to how the monitoring service is provided
[16]. This not only holds true for smart parking but a wide
range of industrial and civil applications [17].

Modern distributed monitoring systems are typically made
up of two main layers [18]. The hardware infrastructure is

composed of thousands of networked embedded devices, the
operation of which (although interconnected) is in essence
independent. Above this hardware layer, software and service
technologies enable high-level access and utilization of the
real-world data and resources, which is usually inferred or
extracted by advanced analytics [19]. This is the layer we pay
attention to in this work.

Specifically, in this article, we introduce a concept referred
to as Lean Sensing which aims to improve the cost-benefit of
the application from a system wide perspective, taking into
account the predictable behavior of the agents involved in
the target application and, thus, being able to relax sensing
requirements due to its prediction capability. The system
described here is designed to identify and visualize patterns in
a complex, macro-scale monitored process, and it is assumed
that the provided monitoring service drives the optimization
policies. Notably, as the next section shows, it is also in these
patterns where one can identify some key aspects to support
the design of efficient energy management strategies. This
approach is similar to what has been successfully applied to
other contexts, e.g., load anticipation in smart grids [20] [21].
In the following sections, we present some of the information
that is obtained by a parking management tool, which will be
used further to determine behavioral patterns and will be the
basis for the proposed optimization framework.

A. System state: Occupancy

The system occupancy is not related to the specific state of
a particular parking spot, but to the percentage of time a spot
is occupied over a period of time. For traffic management,
the historical average occupancy of the spot provides more
information than the current state at a specific time. Likewise,
the mean occupancy of an area provides more information than
the state of a single sensor. Occupancy is the most intuitive
and useful indicator for this particular application.

More formally, the following definitions will be considered
in the remainder of this article:

1) Sensor Occupancy: S is the time ratio a specific spot has
been occupied during a given time-slot. It is defined as a multi-
dimensional variable, S(k)

i,j ∈ [0, 1]; where index i=1...NH

accounts for the time-slot during the day (typically the time-
slot is one hour); j=1...ND denotes the day of the monitored
period; and finally, index k refers to the specific sensor.

2) System Occupancy: the system occupancy state is ob-
tained by averaging the considered set of related sensors at
each time slot, NS being the total number of sensors that are
aggregated. This concept can be applied to the whole system,
to a sector or to any subset of related sensors.

Si,j =
1

NS

NS∑

k=1

S
(k)
i,j (1)

3) Occupancy Reconstruction Error: relates to the differ-
ence between the system occupancy state, which is built hav-
ing a complete knowledge of the system, and the state inferred
with partial information. Specifically, the reconstruction error
is defined in Eq. (2), Ŝ being the system occupancy state
estimated from incomplete information.
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εS =
1

NH ·ND

NH∑

i=1

ND∑

j=1

|Si,j − Ŝi,j | (2)

To illustrate these concepts, Fig. 1 shows the system occu-
pancy state registered in a metropolitan area during one month
(February). The colormap represents the average occupancy in
a commercial sector of nearly 500 monitored spots. In this
figure, S̄ is displayed hourly in the vertical direction and daily
in the horizontal. To make the historical evolution more under-
standable, data is projected in two orthogonal directions. First,
below the scale map, hourly occupancy has been averaged
over each day in the figure. Then, this plot represents the daily
mean evolution of the full period. Additionally, maximum and
minimum daily occupancy have been represented. The second
one, on the right-hand side of the scale map, is a projection
of the hourly occupancy of every single month in the period.
This figure captures with a single snapshot the historical hourly
behavior, showing the variability of daily patterns during the
period being studied.

This view can help to understand several patterns of citizen
behavior: i.e., occupancy is much higher during daytime hours
and is almost zero at night (note that these sensors are
deployed in a commercial area); weekend specific patterns are
noticeable, and they are appreciably different from the rest of
the week days; finally, lower occupancy was registered in the
first week of the period, most likely due to adverse weather
conditions. These are some examples of useful information
required for intelligent traffic management systems.

