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 

Abstract — The estimation of nutrient content of plants is 

considerably important in agricultural practices especially in 

enabling the application of precision farming. A plethora of 

methods have been used to estimate nitrogen amount in plants, 

including the utilization of computer vision. However, most of the 

image-based nitrogen estimation methods are conducted in 

controlled environments. These methods are not so practical, 

time consuming and require many equipment. Therefore, there is 

a crucial need to develop a method to estimate nitrogen content 

of plants based on leaves images captured on field. It is a very 

challenging task since the intensity of sunlight is always changing 

and this leads to an inconsistent image capturing problem. In this 

research, we develop a low-cost, simple and accurate approach 

image-based nitrogen amount estimation. Plant images are 

captured directly under sunlight by using a conventional digital 

camera and are subject to a variation in lighting conditions. We 

propose a color constancy method using neural networks fusion 

and a genetic algorithm to normalize various plant images due to 

different sunlight intensities. A Macbeth color checker is utilized 

as the reference to normalize the color of the images. We also 

develop a combination of neural networks using a committee 

machine to estimate the nitrogen content in wheat leaves. Twelve 

statistical RGB color features are used as the input parameters 

for the nutrient estimation. The obtained result shows 

considerable better performance than the conventional gray-

world and scale-by-max approaches, as well as linear model and 

single neural network methods. Finally, we show that our 

nutrient estimation approach is superior to the commonly-used 

SPAD (soil-plant analysis development) meter based prediction. 

 
Index Terms— computational intelligent image processing, 

neural networks, committee machines, adaptive learning, color 

normalization, agriculture engineering 

I. INTRODUCTION 

ECENTLY, precision farming has become a topical 

agricultural issue. This concept aims to increase 

productivity as well as to minimize production costs and 

negative impacts to environment [1]. The precision farming 
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model, therefore, will lead to a more efficient application with 

regards to farm resources, such as water, seeds, chemicals and 

fertilizers. In order to support this idea, it is important to 

estimate the nutrient status of the plants to improve the 

efficiency of fertilizer use. Nitrogen (N) is one of the nutrients 

needed in large amounts by plants to ensure growth. This 

element is a component of chlorophyll, which has an 

important function in photosynthesis. 

According to [2], there are four common methods utilized 

to assess nitrogen content in a plant, i.e. chemical and 

combustion test, normalized difference vegetation index 

(NDVI), SPAD (soil plant analysis development) meter, and 

leaf color chart. Nowadays, due to recent developments in 

computer vision, image-based analysis to estimate nutrient 

status has been extensively used by numerous researchers due 

to its rapid and easy data acquisition [3]. This method can be 

used either to detect nutrient deficiency [4], [5] or to estimate 

nutrient amount [2], [6]. However, most of the image-based 

nutrient estimation approaches are conducted in a controlled 

environment, such as in a closed box with an artificial lighting 

system [6], [7]. These methods are not so practical, time 

consuming and require some additional equipment. Such 

method cannot be applied on-field since the intensity of 

sunlight is always changing and this will lead to an 

inconsistent image capturing problem, which motivates the 

research direction of the present paper. There are a number of 

challenges in estimating the nutrient content of plants based on 

images captured on fields, including the effect of various 

sunlight concentrations, as well as how to normalize images so 

that all the images captured under both high and low light 

intensities have small color variability. Note that color images 

change dynamically with the change of light intensity.  

In this paper we develop a low-cost, simple and accurate 

approach to estimate the nitrogen content in wheat leaves 

based on leaf images that are captured on-field under sunlight 

using a conventional digital camera. As seen in Fig. 1, wheat 

plants from the same field with the same fertilizing level will 

appear different when the light intensity from the light source 

is different. Such images cannot be used directly in a nutrient 

estimation as they are acquired under a different illumination. 

The images, therefore, need to be normalized so that they can 

be used for comparison and estimation. After image 

normalization, the color difference of the wheat leaves is 

solely caused by the different fertilizing level. In general, the 
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less nitrogen fertilizer applied to plants, the lighter the green 

color of the leaves. The next step is image segmentation and 

features extraction. In this step we apply neural network to 

distinguish wheat leaves as the object of interest from other 

images, such as soil, weeds, dried leaves, stems and stones. 

Twelve statistical features, i.e. first moment (mean), second 

moment (variance), third moment (skewness) and fourth 

moment (kurtosis) of each RGB color channel, are extracted 

from the segmented images as the nutrient estimation 

predictors. We propose the utilization of these statistical 

features as predictors, instead of single color channel from 

certain color model or combination of some color channels, 

since they signify color distributions in wheat leaves. In the 

nutrient estimation step, we develop a combination of a 

committee machine and a genetic algorithm from several 

neural networks with different hidden layer nodes to estimate 

nitrogen content. 

This paper considers the problem of regularized neural 

networks fusion and genetic algorithm based on-field nitrogen 

status estimation of wheat plants. Furthermore, the novel 

contributions of the proposed approach are concluded below. 

1) The problems of color variability due to various light 

intensities are handled by developing neural networks 

fusion, which are obtained from 24 color patches of the 

Macbeth color checker, and its combination with genetic 

algorithm (GA) for image normalization. In addition, the 

developed GA is used to determine weights of each 

neural network. 

2) In the nitrogen estimation step, we introduce four 

statistical features of each RGB color channels which 

represent the distribution of wheat leaves color as the 

inputs of the developed neural networks. 

3) In order to give the best results of the nitrogen 

estimation, we develop a committee machine to combine 

several neural networks and genetic algorithm based 

optimization to estimate nutrient content. 

This paper is organized as follows: experimental set is 

explained in the next section; the neural networks fusion and 

genetic algorithm based color constancy for image 

normalization is discussed in Section III; in Section IV the 

neural network based image segmentation and statistical color 

features extraction are described; the nitrogen content 

prediction using neural networks is explained in Section V; the 

results of the proposed method are presented and discussed in 

Section VI; and finally, concludes our research in Section VII. 

