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Abstract—This paper presents the main foundations of Big
Data applied to Smart Cities. A general Internet of Things based
architecture is proposed to be applied to different smart cities
applications. We describe two scenarios of big data analysis.
One of them illustrates some services implemented in the smart
campus of the University of Murcia. The second one is focused
on a tram service scenario where thousands of transit-card
transactions should be processed. Results obtained from both
scenarios show the potential of the applicability of this kind of
techniques to provide profitable services of smart cities, such as
the management of the energy consumption and comfort in smart
buildings, and the detection of travel profiles in smart transport.

Index Terms—Internet of Things; Smart City; Big Data;
Predictive Models; Transit-card Mining

I. INTRODUCTION

A Smart City emerges when the urban infrastructure is
evolved through the Information and Communication Tech-
nologies (ICT) [1]. The paradigm of Internet of Things (IoT)
[2] has enabled the emergence of a high number of different
communication protocols, which can be used to communicate
with commercial devices using different data representations.
In this context, it is necessary an loT-based platform to
manage all interoperability aspects and enable the integration
of optimal Artificial Intelligence (AI) techniques in order to
model contextual relationships.

In urban environments there is a huge amount of different
data sources. Plenty of sensors are distributed around cities,
most of them installed in indoor spaces. This situation has
brought new analytics mechanisms and tools that provide
insight allowing us to have an effective and collaborative way
to operate the machines [3]. Furthermore, there are numerous
mobile data sources like smart phones, smart-cards, wearable
sensors and, in the case of vehicles, on-board sensors. All
these sensors provide information that makes possible to
detect urban dynamic patterns. Nonetheless, most existing
management systems of cities are not able to utilize fully
and effectively this vast amount of data and, as a result,
there is large volumes of data which is not exploited. In this
direction, many Al techniques in Computer Science have been
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introduced to deal with the processing of huge amount of data
to extract useful information (or termed by knowledge) from
data [4], this trend is known as Big Data.

This paper is intended to analyze the interest of big data
for smart cities. In order to face the above-mentioned aspects
we propose a general architecture for smart city applications,
which is modelled in four layers with different functionalities.
Then, we show some applications of big data analysis in
two scenarios, both dealing with sensed data coming from
both static and dynamic sources. Among other objectives,
the first scenario intends to create a distributed framework to
share large volumes of heterogeneous information for their
use in smart building applications. In this work we focus
on presenting the deployments and implementations carried
out in smart buildings to achieve energy efficiency. For this,
different problems like indoor localization, thermal comfort
characterization and energy consumption modelling have been
solved through the application of big data techniques. The
second example is centered on the public tram service in the
City of Murcia (Spain), looking for giving insight into the great
amount of data generated by the service’s transit cards. In this
scenario, big data techniques are applied to extract mobility
patterns in public transport.

Hence, this paper faces up three aspects of nowadays smart
cities which need to be solved, and for each one of them we
provide some research contributions through the application
of convenient big data techniques. These contributions are:

o The design and instantiation of an IoT-based architecture
for applications of smart cities.

o The approach of an efficient management of energy in
smart buildings.

o The extension of the data analysis for detection of urban
patterns which can be used to improve public transport
applied to the public tram service.

The structure of this paper is as follows: Section II enu-
merates the challenges that current smart cities still have to
face, and proposes a general IoT-based architecture for smart-
city services which is modeled in layers. Section III describes
a first application of smart city where big data techniques
have been applied to get energy efficiency in the buildings
of a Smart Campus. Section IV presents a second smart city
application that addresses the urban pattern recognitions in
public transport. Section V summarizes the main benefits of
applying big data techniques to the two scenarios of smart
cities addressed in this paper. Finally, Section VI gives some
conclusions and an outlook of future work.
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Figure 1: Layers of the base architecture for smart city services

II. IOT-BASED ARCHITECTURE FOR SMART CITIES

In this section we enumerate the main challenges that most
current smart cities still have to face. Then, motivated by
these challenges, we make a proposal of a general IoT-based
architecture for smart city applications.

A. Challenges of Smart Cities

The global challenges that smart cities still have to face can
be summarized in the following way:

Sensors integration and abstraction capability. Provide
means to integrate different sensor types in a common
platform taking into account the different technologies,
legacy systems and communication protocols with focus
on IPv6 solutions.