B. System activity and turn-over:

The activity (i.e., the number of events that happened in
a given slot of time) and the number of turn-overs (which
is directly related to the former) are essential indicators for
mobility agents. Intuitively, activity provides an estimate of the
flux of traffic that can be absorbed. For instance, in parking
guidance systems, drivers can be redirected to areas whose
activity is expected to be higher. Even more, activity can be
used for adjusting prices and bounding minimum and maxim
parking-times in paid parking areas.

Due to its relevance, activity should be well defined and pre-
cisely quantified. In this regard, this article formally complies
with the following definitions:

1) Sensor Activity: the sensor activity R is the number of
events occurring in one spot during a specific time-slot. R(k)

i,j is
defined in a similar way as the occupancy. The index i=1...NH

designates the time-slot, j=1...ND indicates the day, and k is
the sensor index.

2) System Activity: the average activity of a set of sensors
in each time-slot:

Ri,j =
1

NS

NS∑

k=1

R
(k)
i,j (3)

3) Activity Reconstruction Error: the error made while
estimating the system activity with incomplete information R̂.

εR =
1

NH ·ND

NH∑

i=1

ND∑

j=1

|Ri,j − R̂i,j | (4)

Fig. 2 shows the activity recorded in the commercial area of
a small town. The displayed subset belongs to the first 28 days
of December. The daily pattern indicates higher activity during
the morning and afternoon, while it is very low at night. In
addition, week and weekend days can be clearly differentiated.
The historical data shows that, in general, activity increases
throughout the week as the weekend approaches. Besides,
special behavior is observed on holidays (around Dec. 25th).

In this application (for which all events detected are directly
reported), the activity is not only related to physical detection,
but to the number of radio messages generated. Thus, besides
the fact that activity is an important system performance
indicator, it has a direct impact on energy consumption as
demonstrated in the next section.

C. Temporal Stability

In light of the above figures, the question then arises as to
how the knowledge of this data patterns could be used in some
efficient way. Section IV exploits some possible applications.
However, before doing so, it is necessary to address the
issue of repeatability. Repeatability is two-fold. On the one
hand, it is essential for predictive management, as it enables
making decisions based on past behavior. On the other hand,
it provides the key to optimization policies: any engineering
decision devised on the basis of patterns observed in past data
should still be valid when projected onto the future.

Fig. 3 can help to clear up doubts about this fundamental
question. This figure shows sensor activity averaged over a
long period, with the particularity that sensors have been sorted
by their activity. This arrangement reveals three different
regions corresponding to sensors with low, medium and high
activity. The behavior of three successive months has been
superimposed (depicted by three different tones of gray). The
replicated trend demonstrates an intuitive fact: when a spot
has been very active in the past, it remains being active.
Spot activity is highly dependent on the city environment
(commercial parking, ATM, passing area, etc.). However, in
this sense, the environment is basically static. Thus, the activity
of each spot is expected to be stationary.

This important result ensures the stability of activity as
a classification criteria, and thus guarantees that any design
workaround that is tailored to a specific class of spots will be
valid for the future, provided that the classification criteria is
based on activity.

Fig. 3 reveals another suggestive pattern. Subplots 3a and 3b
are recorded in two very different environments (a metropolis
and a small town). Notably, the distribution shape is almost
identical. This result suggests that there are some fundamental
patterns underlying the system, independently of the city,
and that developed policies may be valid for (quite) different
deployments.

III. THE ROLE OF TECHNOLOGY

This section shifts momentarily our focus to the technology
being used in smart parking deployments. As the goal of our
study is to optimize the energy consumption of such devices
using contextual information, we need an accurate knowledge
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Fig. 1. System occupancy evolution in a metropolitan sector, from different perspectives. The chart displays 4 weeks, with a time-slot grid of 1 hour.
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Fig. 2. System activity evolution in a small city, from different views. The chart displays 4 weeks, with a time-slot grid of 1 hour.

of how these nodes behave and where the energy is spent from
an individual point of view. For this purpose, in this article
we make use of the previously defined model to estimate the
energy consumption of these devices. An extensive description
of the derived model can be found in [22].

A. Energy Model Description

In general, embedded systems run a set of repetitive tasks.
In most of the wireless sensors devices, sampling is performed
periodically and some information is reported to the data
collector center throughout the course of operation.