II. EXPERIMENTAL SETUP 

This research can be divided into three parts as depicted in 

Fig. 2. Each part will be explained more detail in the following 

sections. 

A. Experimental Materials and Design 

In order to produce variations in nitrogen levels, an 

experiment in relation to wheat plants with various fertilizer 

amounts is established. This experiment was conducted at 

Nafferton experimental farm, Newcastle University, from 

April to June. The treatments were set to three different 

fertilizer amounts, i.e. 0 (N1), 85 (N2), 170 (N3) kg/ha of 

NH4NO3 with each treatment replicated four times. Hence, 

there are 12 plots with each plot being 20 m  20 m in 

dimension. The data collection was undertaken in three 

different sessions i.e. one week prior to fertilizing, and two 

and four weeks after fertilizing. Therefore, in total 36 samples 

were used in this research. 

B. SPAD meter readings 

The SPAD meter readings were conducted on 30 leaf 

samples in each plot. The value displayed on the SPAD meter 

screen signified the chlorophyll content of the leaf, which is 

strongly correlated with the nitrogen content. The SPAD 

values of the 30 leaves on one plot were then averaged, in 

order to obtain the SPAD value of the plot. Therefore, there 

are 12 SPAD values for 12 samples in one data collection 

time. In total, there are 36 SPAD values used for comparison. 

                 
(a)             (b) 

 

 
(c) 

  
Fig. 1.  Examples of wheat plant images captured under different sunlight 

intensity: (a) low light intensity, (b) medium light intensity, and (c) high light 

intensity. 

  
Fig. 2.  Flowchart of the whole research. 
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C. Combustion Method based Nitrogen Analysis 

The actual nitrogen content is measured using an Elementar 

Vario Macro Cube. Prior to nutrient analysis, 50-60 leaves per 

plot were taken as samples. These samples were then dried in 

a cabinet oven dryer at a temperature of 80
o
C for 2 days. 

Subsequently, the dried samples were ground in an electric 

grinder at 14,000 rpm to pulverize the samples into powder.  

For the nitrogen analysis, a sample weight of approximately 

100 mg was required, which was weighed into a tin foil cup. 

The cup was then folded and squashed into a pellet to expel 

the air. This analysis involved the combustion method by 

burning the sample with a certain amount of oxygen. The 

nitrogen element was analyzed and a percentage figure 

subsequently obtained. 

D. Image Acquisition 

Under sunlight the crop samples images were 

indiscriminately captured at 10 points on each plot. Thus, 

related to image acquisition, we obtained 360 images for 12 

plots during three specific times (days). The light intensity of 

the sun during this experiment ranged from around 8 to 80 

Klux with the image data collection time being from 10 am 

until 2 pm. This means that the color of the sunlight was 

relatively white, compared to its color in the morning or in the 

evening, when it is quite reddish or yellowish. All images 

were captured from the top of the plants in a distance of 10-20 

cm using a common digital camera (Sony DSC-W55). The 

images were recorded at a resolution of 1632  1224 pixels 

and subsequently down sampled to 448  336 pixels to assist 

with the effectiveness of the image processing. 

III. NEURAL NETWORKS FUSION AND GENETIC ALGORITHM 

BASED COLOR CONSTANCY FOR IMAGE NORMALIZATION 

The changes in sunlight intensity will lead to different 

appearances in the plant images. The images, therefore, need 

to be equalized as if they are acquired under the same light 

intensity, in order to perform a reliable comparison of the 

images. In this research, a 24-patch Macbeth color checker has 

been utilized for the neural network based color constancy to 

normalize images. The Macbeth color checker is a square card 

that consists of 24 patches of color samples which represent 

natural objects, chromatic, primary and grayscale colors, 

which are arranged in four rows (Fig. 3). Neural networks 

have been used widely in various industrial applications, such 

as wind power plants [8], transportation [9], robotics [10], and 

marine [11]. Neural networks are also used in digital signal 

processing [12], [13] and electronic applications [14], [15]. 

Color constancy is an ability to correct the color deviations 

of an object due to differences in lighting conditions. 

According to [16], image colors are significantly affected by 

the direction and intensity of the light source, as well as 

illuminant color. Furthermore, countless research has been 

conducted to overcome the problem of color constancy [17]–

[19]. In this paper, our color constancy concept differs from 

previous works given that the images are acquired under 

unconstrained daylight, as mentioned in Section II.D. This 

poses a more difficult challenge as plant images captured 

under various light intensities have to be corrected to a 

standard image that is captured under a standard light 

intensity. 

Our proposed method of neural networks fusion and genetic 

algorithm for image normalization is described below. First, 

the image of the Macbeth color checker is captured under 

sunlight using the digital camera and subject to variations in 

light intensity. The measured light intensity had a range of 7 to 

82 Klux. The 50 Klux is considered to be the standard (target) 

light intensity and the remainder as the input light intensity. In 

total there are 164 input images (range of 7 to 48 Klux and 52 

to 82 Klux) and five target images (range of 49-51 Klux). 

Each image is consequently cropped twice on each patch with 

a cropping size of 95 × 72 pixels. The average RGB color 

value of each patch of the cropped input images is then 

calculated. The average RGB value of each patch of the target 

images is obtained from five images. Thus, we have 24 

datasets of input-target RGB color from 24 patches and with 

each patch consisting of 328 (= 164 × 2) RGB color samples. 