Individual intelligence and local reasoning. Apart from
data fusion, more complex data processing can be imple-
mented by smart objects.

Learning and adaptation. Most of the patterns generated
in smart cities are sensitive to contextual changes and
are able to learn and adapt themselves to such changes
as well as to human dynamicity.

Dynamic human centric services. This work designs and
implements smart mobility and smart building services
that use the patterns generated to provide customized and
efficient services taking into account the dynamicity of
the citizens’ behavior.

User privacy and security control mechanisms. In the
context of smart cities it is important to manage the way
the user is able to control its data and how they are
exposed to third parties and applications.

B. IoT-based Architecture

Several layers compound the proposed platform that was
created with the goal of serving to many applications of
smart cities. In Figure 1 is depicted this layered IoT-based
architecture, which are detailed below.

1) Technologies Layer: In the basis part of Figure 1 it is
observed that a plethora of sensors and network technologies
provide the input attributes using wireless sensor networks,
wired sensors, gateways, etc. which can be self-configured and
remotely controlled through the Internet. Dealing with our first
application that consists on the instantiation of the architecture
for building management systems (BMS), in this layer it is
gathered information from sensors and actuators deployed
in strategic points of the building. But the aforementioned
data sources in smart cities are not limited to static devices
reporting measurements associated to a particular location,
there are also moving ones capable to deliver measurements
at different points within a geographical area. This is mainly
due to the rapid development of wireless technology, mobile
sensor networks and, above all, the advent of smartphones [5].
Although approaches based on mobile-phone sensing require
a demanding usage of the communication, location and other
attributes of the smartphone, which can bother some people
due to battery draining [6], data captured by static, mobile
and smart-phone sensors can be extended or enriched with the
data generated by several social-media channels - like Twitter
or Facebook - giving rise to a new generation of soft sensors
from which extract relevant knowledge [7]. As a result, an
alternative course of action aims at mining relevant knowledge
from users on the basis of non-intrusive ways to obtain data,
for example, transit cards in public transport scope.

2) Middleware Layer: The first layer provides us with a
wide variety of data, so it is needed a second layer where
all collected data from seamless sources are expressed in the
same way, this is done in the middleware layer. The context
information can be collected in an ontology defined according
to the model that represents the knowledge of the specific
application domain. Thus, for our energy efficiency semantic
model, the devices and building concepts are borrowed by the
SAREF ontology [8]. The agents representation is made using
the DUL ontology [9], while the observation values of the
monitored sensors are represented based on the SSN ontology
[10]. However, when it comes to process the incoming data
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in a real-time manner, it is necessary to use a lightweight
representation. As a matter of fact, [11] describes sensor-data
representation using a simple attribute-value schema for event-
based systems.

3) Management Layer: After having extracted information
from the previous layers, the management layer is in charge
of determining decisions bearing in mind the target services
provided in smart cities. Different big data analytic techniques
can be used for the intelligent decision making processes.
Algorithms like Artificial Neural Networks (ANNs) using
backpropagation methods [12] and Support Vector Machines
(SVMs) [13] are good to solve non-linear problems, making
them very applicable to build energy prediction issues, ranging
from those associated to lighting and heating, ventilation and
air condition (HVAC) [14] to the prediction of the heating
energy requirements [15]. For optimization problems in Build-
ing Management System (BMS) addressing energy efficiency,
Genetic Algorithms (GAs) constitute a commonly applied
heuristic that can be used in several optimization scenarios
such as scheduling cooling operation decisions [16]. Regarding
to the smart public transport application, the extraction of
users behaviors from transition records have been studied by
using different algorithms and techniques like maximum like-
lihood estimation [17], probabilistic models [18], conditional
random fields [19], graphical information system (GIS)-based
processing [20] or Database Management System (DBMS)-
based processing [21].

4) Services Layer: Finally, the upper layer (Figure 1) shows
some examples of smart city services that can be provided
following the proposed architecture. Thus, this architecture
can be applied to provide applications of smart cities like
environmental monitoring, energy efficiency in buildings and
public infrastructures [22], environmental monitoring [23],
traffic information and public transport, locating citizens,
manage emergencies, saving energy and other services. These
actions can either involve citizens or be automatically set.