In terms of energy consumption, the application can be mod-
elled mainly by these two contributions: periodic sampling and
the reporting of physical events. These tasks are parametrized
as follows:

• A record of NS samples is acquired with a fixed interval
time, TRCD. The sensor comes to a decision about the
occupancy state by analyzing the full record of samples.

• Events occur with a certain probability, generating radio
messages spaced at characteristic time, TMSG.

When sensors generate endogenous traffic according to
some stochastic process distribution, the time elapsed between
consecutive messages, TMSG, should be characterized by an
appropriate statistical estimator (often a simple average is
enough). This approximation is reasonably good for long-term
averaging.

1) Sampling Characterization: For each record composed
of NS samples, the total time the sensor remains switched on
is given by TS ·NS , where TS is the physical sampling interval
(see Fig. 4) and use to be fixed by filter requirements.

The current of the acquisition block can be obtained by
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Fig. 3. Time evolution of the activity, with individual sensors sorted by
activity and their histogram.
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averaging the charge to get the NS samples of the record over
the time elapsed between consecutive records TRCD, i.e. the
wake-up period. In Eq. (5) Q̄SNR is the average charge to get
one sample (area below the peaks curve in Fig. 4) and comprise
both the sensor and the ADC conversion. Ī(STB)

SNR accounts for
the stand-by or quiescent current of the sensor.

ĪACQ
∼=
Q̄SNR ·NS

TRCD
+ Ī

(STB)
SNR (5)

2) Point to Point Communications: The average power
of the communications block can be expressed in terms of
the charge required to send a radio message, Q̄MSG, and a
characteristic time between consecutive events, TMSG. The
reported information is aggregated into a unique message. We
assume that this message can be retransmitted a certain number
of times, NRTX , to increase the probability of success (Fig. 5).

ĪNET ≈
NRTX · Q̄MSG

Ē [TMSG]

.
=
NRTX · Q̄MSG

T̂MSG

(6)

It is important to recall that our work is focused in Low
Power Wide Area Network (LPWAN) technologies which
are driving large scale deployments in smart city and smart
metering applications. Those technologies rely on very robust
modulations and low data rates thus enabling one-hop long
range links [23], [24], [25], for which Eq. (6) is applicable.
Multihop networks are not considered as industrial deploy-
ments on the field are clearly betting for LPWAN technologies.
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Fig. 5. Radio message: initialization and 3 retransmissions.

3) Joint Model: Eq. (7) combines the two main contribu-
tions of this application: sensing and communications, ex-
plicitly keeping technological and application parameters as
independent variables. Recalling the meaning of each indi-
vidual contribution, α can be interpreted as the charge per
sample Q̄S and γ is an estimator of the average charge
per message Q̄MSG. Regarding δ, it basically accounts for
OS management consumption and quiescent DC/DC currents.
Finally, it should be noted that, as this is essentially a bare
reporting application, the cost associated with processing can
be considered negligible. This is due to the low processing
load, in addition to the several orders of magnitude difference
between computing and transmitting assumed for current low-
power wireless devices [11].

ĪDEV =
αNS

TRCD
+
γNRTX

T̂MSG

+ δ (7)

B. Operational Cost and Energy Constraints

There is one important aspect related to the operation and
maintenance of systems like the smart parking application. In
there, thousands of battery operated devices are deployed in
a wide area requiring a periodic maintenance and battery re-
placement. The later is impacted by the energy saving policies,
which tend to be the same for the overall system in traditional
approaches, despite of having zones that suffer from higher
levels of activity. Thus, some devices deplete their power more
quickly than others, creating different usage patterns across
the same network. We believe that it is very important to not
only increase battery life by smart optimizations, but to also
homogenize battery consumption across all devices in order
to facilitate interventions and reduce maintenance costs by
compacting maintenance operations [26].