All the datasets are consequently combined to produce one 

large dataset for neural networks fusion. This new dataset, 

thus, consists of 7872 (= 328  24) RGB color samples. The 

single neural network for each color patch developed in this 

research is a multilayer perceptron (MLP), which contains one 

hidden layer, three nodes of input and output layers of red, 

green and blue color channels. MLP is a well-established 

neural network that can be used for classifier [20] as well as 

nonlinear model prediction [21]. The cost function is based on 

minimizing the mean square error (MSE) between the targets 

and the outputs of the MLP. The number of hidden layer 

nodes in each network is determined by applying the formula 

developed by [22] as follows: 

 

𝑛ℎ = (
𝑛𝑖+𝑛𝑜

2
) + √𝑛𝑝        (1) 

 

where 𝑛𝑖, 𝑛ℎ and 𝑛𝑜 are the number of input, hidden and 

output layer nodes, respectively, and np is the number of input 

patterns in the training set (number of training samples).  

According to Eq. (1), the number of hidden layer nodes for 

each neural network is 92 nodes (𝑛𝑖 = 3,𝑛𝑜 = 3, 𝑛𝑝 = 7872). 

However, we found that this method serves only as a guide 

and does not always provide the optimal number of hidden 

nodes. In this paper, we propose a new method that optimizes 

the MSE and imposes a smooth regularization on the weights 

of the hidden nodes in addition to implementing (1). To this 

end, we focus on the following smoothness function [15]: 

 
 
Fig. 3.  Macbeth color checker. 
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Ω =
1

2
∫ 𝛶(𝑿)‖𝜕𝑘𝐺(𝑿) 𝜕𝑿𝑘⁄ ‖𝑿 𝜕𝑿     (2) 

 

develop the weighting function 𝛶(𝑿) that ensures the above 

integral converges and subsequently determines the region of 

the input space over which the MLP mapping 𝐺(𝑿) is required 

to be smooth by making the thk order derivative of 𝐺(𝑿) with 

respect to input  𝑿 small. The larger the value of 𝑘, the 

smoother the mapping 𝐺(𝑿) will become. We propose the 

following mixture of Gaussian functions: 
 

𝛶(𝑿) =
1

𝑄
∑

1

(2𝜋)𝑁 2⁄ |𝑹|1/2

𝑄
𝑘=1 exp [−

1

2
(𝑿 − 𝑿𝑘)𝑇𝑹−1(𝑿 − 𝑿𝑘)] (3) 

 

so as to capture the local variation of the input space where 

{𝑿𝑘}𝑘=1
𝑄

 are a set of input data points and that using 𝑹 = 𝜎2𝐈, it 

is required that 𝜎 be selected small such that  

 

lim𝜎→∞ ∑
1

(2𝜋𝜎2)
𝑁 2⁄

𝑄
𝑘=1 exp [−

1

2𝜎2
‖𝑿 − 𝑿𝑘‖2] = 𝛿(𝑿 − 𝑿𝑘)  (4) 

 

where 𝛿(∙) is the delta function. The above integral can be 

approximated as 

 

Ω ≈
1

2
∑ 𝑤𝑗𝑘

2 ‖𝒗𝑘‖𝑝
𝑗,𝑘        (5) 

 

where 𝒗𝑘 = [𝑣𝑘1 𝑣𝑘2
⋯ 𝑣𝑘𝑛ℎ] is the 𝑘-th row of weight 

matrix 𝑽 connecting the input to the hidden nodes, ‖∙‖𝑝 is the 

p-norm. The simple algebraic form of Ω enables the direct 

enforcement of smoothness without the need for costly Monte-

Carlo integrations. The derivatives of the weighting function 

Ω with respect to the parameters 𝑤𝑗𝑘  and 𝑣𝑖𝑗  have been 

derived as follows: 

 
𝜕Ω

𝜕𝑤𝑗𝑘
= 𝑤𝑗𝑘‖𝒗𝑘‖𝑝        (6) 

and 
𝜕Ω

𝜕𝒗𝑘
=

𝑝

2
(𝒗𝑘)𝑝−1 ∑ 𝑤𝑗𝑘

2
𝑗        (7) 

 

The steps taken in the MLP neural network can be 

described as follows: 

1. Normalize inputs (𝑋𝑖) 

RGB input colors should be normalized by dividing their 

values with the maximum value 255. Thus, 𝑋1 =
R

255
, 𝑋2 =

G

255
, 𝑋3 =

B

255
;  𝑋𝑖[0, 1], 𝑖 =  1, 2, 3. 

2. Initialise all weights (𝑣𝑖𝑗  and 𝑤𝑗𝑘) 

Set weights related to hidden and output layers to small 

random values (between -1 to 1). Thus 𝑣𝑖𝑗 , 𝑤𝑗𝑘 [−1, 1], 

𝑖, 𝑘 = 1, 2, 3;  𝑗 = 1, 2, 3, … , 𝑛ℎ where 𝑛ℎ is the number of 

hidden unit. 

3. Calculate activation function (forward propagation) 

In the multilayer perceptron neural networks, outputs of 

one layer become inputs of the next layer.  

 

𝑍𝑗 = 𝑓(1)(𝜃𝑗
(1)

+ ∑ 𝑋𝑖𝑣𝑖𝑗
3
𝑖=1 )     (8) 

𝑌𝑘 = 𝑓(2)(𝜃𝑘
(2)

+ ∑ 𝑍𝑗𝑤𝑗𝑘
𝑝
𝑗=1 )     (9) 

 

where 𝜃𝑗
(1)

 is the bias on hidden unit j and 𝜃𝑘
(2)

is the bias 

on output unit 𝑘, 𝑍𝑗 is the output of hidden unit j, and 𝑌𝑘 is 

the output of output unit 𝑘. In this research, we use 

sigmoid activation function with regards to the hidden 

layer (𝑓(1)) and linear function for the output layer (𝑓(2)) 

to gain the output signal for each layer. 