ITI. SMART CAMPUS OF THE UNIVERSITY OF MURCIA

The University of Murcia (UMU) has three main campus
and several facilities deployed throughout different cities in
the Region of Murcia. One of these campus is currently
serving as pilot of two European Projects, the SMARTIE
[24] and the ENTROPY [25] project. The goal of this use
case of smart city is to provide a reference system able
to manage intelligently the energy use of the most relevant
contributor to the energy use at city level, i.e. buildings. The
BMS implemented as part of this smart campus adapts the
performance of automated devices through decisions made by
the system and the interaction with occupants in order to keep
comfort conditions while saving energy. We start by the most
representative source of energy consumption at building level:
HVAC systems.

A. System Overview

Using a BMS system, it is possible to predict users future
behaviour from their recorded activities that are measured
with sensors. This information allows us to provide convenient

environments looking for keeping their comfort while saving
energy. The first need for a building to become smart is to
know location of occupants. Once solved the indoor localiza-
tion problem, it is time to propose a solution to the energy
efficiency of buildings associated to the thermal comfort
provisioning service related to the HVAC management. For
this, energy consumption models of the building need to be
generated and used to implement the optimization mechanism
able to maximize comfort at the same time that energy
consumption is minimized. Therefore, the different problems
addressed in this scenario of smart city through the application
of big data techniques are:

1) Indoor localization estimation.

2) Building energy consumption prediction.

3) Comfort provisioning and energy saving through an

optimization problem.

In the following subsections these problems are described
with more details, as well as the techniques implemented and
the results obtained.

B. Indoor Localization Estimation

As well as considering the information concerning to the
identification and location of the building’s occupants, it is
necessary to reach the required accuracy in the location in
order to provide the indoor services in a comfortable and
energy efficient way. Our technological solution to cover the
localization needs (i.e. those required by smart buildings to
provide occupants with customized comfort services) is based
on a single active RFID system and several Infra-Red (IR)
transmitters. In Figure 2 we can observe the data exchange
carried out among the different technological devices that
compose our localization system.
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Figure 2: Localization scenario

The final mechanism implemented to solve the indoor
localization problem is shown in Figure 3. In this figure, we
can see that the first phase of the mechanism is the space
division through the installation of IR devices in the walls
of the building area where localization wants to be solved.
Therefore, for each space division, there is an IR identifier
value (I D;,) associated to this region. For each one of these
regions, we implement a regression method based on Radial
Basis Functions (RBF) networks. The RBF estimates user
positions given different RFID tags situated in the roof. Then,
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after the position estimation using the RBF network, a Particle
Filter (PF) is applied as a monitoring technique, which takes
into account previous user position data for estimating future
states according to the current system model.
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Figure 3: Data processing for location estimation

The PF used in this work is slightly different from its
generic definition (which can be found in [26]). The main
difference of our filter is in the correction stage. In this stage,
the generic definition of the PF applies the resampling using
the Sequential Importance Sampling (SIS) algorithm [26] to
carry out the filtering of such particles which minimize the
deviation of their predicted trajectory. In our implementation,
in addition to apply the SIS algorithm to correct the particles
positions, we also use in this step the information about the
specific IR region at a given instant of time to benefit those
particles which fall inside this area. Therefore, before applying
the SSI algorithm, we filter according to the coverage area of
the IR transmitter identified by the monitoring RFID tag. The
main advantage of this constraint is the faster convergence of
the filter, because extra information is available to carry out
the correction stage of the filter.

C. Building Energy Consumption Prediction

The energy performance model of our BMS is based on the
CEN Standard EN 15251 [27]. This standard proposes the cri-
teria of design for any BMS. It establishes and defines the main
input parameters for estimating building energy requirements
and evaluating the indoor environment conditions. The inputs
considered to solve our problem are the data coming from the
RFID cards of users, the user interaction with the building
automation system through the control panels or the web
access, environmental parameters coming from temperature,
humidity and lighting sensors installed in outdoor and indoor
spaces, the consumption energy sensed by the energy meters
installed in the building, and the generated energy sensed
by the energy meters installed in the solar panels deployed
in our testbed. After collecting the data it is mandatory to
continue with their cleaning, preprocessing, visualization and
correlation calculation in order to find determining features,
which can be used to generate optimal energy consumption
models of buildings (management layer of the architecture
presented in Section II). Over the input set, we perform the
standardization and reduction of data dimensionality using
Principal Components Analysis (PCA) [28], identifying the
directions in which the observations of each parameter mostly
vary.