Given the above reasons, this work considers the expected
battery life to be a constraint (not a variable to be maximized),
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and that the objective of the energy policy should be to ensure
that the minimum expected life-time specification is met, while
maximizing the system accuracy. With this aim, Eq. (7) can be
interpreted as a parametric function binding together TRCD

and TMSG. More specifically, when the expected battery
life is fixed and the maximum average current IDEV is thus
constrained, and bearing in mind that α, γ and δ are constants
that only depend to the technology, Eq. (7) defines one-to-one
mapping of the expected activity and the recording interval (as
the only free variables remaining are TRCD and TMSG). Then,
we can estimate an upper bound for the recording interval
isolating TRCD as a function of TMSG, once the expected
activity of the sensor T̂MSG has been established:

T
(MAX)
RCD = f(T̂MSG) (8)
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Fig. 6. TMSG ↔ TREC mapping, as defined by Eq. (8), for different values
of expected life-time TL (expressed in years).

C. Experimental Setup

This study was developed on a proprietary custom platform
for smart-parking applications. The main components were the
Cortex-M4 32 bit processor, running with an RTOS systick
interrupt of 1 ms, and a low-cost AGMR magnetometer
characterized in Fig. 4. This platform was equipped with a
long-range radio module (See Fig. 5)

For the described energy model, the following settings were
used: the device requires T (ON)

SNS =60s to determine the state
of the spot, i.e. a record of NS=7500 samples acquired at
TS = 8ms; Lithium batteries had a total capacity of 30Ah,
with a self-discharge ratio of 1%; finally, the radio module
used a non-secure protocol with NX=3 (re)transmission at-
tempts. Measured charge values for acquisition and radio are
Q̄SNR=14.5± 0.8µC and Q̄MSG=136± 6mC [22].

Fig. 6 shows a numerical simulation of Eq. (7), for the used
platform and settings defined above. The black lines represent
the mapping f( ) in Eq. (8), once IDEV has been set so as to
achieve the desired uninterrupted operation, TL, for different
target values measured in years.

IV. PERFORMANCE ANALYSIS OF ENERGY MANAGEMENT
POLICIES

Once analyzed the particular characteristics of this applica-
tion, i.e., how the monitoring service is provided, the intrinsic
structure of parking patterns and the underlying technology,
this section concludes with an analysis of several optimization
strategies. These strategies are evaluated on the basis of the
energy model described in Section III, with the main focus on
quantifying their impact on the service provided under system-
level metrics.

The dataset for this section have been provided by World-
sensing. Data were gathered over three months from about
1000 outdoor devices, deployed in two different scenarios.
Unless otherwise stated, the first month is used for devel-
opment and training, whereas the last two months are used
for validation. This is motivated by an operational fact:
The deployment of a smart parking application is usually
executed in different phases. First an installation phase takes
care of embedding the sensors in the ground and installing the
network infrastructure, deploying the server applications and
data analytics services. Once the infrastructure is deployed, a
second stage is used to calibrate and test the system, before
giving the control of the system to the end user (customer).
The training of the system happens during this second phase
that may last several weeks (typically one month).

A. Temporal Decimation: Fixed Recording Interval

Classic sampling methods may not be the best choice for
systems in which not all sensors experience the same activity.
On the one hand, if a fast recording rate is selected, most of
the sensors will deplete their batteries before the scheduled
intervention time. On the other hand, if a slow rate is selected
in order to ensure that all sensors meet the desired life-time
specification, the information provided by the sensors may
be too inaccurate. Therefore, the first issue to address is to
quantify the system representation accuracy as a function of
the sampling rate, i.e., how the time between records affects
the accuracy of the system.

Fig. 7 shows the relation between the occupancy reconstruc-
tion error ε(k)S of each single sensor and the activity S(k)

(measured as the average interval between events, T̂MSG,
which is the inverse of the number of messages per time-
slot). The figure aims to present a scenario where nodes target
a 10 years lifetime. Note that the reconstruction error collects
the deviations caused by the time difference between the
instant when the event is detected and when the event actually
happened.

The figure shows three sets of points, each corresponding
to a fixed interval time between sensor records of TRCD =
{5, 10, 15} minutes, respectively. For each recording interval,
Eq. (7) has been used to find the maximum number of mes-
sages for which the device is still within specifications (i.e.,
its battery survives the required amount of time).

The results can be summarized as follows:
• TRCD=15mins: Eq. (8) is satisfied for TMSG ≈ 35min.