4. Calculate the networks error (backward propagation) 

 

𝛿𝑘
(2)

= (𝑇𝑘 − 𝑌𝑘)𝑓′(2)(𝜃𝑘
(2)

+ ∑ 𝑍𝑗𝑤𝑗𝑘
𝑝
𝑗=1 )    (10) 

𝛿𝑗
(1)

= (∑ 𝛿𝑘
(2)

𝑤𝑗𝑘
3
𝑘=1 )𝑓′(1)(𝜃𝑗

(1)
+ ∑ 𝑋𝑖𝑣𝑖𝑗

3
𝑖=1 )  (11) 

 

where 𝑇𝑘 is the target of unit 𝑘, 𝛿𝑘
(2)

 is error correction for 

output layer weights and 𝛿𝑗
(1)

 is error correction for hidden 

layer weights. 

5. Update all weights and biases 

Compute weights and biases of 𝑛-th iteration using the 

following formulae: 

 

𝑤𝑗𝑘(𝑛) = 𝑤𝑗𝑘(𝑛 − 1) + 𝜂1(𝛿𝑘
(2)

𝑍𝑗 + 𝜂2𝑤𝑗𝑘‖𝒗𝑘‖𝑝)  (12) 

 

𝑣𝑖𝑗(𝑛) = 𝑣𝑖𝑗(𝑛 − 1) + 𝜂1 (𝛿𝑗
(1)

𝑋𝑖 + 𝜂2
𝑝

2
(𝒗𝑘)𝑝−1

∑ 𝑤𝑗𝑘
2

𝑗 )(13) 

 

𝜃𝑘
(2)(𝑛) = 𝜃𝑘

(2)(𝑛 − 1) + 𝜂1(𝛿𝑘
(2)

+ 𝜂2𝑤𝑗𝑘‖𝒗𝑘‖𝑝)  (14) 

 

𝜃𝑗
(1)(𝑛) = 𝜃𝑗

(1)(𝑛 − 1) + 𝜂1 (𝛿𝑗
(1)

+ 𝜂2
𝑝

2
(𝒗𝑘)

𝑝−1
∑ 𝑤𝑗𝑘

2
𝑗 )(15) 

 
where 𝜂1 is a fixed learning rate while 𝜂2 = 1 𝑛 ⁄ is a adaptive 

learning rate that reduces exponentially. The stability of the 

neural network weights update equations can be analyzed by 

utilizing the mean-value theorem and introducing the 

Nussbaum function as proposed in [23], [24]. 

6. Repeating the cycle. 
The above processes (no. 3–5) are repeated until one of the 

following conditions is reached: 
a. The maximum number of iteration is reached. 

b. The maximum amount of time has been exceeded. 

c. Performance error is less than the goal set. 
d. The performance gradient falls below the minimum 

performance gradient. 

The next step is combining all the single networks into one 

neural network system. The proposed neural networks fusion, 

as observed in Fig. 4, is developed to generate new RGB 

outputs. The final output RGB values from the networks 

fusion is obtained as follows: 

 

𝐙 =  ∙ 𝐎 

= [∝1, ∝2, ∝3, ⋯ , ∝24] ∙ [𝑶1, 𝑶2, 𝑶3, ⋯ , 𝑶24]𝑇  (16) 

 

where  is the weight matrix of each network output, O is the 

output matrix of each neural network and Z is the final output 
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matrix of the neural networks fusion. From the Eq. (16), it can 

be distinguished that matrix  consists of 24 diagonal  

matrices with dimension of 3 × 3. Similar to matrix , matrix 

𝐎 also has 24 matrices with a dimension of 3 × N for each 

matrix 𝑶𝑖, whilst N is the number of training samples. 

In this paper, a genetic algorithm is utilized to find the 

optimum value for each of the 24  matrices. Genetic 

algorithm (GA) is an algorithm based on the Darwin principle 

of evolution, natural selection and biological systems. It has 

been extensively used for optimization in many fields, for 

instance, plug-in hybrid electric vehicles’ (PHEVs) integration 

[25], plastic film manufacturing process [26], automatic path 

planning of unmanned aerial vehicles [27], and design of 

photovoltaic systems [28]. Basically, genetic algorithm 

encompasses a population with a certain number of 

individuals. Each individual in a population has the possibility 

of being the solution to the optimization problem. Hence, by 

applying crossing over and mutation among individuals, a new 

generation is produced. This process is repeated several times 

until a new individual provides the most appropriate solution 

for the problem. 

In this research, several methods have been conducted to 

determine the optimum . In our experiments, the developed 

neural networks fusion can be optimized by using a genetic 

algorithm with the following conditions: 

1. Initial population size is 1,000 individuals. 

2. The  = [∝1, ∝2, ∝3, ⋯ , ∝24] matrix has a dimension of 3 

× 72 and every element of matrix ∝𝑘 is expressed by a 10-

bit string of binary number (0s and 1s). 

3. Permutation rate is 0.75. 

4. The boundary of each element with regards to each matrix 

∝𝑘, i.e. 𝑎𝑘,𝑖𝑗  with 𝑖, 𝑗 = 1, 2, 3, is set as follows: 

if 𝑖 = 𝑗 then 𝑎𝑘,𝑖𝑗[0, 0.1] 

else 𝑎𝑘,𝑖𝑗 = 0 

Thus, each matrix 𝛼𝑘 is constructed as follows: 

 

𝛼𝑘 = [

𝑎𝑘,11 0 0

0 𝑎𝑘,22 0

0 0 𝑎𝑘,33

]      (17) 

      

with 𝑘 = 1, 2, 3, … , 24. 

5. The fitness function is based on the mean square error 

between the target and the final output RGB values. 

The steps of the developed genetic algorithm for training 

the matrix  can be described as follows: 

1. Generate the initial population, i.e. 1000 individuals, with 

2,160 (= 10 × 3 × 72) bits length for each individual. 

2. Produce the next generation by processing cross-over and 

mutation on each individual. 