Regarding the big data techniques that have been already
applied successfully to generate energy consumption models
of buildings in different scenarios (as such we mentioned
in the management layer of the architecture presented in

Section II-B3), we propose to evaluate the performance of
Multilayer Perceptron (MLP), Bayesian Regularized Neural
Network (BRNN) [29], SVM [30] and Gaussian Processes
with RBF Kernel [31]. They were selected because of the
good performance that all of them have already provided when
they are applied to building modelling. All these regression
techniques are implemented following a model-free approach,
which is based on selecting - for a specific building - the
optimal input set and technique, i.e. such input set and tech-
nique that provides the most accurate predictive results in a test
dataset. In order to implement this free-model approach, we
use the R [32] package named CARET [33] to train the energy
consumption predictive algorithms, looking for the optimal
configuration of their hyper-parameters (more information can
be found in [34]). The selected metric to evaluate the models
generated for each technique using test sets is the well-known
RMSE (Root-Mean-Square Error), whose formulation appears
in Eq. (1). This metric shows the error by means of the quantity
of KWh that we deviate when predicting.

(D

But in order to get a better understanding of the uncer-
tainty of the model, we also show its coefficient of variation
(CVRMSE). This coefficient is the RMSE divided by the mean
of the output variable (energy consumption) for the test set (see
Eq. (2)), giving us a percentage of error adjusted to the data,
not just a number in general terms.

RMSE
Yy

CVRMSE = )

D. Optimization Problem

Once the building energy consumption is modelled, we
focus on the optimization of the HVAC operation trying
to keep comfort conditions at the same time that energy
consumption restrictions are considered. As starting point, we
establish the comfort extremes considering location type, user
activity and date [35]. Understanding the building thermal
and energetic profiles allows us to quantify the effects of
particular heating/cooling set point decisions. To derive a
heating or cooling schedule, it is necessary to formulate the
target outcome. In our buildings, it is possible to:

1) optimize the indoor temperature during occupation, i.e.
minimize the building temperature deviations from a
target temperature,

2) minimize daily energy consumption, or

3) optimize a weighted mixture of the criteria, a so-called
multi-objective optimization problem.

The definition of building temperature deviation influences
the results strongly: taking the minimum building temperature
will result in higher set point choices and higher energy use
than using, for instance, the average of indoor temperatures.
Constraints on maximum acceptable deviation from target
comfort levels or an energy budget can be taken into account
to ensure required performance. In our optimization problem,
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we apply GA using the implementation provided by R (the
“genalg” package [36]), to provide schedules for heating/cool-
ing setpoints using the predictive building models (comfort and
energy consumption models).

E. Evaluation and Results

1) Scenario of Experimentation: The reference building
where our BMS for energy efficiency is deployed is the
Technology Transfer Centre (TTC) of the UMU'. Every room
of this building is automated through a Home Automation
Module (HAM) unit. It permits us to consider a granularity at
room level to carry out the experiments.

2) Evaluation. Indoor localization mechanism: Different
tracking processes are carried out in the environments con-
sidered in our tests (the TTC building), applying for this
the implementation of our PF. In Figure 4 an example of
some tracking processes are carried out considering transition
between different spaces of the TTC. For these paths, our
system was configured to acquire data every 7' = 10 s. Taking
into account the target location areas involved in comfort
provisioning (lighting and thermal comfort, represented in
different colors), and the real and estimated location data
provided by our mechanism.

mm Reference RFID Tags <« Real Trayectory

< IR Transmitter Y Estimated Trayectory

Figure 4: Tracking processes with a reference tag distribution
of Im x Im

Thus, with a 1m x 1m distribution of reference RFID tags
placed on the roof of the test room, a 65% success percentage
in localization is obtained having an error lower than 1m.
98% of cases have as much 2.5m. of error. Therefore, it
can be safely said that our localization system is able to
track users with a sufficient level of accuracy and precision
for the location requirements associated with the comfort
and energy management in buildings. More details about this
indoor localization system can be found in [37].