This means that if nodes wake up and sample a data
record every 15 min in order to detect if there is an state
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Fig. 7. Reconstruction accuracy vs. activity, for different recording intervals.

change and events occur every 35 min in average, the
system lifetime will expand over 10 years. Obviously, this
set (represented with inverted triangles) has the highest
reconstruction error, between 2.5% and 5%, meaning a
lesser accuracy in determining occupancy.

• TRCD=10mins: The limit value given by Eq. (8) for this
case is TMSG ≈ 51mins. While most of the sensors are
still within specifications (white circles), some of them
will probably deplete their batteries before the end of their
expected life, which is fixed to 10 years (dark circles).

• TRCD=5mins (triangles): Operating with these settings,
none of the sensors will fulfill their expected life, inde-
pendently of TMSG. As expected, this set has the lowest
reconstruction error, as nodes sample more often.

Notably, the activity of the sensor clearly affects the recon-
struction error of the occupancy (trends are represented with
solid lines in the figure). This is something that is perhaps not
obvious, but can be understood as follows: if a sensor is very
active (because it is changing the state quite quickly) and the
sampling rate is low, then the error introduced can be relatively
high, as each change in the state can potentially induce some
inaccuracy. In other words, the sampling rate is too slow in
comparison to the time the sensor remains in the same state.

B. Temporal Decimation: Adaptive Recording Interval

The recording interval settings can be set from an alternative
point of view. In this new approach, the sampling rate is no
longer a system feature, but a control parameter for adjusting
the power consumption of the system. Specifically, as the time
between records increases, less power is consumed. Then, by
increasing the record interval it is possible to balance the extra
power consumption associated to higher activity. As stated in
Section II-C, system activity can be considered constant for
each specific sensor in a statistical sense. Then, the recording
interval TRCD can be adjusted for each sensor so that the
expected life can be guaranteed, e.g., decreasing the sampling
rate in active nodes and increasing it on those not so active.

Fig. 8 shows a scatter-plot representing the expected life
for each sensor when using this adaptive approach. The
TRCD↔TMSG mapping, given by Eq. (8), is estimated after
a one-month learning stage, but the sensors are displayed at
their actual measured TMSG over the full period. As it can
be seen, by letting nodes sample at different intervals TRCD

according to their actual activity TMSG, it is possible to adjust
the overall system lifespan to the target specifications (the
figure shows two examples of 7 and 10 years, respectively).
The main benefit of this customized sampling is that it
homogenizes the expected life of sensors by balancing the
power consumption, and thus it minimizes premature battery
death or non-scheduled interventions.

Obviously, some fluctuations exist due to the uncertainty
assumed when using a learning stage. However, with the
exception of a few devices, the vast majority of them can
fulfill the expected life-time specification, at least according
to everything that concerns the battery capacity.
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The reconstruction error of each sensor can be evaluated
for different recording intervals, which in turn are determined
by the activity of the sensor (when energy is bounded). Fig. 9
shows the reconstruction error for each individual sensor, ε(k)S ,
displayed as a function of the record interval, comparing both
approaches. The results show devices running with adaptive
recording interval (triangles), superimposed to results expected
for different values of fixed recording intervals. In this case,
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the gray circles indicate the error averaged for all sensors
for each specific recording interval. For each fixed value, the
small black dots mark the value of each sensor, illustrating the
variability in the system; and the black, solid line is the trend
of the averaged errors.

Obviously, sensors with slower rates are expected to be
less accurate, at least individually. Even more, when using
adaptive sampling intervals that are above TRCD = 8mins,
the reconstruction error appears over the averaged trend of
fixed settings (reflecting the fact that reconstruction error
increases as the devices are more active, already observed in
Fig. 7). A natural question arises as to how the error of these
more active devices affects to the reconstruction error of the
whole system, and whether the negative effect of this small set
could be compensated with the better accuracy of less active
devices that together form a larger set. This assumption is
motivated by the asymmetric distribution of node activity as
seen previously in Fig. 3.
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Fig. 9. Reconstruction Accuracy vs. Recording Interval (Sensor view).