3. Compute the fitness for each individual. 

4. Select the best individual with MSE lower than 0.0001. 

Once the optimum value of matrix  is achieved, the next 

step is applying the developed neural networks fusion and 

matrix  to adjust the RGB color of the wheat plants. In this 

research, a wheat plant image has a dimension of 448  336 

pixels. Through this developed color adjusting system, each 

pixel of a plant image acquired under various light intensities 

is transformed to the equivalent pixel of the image under the 

standard light intensity, i.e. 50 Klux. 

IV. NEURAL NETWORK BASED IMAGE SEGMENTATION AND 

STATISTICAL COLOR FEATURES EXTRACTION 

Image segmentation plays an important role in classifying 

each pixel in an image either as a targeted object or a 

background part. For instance, in controlled image capturing 

circumstances, an object is laid down on a white paper 

background in a closed box with certain illuminations; the 

object in the captured image can easily be distinguished from 

its background by applying a simple threshold value. In this 

research, however, the problem is more complicated. The 

images of the wheat leaves are captured directly in the field 

and contain leaves as the targeted object, in addition to other 

unwanted parts, such as soil, stones, weeds, and dried and 

semi-dried leaves in the background. Many of the unwanted 

parts (especially the weeds and semi-dried leaves) have a 

similar color to the wheat plant. 

A multilayer, feed forward, back-propagation error neural 

network is used for image segmentation to distinguish the 

wheat leaves, as the region of interest, from other undesired 

parts. The developed neural network for this step can be 

explained as follows: 

1. The network has three units of input layer, which indicate 

red, green and blue color values (RGB) for each pixel 

related to the plant images with a range of 0 – 255. 

2. The number of hidden units is 30. 

3. The output layer has only one unit, which signifies whether 

each pixel is a part of a leaf or not. The output value of the 

network is equal to 1 if the corresponding pixel is a part of 

a leaf, otherwise the value is 0.  

4. The sigmoid activation function is used for both hidden 

and output layers. 

5. The step size 𝜂1 is set to be a small constant. When 𝜂1 is 

large, the convergence of the neural network parameters 

will be quicker than that when 𝜂1 is small. However, large 

𝜂1 leads to larger fluctuation around the steady state mean 

square error. On the other hand, small 𝜂1 leads to smaller 

fluctuation around the steady state mean square error but 

the convergence rate of the neural network parameters is 

 
Fig. 4.  The proposed neural networks fusion using Macbeth color checker. 
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low. Thus, there is a trade-off between accuracy and speed 

of convergence. In our case, we have experimented with 

various settings of 𝜂1 and we find that 𝜂1 = 0.0025 leads 

to the best performance. As for 𝜂2, this is set according to 

the decay process i.e. 𝜂2 = 0.05 𝑛⁄  where 𝑛 is the iteration 

number. In this way, the smoothness regularization has 

more impact on the neural network parameters at the start 

of the learning process but slowly tapers off after some 

time to allow convergence to the desired solution. 

For the developed neural network, we have a dataset of 

4,800 samples of RGB color and binary values (0 or 1) as the 

input and target values, respectively. The dataset was achieved 

from 24 images. On each image, 100 pixels in the leaf region 

and 100 pixels in other parts of the region were selected 

manually. The RGB color values of the selected pixels were 

then used as inputs of the network. 

In the color segmented image, noise should be removed 

prior to the features extraction step. In the majority of images, 

weeds are also present which need to be eliminated from the 

segmented image, as they can influence the color information 

of the wheat leaves. To resolve this problem, we use the 

largest part of the leaves which has the highest number of 

object pixels. This algorithm can be seen in Fig. 5. An 

example of the results of image normalization using neural 

networks fusion and image segmentation can be seen in Fig. 6. 

As revealed, the proposed color constancy method for image 

normalization and the neural networks based image 

segmentation can be used in an automated manner to 

normalize the images of the plants and to remove the 

unwanted parts from the image, as indicated by the black 

circles. 

In the features extraction step, several statistical color 

features pertaining to the final color segmented images are 

calculated. These features are used for nutrient estimation in 

the next step. Four statistical features are used in this research, 

i.e. first raw moment (mean), second central moment 

(variance), third central moment (skewness) and fourth central 

moment (kurtosis). Thus, there are 12 statistical features for all 

color channels (red, green and blue). These features represent 

the color distributions related to the segmented images, whilst 

the mean is considered to be the central tendency of the color 

distribution. The variance measures the spread of color 

distribution from the mean; whereas skewness determines the 

symmetricity of color distribution and kurtosis measures the 

ridge color distribution. In addition, color moments have been 

extensively and successfully used in color-based image 

retrieval systems, especially for a segmented image which 

contains only the image of object [27 29]. The statistical color 

features can be achieved by using the following formulae: 

 

𝑚𝑒𝑎𝑛 = 𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1        (18) 

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜎2 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1     (19) 
 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑠𝑘𝑒𝑤 =
1

𝑛
∑ (𝑦𝑖−𝑦̅)3𝑛

𝑖=1

𝜎3      (20) 
 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝑘𝑢𝑟𝑡 =
1

𝑛
∑ (𝑦𝑖−𝑦̅)4𝑛

𝑖=1

𝜎4      (21) 

   

where 𝑦 refers to each color channel (red, green and blue), 𝑛 is 

the number of object pixels and 𝜎 is the standard deviation.  

V. NITROGEN CONTENT ESTIMATION USING WEIGHTED 

NEURAL NETWORKS 

In this section, we will describe the final step of our 

proposed method, i.e. nitrogen estimation. An MLP with back 

propagation error is used to determine the nitrogen amount in 

wheat leaves. The developed neural network consists of 12 

nodes of input layer which corresponds to the statistical color 

features and one node of output layer that corresponds to the 

percentage related to the nitrogen amount. In this step, the 

number of hidden layer nodes is also determined by using Eq. 

(1). Twelve hidden nodes are subsequently obtained according 

to 12 input features, one output unit and 36 input samples.  