3) Evaluation. Energy consumption prediction: In Figure
5(a) it is shown the correlation heatmap between the electrical
consumption of the TTC building and the outdoor environ-
mental conditions. It is observed that energy consumption
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Figure 5: Modeling results

correlates significantly (o = 0.95) and positively with tem-
perature, radiation, wind speed variables, vapour pressure
deficit and dew point; and negatively with wind direction
and humidity variables. This means that we can use safely
these variables as inputs of the energy consumption model
of our reference building, because they have clear impact in
the energy consumption. Otherwise, precipitation is so unusual
that they don’t have an association with the output.

Also, a logic differentiation between temporal situations
has been considered in order to label behaviour. Situation 1:
holidays and weekends; situation 2: regular mornings; and,
situation 3: regular afternoons. The non-parametric Kruskall
Wallis test shows that energy consumption differs significantly
between situations (H(2) = 547.7, p < 0.01). Also, the post hoc
pairwise comparisons corrected with Holm’s method retrieve a
p-value smaller than 0.01, supporting the decision of creating
3 different models [38]. Thus, for each of the three situations
identified for the TTC building, we have evaluated not only the
punctual value of RMSE, but also we have validated whether
one learning algorithm out-performs statistically significantly
the others using the non parametric Friedman test [39] with
the corresponding post-hoc tests for comparison.

Let xf be the i-th performance RMSE of the j-th al-
gorithm, for this building, we have used 5-times 10-fold
cross validation, so i € {1,2,...,50} and four techniques,
so j € {1,2,3,4}. For every situation, we find significant
differences (o« = 0.99) between every pair of algorithms,
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except for SVM and Gauss RBF (p > 0.01), as it is shown in
Figure 5(b) for the particular case of situation 2.

The three models have in common that BRNN yields a
better result than the other tested techniques, based on the
RMSE metric. Thus, BRNN is able to generate a model with a
very low mean error of 25.17 KWh - which only represents the
7.55% of the sample (this is the most accurate result) in terms
of the CVRMSE. And for the worst case, BRNN provides a
mean error of 43.76 KWh - which represents the 10.29% of
the sample in the reference TTC building - that is acceptable
enough considering that our final aim is to save energy.

4) Evaluation. Optimization mechanism: To evaluate our
GA-based optimization strategy, controlled experiments were
carried out in the TTC building with different occupant’s
behaviours. The results show that we can accomplish energy
savings between the 15% and 31%. Trying to validate the
applicability of our proposal, we have also made experiments
in a different scenario with limited monitoring and automation
technologies, achieving energy saving of about the 23%.

IV. PUBLIC TRAM SERVICE OF MURCIA CITY

The second scenario is focused on the information analysis
related to use of the tram service of the Region of Murcia
[40]. In this case, the main goal was to perform a profiling
process of the trips carried out by the users of such public
service. For that aim, a fuzzy clustering algorithm is used to
automatically extract tram user’s profiles. Bearing in mind the
architecture introduced in Section II, this system is enclosed
in the management layer. The main tasks needed to reach the
goal are explained in the following subsections.

A. Generation of the trip data set

According to the tram experts, information relevant to trip
profiling must include data about: time (in terms of day of
the week and time of the day), origin and destination stations
and approximate age of the traveller. This information is
being continuously recorded in different databases of the tram
service. Nevertheless, certain operations of joining, transfor-
mation and preprocessing (discretization and numerization)
have been performed in order to compile all this information
into a set of tuples susceptible of feeding the subsequent fuzzy
clustering algorithm. The two most remarkable operations are
the following:

On the one hand, according to the infrastructure of the tram
service, users only need to swipe the smart card when they get
into the tram. Hence, the recorded data only comprises trans-
actions at the origin of each user’s trip so it can be regarded as
incomplete. In order to deal with this incompleteness, a well
known solution is the trip-chaining method which focus on
recovering the origin and destination of the trips. In this case,
such a method is based on the assumption that a traveller who
takes the tram at an origin station, OS, ended their previous
trip on that station OS. Due to the event-based nature of the
card records, the Complex Event Processing (CEP) paradigm
[11] was adopted to come up with a palette of event-condition-
action rules to uncover the trips. While the condition part of
the rules performs a match between consecutive records of

the same traveller following the aforementioned trip-chaining
method, the action part generates a new trip tuple (comprising
the origin and destination stations) in case the condition is
fulfilled.