To answer this question, Fig. 10 shows the system recon-
struction error εR vs. the record interval TRCD. As expected,
the system error is much lower than the individual contribu-
tions, as errors are statistically compensated.

The gray circles show the error when using a fixed recording
interval, and the dashed line indicates the trend when the
(fixed) TRCD is progressively longer. The black cross marks
the reconstruction error of the adaptive sampling rate solution,
placed at the averaged T̂RCD of all sensors in the adaptive
configuration. Notably, the cross lies below the trend, which
indicates that the better accuracy of most of the sensors in fact
tend to compensate for the worse accuracy of the small set of
most active devices.

Moreover, the size of the circles in Fig. 10 is proportional
to the number of sensors running with a fixed sampling rate
whose expected life is shorter than required by specifications
(10 years in this example). While the reconstruction error of
the adaptive approach is approximately equal to the fixed one
configured at TRCD = 8mins, with these settings, the latter
causes 53% of the devices to have problems at the end of their
service life, while the former drops below 1%.
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potentially problematic devices estimate due to premature death for TRCD =
10mins.

C. Reconstruction under Failure: Spatial Correlations

Independently of the approach, there is a certain risk of
device failure before a scheduled intervention. For instance,
Fig. 10 shows the ratio of potentially problematic devices when
using a fixed record interval. However, even when using a
customized record interval, some deviations from the predicted
behavior may possibly occur in the learning stage, which
itself may result in a premature death. Obviously, in addition
to the battery life, the problem of physical device failure,
vandalism, etc. is always present. Therefore, this section aims
to evaluate the accuracy of the system state reconstruction
when the information is incomplete, whatever the reason for
the failure is.
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Fig. 11. Reconstruction error vs number of lost Sensors.

Fig. 11 shows the results of different strategies for rebuilding
the system occupancy state when the data associated to a set
of devices is not available. Reconstruction error is plotted
against the ratio of unavailable sensors. In this figure, each
dot represents a period of 14 days. There are six dots for each
coordinate value, corresponding to six 14-day periods over the
three months. This particular arrangement is intended to verify
that the temporal behavior is stable.
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The figure shows three different sets of points, depending
on the strategy taken:

• Bypass Method: (Shown in light gray.) Unavailable de-
vices are simply omitted, and the state is built statistically
from the remaining sensors.

• Temporal Self-Similarity Method: (Shown in black.)
Missing devices are modeled from their own past pat-
tern, taking advantage of the sensor’s self-similarity The
obtained model is used to build the system state. Best
results were achieved when using the last known week
pattern.

• Spatial Similarity Method: (Shown in dark gray.) Miss-
ing sensors are replaced by the physically closest opera-
tive neighbor, taking advantage of the spatial similarity.

As a concluding remark, in general there is a strong
spatial correlation between sensors which makes the Spatial
Similarity Method effective in most of the cases. Temporal
correlations however decrement the accuracy of the system
unless they are correlated to the overall system state and
not to its own individual history. This is interpreted as a
further demonstration of the random nature of individual
parking spots. Finally, the introduced error due to inferring
the state of some sensors is relatively small (lower than 4%
considering a 10% of lost sensors) which tells us that an
operative intervention to replace batteries would not be cost-
effective unless the number of lost sensors is significantly
large.

V. CONCLUSIONS

This article used the smart parking real-world application as
a case study to introduce novel alternatives for efficient energy
management of large wireless sensor networks.

The derived insights can be seen as tools for applications
in which classical strategies such as data compression or local
processing are not well suited. Our introduced approach is
based on exploiting contextual information from a manage-
ment system point of view, referred to as lean sensing. This
approach stimulates the introduction of system-level metrics,
which in turn allows to relax some requirements for individual
sensors. Besides, the article, presents an adaptive sampling
approach based on the analysis of historical data evolution.
The developed lean sensing framework enables a global sys-
tem improvement by constraining the operation of most active
devices while relaxing those with lesser activity. The approach
facilitates energy consumption balancing enabling all sensors
to meet a desired lifetime regardless of their activity level.
As discussed, this homogenization has a substantial impact
on operational costs and thereby minimizes non-scheduled
(costly) interventions.
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