In this paper, we also employ committee machines to 

 
 

Fig. 5.  Image segmentation algorithm. 

 

 
 

 

 
 

      
(a)            (b) 

 

 
(c) 

  

Fig. 6.  An example of the results of BPNN based color constancy and image 

segmentation; (a) original image, (b) normalized image, (c) segmented image. 

 
Fig. 7.  Combination of neural networks for nitrogen estimation. 
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combine several neural networks with different hidden layer 

nodes, as seen in Fig. 7. The numbers of hidden layer nodes 

with regards to these new neural networks are produced using 

the following formula: 

 

𝑛ℎ
′ = 𝑠 × 𝑛ℎ        (22) 

 

where 𝑛ℎ
′  is the new number of hidden layer nodes, 𝑛ℎ  is the 

initial number of hidden layer nodes (i.e. 12 nodes) and 𝑠 is 

the multiplication factor (s = 2, 3, …, n), whilst 𝑛 is the 

number of combined neural networks (in this paper we 

attempted up to 7 neural networks). 

In this case, the parameter 𝑠 is also the number of neural 

networks used for the combination. Thus, the networks 

combinations attempted in this step are as illustrated in Table 

I. Each network is repeated 100 times to eliminate the effect of 

the random bias numbers and initial weights. Subsequently, a 

number of neural networks which provided the minimum 

mean square error are chosen to achieve the final estimation. 

A committee machine can produce significant 

improvements in the prediction given that it can minimize the 

effect of a random component due to data noise in the 

generalization performance of a single network [30, 31]. 

Basically, the concept of a committee machine is to combine 

outputs of several expert systems with the same input data, 

with the aim of producing a new output. In this paper, we use 

ensemble averaging as the combination method. Suppose that 

there are P expert systems to approximate a target vector T. 

Each expert has output vector Oi and error ei, 

 

𝑂𝑖 = 𝑇 + 𝑒𝑖          (23) 

 

Thus, the sum of the squared error for the i-th expert yi is 

 

𝐸𝑖 = [(𝑂𝑖 − 𝑇)2] = [𝑒𝑖
2]       (24) 

 

where [] denotes the statistical expectation. 

The average error of each expert system (Eave) is then 

 

𝐸𝑎𝑣𝑒 =
1

𝑃
∑ 𝐸𝑖

𝑃
𝑖=1 =

1

𝑃
∑ [𝑒𝑖

2]𝑃
𝑖=1     (25) 

 

In other words, by using a committee machine, the output 

value Y can be achieved by simply averaging the output vector 

Oi, as follows: 

 

𝑌 =
1

𝑃
∑ 𝑂𝑖

𝑃
𝑖=1          (26) 

 

Thus, the squared error of the committee machine (ECOM) is 

 

𝐸𝐶𝑂𝑀 = [(𝑌 − 𝑇)2]                

=  [(
1

𝑃
∑ 𝑂𝑖 − 𝑇𝑃

𝑖=1 )
2

] =  [(
1

𝑃
∑ 𝑒𝑖

𝑃
𝑖=1 )

2

]   (27) 

 

But 

 

 [(
1

𝑃
∑ 𝑒𝑖

𝑃
𝑖=1 )

2

] ≤
1

𝑃
∑ [𝑒𝑖

2]𝑃
𝑖=1   

 

Thus, we have 

 

𝐸𝐶𝑂𝑀 ≤  𝐸𝑎𝑣𝑒         (28) 

 

The calculated error of the committee machine is always 

smaller than if not equal to that of the single expert. In this 

paper, we use ensemble averaging as the neural networks 

combiner to obtain improved generalization and performance. 

The estimated nitrogen amount of wheat leaves is calculated 

by using a committee machine with the simple averaging 

method as the combiner of n neural networks, as follows: 

 

𝑁𝑒𝑎𝑣𝑒 =
1

𝑛
∑ 𝑂𝑖

𝑛
𝑖=1         (29) 

 

The simple averaging method as expressed in Eq. (29) 

indicates that each single neural network has the same weight 

to produce the new output. In this paper, we also investigate 

the possibility that each neural network has a different weight. 

We apply a weighted averaging method, as expressed in the 

following: 

 

𝑁𝑒𝑤𝑒𝑖𝑔ℎ = ∑ (𝑤𝑖 × 𝑂𝑖)
𝑛
𝑖=1  and ∑ 𝑤𝑖 = 1𝑛

𝑖=1    (30) 

 

where N𝑒𝑤𝑒𝑖𝑔ℎ is the estimated nitrogen content, 𝑤 is the 

weight, and 𝑂𝑖  is the output of i-th single network. 

A genetic algorithm is used to discover the optimum value 

of the weights in the developed committee machine. The 

genetic algorithm for the nitrogen estimation is developed 

with the following conditions: 

1. Initial population size is 500 

2. Each individual is expressed by 16 (= 2 × 8) bits length 

of binary numbers 

3. Permutation rate is 0.5 

4. Each weight has a range of 0–1; 𝑤𝑖 ∈  [0, 1] 
5. The fitness function is to estimate the mean square 

error (MSE) between the actual and the estimated 

nitrogen content. 

The level of the prediction accuracy is measured by 

calculating the error value of the observed/actual and 

predicted nitrogen content. In this research, we use the mean 

absolute percentage error (MAPE) for the performance 

assessment. The less the error is, the superior the prediction is. 