On the other hand, as clustering techniques are based on
distance calculations among data, a set of numbered (and
ordered) geographical areas, each one covering some close
stations are identified by the tram experts. Then, instead of
having nominal values for origin and destination features these
numbered areas make it easier to calculate the distance about
tuples in the clustering process.

In summary, the tuples composing the data set for the
subsequent clustering task are composed by the following
attributes: tt.:{travellerAge, dayOfTheWeek, hourOfTheDay,
originArea, destArea)

B. Trip profiling

Clustering mechanisms are suitable when it comes to find
out the most representative trips profiles. For that aim, the
Gustafson-Kessel Clustering Method (GKCM) has been cho-
sen since it is able to identify arbitrarily oriented ellipsoidal
fuzzy clusters unlike, for instance, the Fuzzy C Means clus-
tering Method, which impose spherical shapes to the data
clusters. After the clustering task the identified prototypes
(centroids) will summarize the whole data set of trips. GKCM
requires to be supplied with the quantity of potential clusters
(c). This is an important parameter since it determines the abil-
ity of the potential centroids to represent the real underlying
structure of the data.

Therefore, several GKCM executions were performed with
different values of ¢ and the goodness of the different identified
set of clusters was measured. One of the most used measure-
ment is the one proposed in [41] and denoted here as 7.
This magnitude quantifying both the total compactness within
clusters and the total separation among them being the greater
the better.

Once the number of clusters c has been decided on the basis
of r.s, GKCM is executed in order to find the ¢ profiles that
best represent the trip data set. Nevertheless, when exceed a
time tPy,q, Or a number of trips nt,,q, the algorithm is re-
computed in order to detect new profiles which could rise up.

C. Evaluation and Results

The subject of evaluation is the tram service of the region
of Murcia (Spain), which includes 18-km railway and 28
stations (see Figure 6). Figure 7 depicts the set of predefined
geographical areas used in the experiment.

The evaluated dataset contained 378719 trips from 23400
users in November, 2013. For our experiment, the system
was able to uncover 110697 trips. Expert knowledge was
used to define the types of days and times of the day used
in the aforementioned data pre-processing step as [Monday-
Thursday, Friday, Saturday, Sunday] and [0-6, 6-10, 10-12,
12-16, 16-20, 20-00]. As a result, a generated 77, dataset
was split up into 4 different subsets based on the fact that
traveller profiles depend on the day of the week (regarding, for
example, differences of traffic flow between regular workdays
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Algorithm 1: Cluster-based Trip profiling process.

Input: TT: dataset of raw trip tuples.
Output: Ppr: Traveller profiles extracted from 77T
1 if tnow - tp'rev > tpmax \ | TT ‘ - ‘ TTprev |> ntmam
then
TT, < preProcessing(T'T)
foreach ¢ € {2, .., ¢pqs } do
clust, = GKCM(TT,, c)
if clust..r.s < ™" then
rg';i” < clust..res
L Pro < clust..centroids

N S R W

tprev <_ tnow
TTprey < ITT
10 return Prr

e e

Figure 6: Line map of the tram service in Murcia.

7-Campus Il

5-Campus |

6-Outskits Il 1- Shopping malls

4-Outskits II

2-Outskits |

/ 3-City Center

Figure 7: Geographical regions for the numerization of tuples’
station fields.

and weekends). Next, the GKCM was launched with each of
these subsets with different number of clusters.

In Figure 8, the cluster validation ratio r.s is shown for
every 1T, subset, being the lower value the better. As it can be
observed, while the optimal cluster partition is reached at ¢ =
5 for the Monday-Thursday subset, for the remaining subsets
minima r.s values are reached at higher number of clusters
c. In other words, a higher number of profiles is needed to
represent the weekend trips. This is reasonable given that most

Monday-Thursday —+—
Friday

8 Saturday - [

\ Sunday &

Xie and Beni’s index
B

2 4 6 8 10 12 14
Number of clusters

Figure 8: Cluster-validation rate for different cluster partitions.

people postpone leisure activities to the weekend and given
that there exist a quite variety of leisure activities that can be
done at different hours of the day.