For a comparison, several types of error are also measured, i.e. 

mean absolute error (MAE), mean of squared error (MSE), root 

TABLE I 
NEURAL NETWORKS COMBINATION  

Number of NNs Number of hidden layer nodes 

2 12 – 24  

3 12 – 24 – 36  

4 12 – 24 – 36 – 48  

5 12 – 24 – 36 – 48 – 60  

6 12 – 24 – 36 – 48 – 60 – 72  

7 12 – 24 – 36 – 48 – 60 – 72 – 84  
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mean of squared error (RMSE) and sum of squared error 

(SSE). The error types used in this research can be expressed 

as follows: 

 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑁𝑎𝑖−𝑁𝑒𝑖

𝑁𝑎𝑖
|𝑛

𝑖=1       (31) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑁𝑎𝑖 − 𝑁𝑒𝑖|

𝑛
𝑖=1       (32) 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑁𝑎𝑖 − 𝑁𝑒𝑖)

2𝑛
𝑖=1       (33) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑁𝑎𝑖 − 𝑁𝑒𝑖)

2𝑛
𝑖=1       (34) 

 

𝑆𝑆𝐸 = ∑ (𝑁𝑎𝑖 − 𝑁𝑒𝑖)
2𝑛

𝑖=1        (35) 

 

where 𝑛 is the number of samples, 𝑁𝑎 and 𝑁𝑒 are the actual 

and the estimated (using either simple (29) or weighted 

average (30)) nitrogen content, respectively. 

VI. RESULTS AND DISCUSSIONS 

A. SPAD meter based nitrogen amount prediction  

The SPAD meter was widely used to determine the 

chlorophyll content in the leaves by measuring the absorbance 

of the leaf in two wavelength regions, i.e. red and infrared. 

After the signal processing steps, the absorbance was 

displayed in a units range from 0 to 199. Moreover, the 

chlorophyll amount was highly correlated with the nitrogen 

content. Furthermore, the chlorophyll content which is 

represented by the SPAD value, increased in proportion to the 

nitrogen amount. 

Based on our experiments conducted with 36 samples of 

wheat leaves, the coefficient of determination (𝑅2) value of 

SPAD readings and nitrogen content is 0.7801, as seen in Fig. 

8. It means that the relationship between the SPAD and 

nitrogen amount was reasonably strong. By using the trend 

line equation, the predicted nitrogen level was calculated. The 

MAPE of this prediction was 8.48%. Fig. 9 demonstrates the 

fitting plot between the actual and predicted nitrogen content. 

Similar research with relatively strong relationships between 

the SPAD and nitrogen have been reported in sugarcane (𝑅2 = 

0.706) [2] and oilseed rape (𝑅2 = 0.744) [32]. The correlation 

between the SPAD meter readings and nitrogen percentage in 

leaves was strongly affected by leaf thickness. The variation in 

leaf thickness can influence the accuracy of SPAD meter 

readings, as this device works based on the leaf’s capacity to 

absorb red and infrared lights. 

B. Image-based nitrogen amount prediction 

The proposed neural networks fusion based color constancy 

can be used to normalize plant images captured under various 

light intensities. After image normalization, we can assume 

that all images are captured under the same light intensity and 

compared with each other.  

In the color constancy step, we also compare our results 

with other methods, i.e. gray world and scale-by-max 

algorithms, linear model, and one single neural network (NN) 

[33]. The gray world (GW) and scale-by-max (SBM) 

approaches are the simplest color constancy algorithms due to 

their ease and simplicity of application. In the gray world 

algorithm, the average of all colors in an image is considered 

to be neutral gray. This algorithm yields illuminant estimation 

by calculating the mean value of each color channel. Hence, to 

normalize an image, the color value of each pixel is scaled by 

 

𝐾𝐺𝑊
𝑖 =

𝐶

𝐶𝑎𝑣𝑔
𝑖           (36) 

with 

 

𝐶 = 𝑚𝑒𝑎𝑛(𝐶𝑎𝑣𝑔
1 , 𝐶𝑎𝑣𝑔

2 , 𝐶𝑎𝑣𝑔
3 )      (37) 

 

where 𝑖 refers to each color channel (red, green and blue).    

In the scale-by-max approach, the illuminant estimation is 

acquired by determining the maximum response of each color 

channel. Hence, the color value of each pixel can be 

normalized by multiplying it with the following constant: 

 

𝐾𝑆𝐵𝑀
𝑖 =

255

max (𝑖)
         (38) 

 

In the linear model, the color values of each pixel are 

corrected through a transformation matrix [34]. Suppose that 

under an unknown lighting condition, with the transformation 

matrix Mun, the color values of an object qun is as follows: 

 

𝑞𝑢𝑛 = 𝑀𝑢𝑛𝑟          (39) 

 

𝑟 = 𝑀𝑢𝑛
−1𝑞𝑢𝑛         (40) 

 

where r is three basic functions related to surface reflectance. 

The color values of the standard illumination qst, i.e. in this 

 
Fig. 8.  Relationship between the SPAD value and actual nitrogen content. 
 

 
Fig. 9.  Fitting plot of the actual and predicted nitrogen content of SPAD 
meter based prediction. 
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research, the light intensity of 50 Klux can be calculated as 

 

𝑞𝑠𝑡 = 𝑀𝑠𝑡𝑟 = 𝑀𝑠𝑡𝑀𝑢𝑛
−1𝑞𝑢𝑛 = 𝑀𝑡𝑟𝑞𝑢𝑛    (41) 

 

𝑀𝑡𝑟 = 𝑞𝑢𝑛
−1𝑞𝑠𝑡         (42) 

 

where Mtr is the 3  3 transformation matrix. Basically, the 

NN and the proposed methods discussed in the present paper 

can be seen as a nonlinear extension of (41). The nonlinear 

model used in this paper is determined by calculating the 

transformation in (42) using the back-propagation neural 

network algorithm, consequently the Mtr is used to correct 

plant images. Alternative types of neural network that have 

specific structure in the form of 𝑞𝑠𝑡 = 𝑓(𝑀𝑡𝑟𝑓−1(𝑞𝑢𝑛)) which 

is the nonlinear version of (41) can be devised as in [13, 37-

40]. 