As Table 1 shows, GKCM extracts five profiles for Monday-
Thursday trips. Profiles 1 and 2 correspond to young people
travelling in the morning to go towards one of the university
zones from the station close the inner city. Besides, profile
5 represents a kind on traveller going back home from the
university from 4 to 8 PM. Finally, profiles 3 and 4 correspond
to middle-young age people (28-33 years) that take the tram
around the outskirts and city center environments. These could
reflect people going from residential areas.

Lastly, the heatmap shown in Figure 9 represents the mem-
bership of the Monday-Thursday trips to the defined profiles.
If we interpret this plot as a time-framed sequence, a great
amount of the traffic focuses on the right side of the line, which
connects the city center and the university areas. Nevertheless,
such load is more spread along the whole line during the
evening.

V. DISCUSSION

In this paper we propose a general IoT-based architecture
which can be implemented for different applications of smart
cities. This architecture is modeled in four layers, being the
third one - the management layer - the layer where big data
techniques are implemented to provide the different services
offered then in the corresponding service layer (last layer).

The big data paradigm can be understood through the lens of
7 V’s [42] (challenges). Regarding the application of different
big data techniques to the specific scenarios of smart cities
presented in this paper, we have overcame the challenge
of velocity by collecting data hourly in the smart building
application (consumption of energy, outdoor environmental
conditions) and even in sorter intervals of time for the public
transport application (many people validates their transit cards
within seconds). Although we haven’t tackled volatility, it
is clearly a goal when looking for the real-time smart city
because behavioural scenarios like ours change depending on
many social aspects. The veracity of the data is guaranteed by
the exhaustive pre-processing steps included in the modeling
process. We have extracted value, making sense of the wide
mentioned variety of data, and with the described analysis
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Profile Age \ Origin Area \ Dest. Area Time of the day
P1 23.37 City Center Campus | 0-6
P2 25.74 City Center Campus | 6-10
P3 28.22 Outskits Il City Center 12-16
P4 32.77 Outskits | Outskits Il 6-10
P5 22.20 Campus | City Center 16-20

(P1)

Table 1: Monday-Thursday trips’ profiles.

(P2)

(P3)

(P4)

i

(P5)

Figure 9: Tram-line heat-map of the five profiles for Monday-Thursday trips.

Smart City
Application

Data

Information

Knowledge

Services

Smart Campus

IR Sensors. RFID
tags. Environmental
Sensors. Weather
Station. Presence
Sensors. Energy

Data Transformation
through SAREF
ontology [8], DUL
ontology [9] and

Data Modelling.
Predictive
Regression (RBFs,
SVM, ANN, RF,
ARIMA). Tracking

Indoor localization.
Building energy
consumption
prediction. Energy
saving through the

Consumption algorithm (PFs). .
Meters. Weather SR @ilteleg |10 Optimization H\(/)Agn?igz{;:fn
Forecast Mechanism (GA) P
Mobile Sensors CEP-based filtering. Infrastructure
Public Tram Service ) Event Processing in Fuzzy Clustering monitoring. Mobility
Smart Cards )
Action [11] patterns.

Table 2: Main features of the two architecture instantiations

and techniques, we have validated their usability for solving
different problems of smart cities with high accuracy.

In both applications tackled in this paper, the huge volume
of historical data is being stored using a NoSQL data base.
At the moment, the storage system is been adapted so as to
be compliant with the FI-WARE architecture?, that intends to
ease the development of novel applications based on the Future
Internet. In particular, the Orion Context Broker (OCB)? and
the COMET* modules are used in order to store in a NoSQL
repository the historical data comprising the measurements
from the different data sources.

On the whole, both instantiations of the architecture de-
scribed above are summarized in Table 2. In the next subsec-
tions we summarize the main benefits obtained after applying
the most suitable big data techniques to the two scenarios of
smart cities addressed in this work.

A. Benefits of Big Data Applications in Smart Buildings for
Energy Efficiency

Here we summarize the main findings extracted from all the
experiments and analysis carried out during the application of
big data techniques to the smart campus of the UMU.

2https://www.ﬁware.org [Available Feb. 2016]

3http://catalogue.fiware.org/enablers/publishsubscribe-context-broker-
orion-context-broker [Available Feb. 2016]

“https://github.com/telefonicaid/fiware-sth-comet. [Available Feb. 2016]

1y

2)

3)

The resolution of the indoor localization problem.
Applying regression techniques based on RBFs and a
tracking algorithm applying PFs to data coming from
RFID and IR sensors installed in buildings, it was
possible to solve the indoor localization problem with a
mean accuracy of 1.5 m. Then, indoor localization data
can be used to provide customized services in buildings.
The resolution of the building energy consumption
estimation. Applying PCA and BRNN techniques to
data related to outdoor environmental conditions and
energy consumption of buildings, it was possible to gen-
erate energy consumption predictive models of buildings
with a very low mean error of 43.76 KWh - which only
represents the 10.29 % of the sample - in the worst case.
Then, energy consumption predictions can be used to
design the optimal strategies to save energy in buildings.
The resolution of the optimization problem related to
the maximization of thermal comfort and minimiza-
tion of energy consumption in buildings. Applying
optimization methods based on GAs to optimize the
energy consumption of buildings meanwhile comfort
conditions are satisfied, and after including user localiza-
tion data and user comfort preference prediction, it was
possible to get energy savings in heating of about 23%
compared with the energy consumption in a previous
month without any energy BMS.
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B. Benefits of Big Data Applications in Urban Pattern Recog-
nition to Improve Public Tram Service

After applying Big Data techniques to the urban pattern
extraction in the public tram service, all the results from
the experiments allowed the service staff to draw up quite
interesting conclusions. These are summarized below:

1) Regarding the resolution of the trip extraction. The
formal discovery of the stations’ load in terms of trips’
origin and destination would allow the service provider
and the city council to better plan the whole public
transport service of the city. This way, the more impor-
tant stations might be considered as “hub* points where
commuters can easily transfer from tram to another
kinds of transport. Moreover, such an information could
be also useful so as to forecast future infrastructure
needs in each part of the tram line (e.g. location and
number of places of new parking lots for bicycles close
to tram stations).

2) Concerning the resolution of the urban profiles
generation. Experiments pointed out the importance
of undergraduates as tram users. Hence, most of the
traffic load concentrated in the line between the city
center and the campuses. This was really helpful in
order to design promotional campaigns for these type
of travellers. Moreover, results also confirmed that the
line segment towards the shopping-mall areas was under-
used. Thus, campaigns to promote the use of the tram
to go shopping was also considered.

VI. CONCLUSIONS AND FUTURE WORK

This paper displays the benefits of applying big data tech-
niques over data originated by IoT-based devices deployed in
smart cities. A general architecture modelled in four layers is
proposed to be applied in smart city applications considering
big data issues. As part of this overview, a differentiation
between static and mobile data sources is made, proposing
for each one of them suitable techniques to extract relevant
knowledge from their data. Then, we describe two big data
applications for smart city services. Specifically, the services
of energy efficiency and comfort management in the buildings
of a smart campus, and the public transport service of a city.
In the first scenario of smart city we have demonstrated that,
after applying appropriate big data techniques to problems
like indoor localization, energy consumption modeling and
optimization, we are able to provide mean energy savings of
23% per month, while indoor comfort is ensured. Regarding
to the urban pattern recognition carried out using data related
to the public tram service of the city of Murcia, experiments
were performed to confirm that the proposed patterns ended
up being of great interest for the service provider in order to
better understand how travellers make use of the transportation
system. This was fairly useful in order to come up with better
planning protocols and more tempting promotional campaigns.

The ongoing work is focused on the inclusion of people
behaviour during the operational loop of this kind of systems
for smart cities. Thus, for the case of smart building appli-
cations, users will be encouraged to participate in an active

way through their engagement to save energy. On the other
hand, in the case of the public tram service, data coming
from crowdsensing initiatives will be integrated to improve
the estimation of the urban mobility patterns.
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