In this paper, we establish that our proposed method is 

better than the other methods that have previously been 

mentioned, as seen in Table II. As the basis for the 

comparison, we measure color differences by calculating the 

mean Euclidean distance of the targeted and the output 

(estimated) color value of each method. The formula for the 

Euclidean distance can be written as follows: 

 

∆𝐸𝑅𝐺𝐵 = √(𝑅𝑡 − 𝑅𝑒)2 + (𝐺𝑡 − 𝐺𝑒)2 + (𝐵𝑡 − 𝐵𝑒)2  (43) 

 

In our proposed method, by using a 24-patch Macbeth color 

checker as the reference, we obtain 24  values as output 

weights for each neural network. These  matrices are then 

applied to correct wheat plant images by using the developed 

neural networks fusion method. An example of the  matrices 

used to produce a new output is as follows: 

 

𝑍 = [
0.087 0 0

0 0.076 0
0 0 0.005

] ∙ 𝑂1 + [
0.087 0 0

0 0.027 0
0 0 0.090

] ∙ 𝑂2 +

[
0.033 0 0

0 0.071 0
0 0 0.099

] ∙ 𝑂3 + ⋯ + [
0.026 0 0

0 0.001 0
0 0 0.019

] ∙ 𝑂24.  

 

In this research, a wheat plant image has a dimension of 448 

 336 pixels. By applying this developed color adjusting 

system, each pixel of a plant image captured under various 

light intensities will be transformed to the equivalent pixel of 

the image under the standard light intensity, i.e. 50 Klux. In 

order to demonstrate the effectiveness of the proposed method, 

30 plants images which are from the same treatment of 

fertilizer dosage have been selected. Since the images are 

subject to the same treatment, they should have similar color 

or, in other words, the color variability should be small. As the 

focus of the whole research is on the color of the leaves, the 

original and the corrected images are then segmented to obtain 

the leaves images as the region of interest. In the segmented 

images, our proposed color normalization can be used to 

reduce the variability of leaves color which can be expressed 

in the standard deviation values. The standard deviations of 

the original leaves images are 24.76, 16.45 and 30.39 for red, 

green and blue color respectively, whilst the standard 

deviation RGB color values of the corrected images are 6.38, 

4.07 and 7.58, respectively. This shows that the proposed 

method has successfully reduced the color variability in the 

images by approximately four times. 

After image correction using the developed neural networks 

fusion, the next step is image segmentation. The neural 

network based image segmentation, as described in Section 

IV, can be applied to distinguish wheat leaves from other 

parts, such as weeds, soil, stones and dried leaves. This 

segmentation method is superior to the conventional Otsu 

algorithm (threshold-based segmentation). The database 

pertaining to the color of leaves and non-leaves provides 

sufficient data to train the plant images. Therefore, the neural 

network can precisely classify whether a pixel belongs to the 

leaves or non-leaves region. A comparison of image 

segmentation results using Otsu algorithm and the developed 

neural network can be seen in Fig. 10. 

Once all images have been segmented, 12 statistical color 

features as described in Section IV are subsequently extracted. 

These features are then utilized as predictors in the developed 

nitrogen estimation. In this step, several neural networks with 

different numbers of hidden layer nodes are combined, as 

tabulated previously in Table I. These combinations of 

networks are subsequently trained to determine which offers 

the most appropriate results. After conducting Monte-Carlo 

testing of more than 100 independent trials, we establish that 

the combination of six neural networks results in the minimum 

generalization error of networks performance compared to 

other possible combinations. The first combination used in this 

step is a simple average. The estimated nitrogen amount is 

then calculated, as follows: 

 

 
 

 
 

Fig. 10.  A comparison of some threshold based and the developed neural 

network based image segmentations. 

Original image Threshold green > 120 Threshold green > 150

Threshold green/red ≥ 1 Neural networkThreshold green/blue ≥ 1.5

TABLE II 

COMPARISON OF COLOR CONSTANCY RESULTS 

Methods ERGB 

Gray world 23.40 

Scale-by-max 14.86 

Linear model 11.06 

Single neural network (NN) 5.03 

The proposed method (NN fusion) 4.15 
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𝑁𝑒𝑎𝑣𝑒 =
1

6
∑ 𝑶𝑖

6
𝑖=1        (44) 

 

The best result relates to the first type of committee 

machine, i.e. simple average, is subsequently compared to that 

of the second type combiner, i.e. weighted average, which is 

optimized by the genetic algorithm (GA). By using this 

method, the weights of the output of the networks are 0.008, 

0.091, 0.140, 0.219, 0.047 and 0.495 respectively for the first 

until the sixth neural network. The estimated nitrogen content 

can therefore be expressed as follows: 

 

𝑁𝑒𝐺𝐴 = (0.008 × 𝑶1) + (0.091 × 𝑶2) + (0.140 × 𝑶3) +
(0.219 × 𝑶4) + (0.047 × 𝑶5) + (0.495 × 𝑶6)     (45) 

 

Table III illustrates the comparison of various types of error 

values of the discussed NN and SPAD meter methods. From 

that table, we can perceive that by using a simple average 

combiner, the combination of six neural networks provides the 

best results compared to other network combinations. In 

addition, the MAPE of this combination is less than 3%. 

However, the weighted average combiner with GA 

optimization offers enhanced results. As seen in the table, the 

MAPE of the GA-based committee machine with six neural 

networks is smaller than the simple average method, i.e. 

2.73%. In other words, the deviation of the estimated nitrogen 

using this method is approximately 2.73% of the true nitrogen 

percentage. For instance, if the actual nitrogen content is 3%, 

then the estimated nitrogen is between 2.92% and 3.08%. 

Thus, the error noted is relatively small. 

In this research, we also investigated the relationship 

between nitrogen content and each color channel in addition to 

a number of combinations of them. Research has established 

that there are significant correlations between chlorophyll 

content in the maize leaf and the averages of the R and G 

components, as well as 2G-R-B of the linear transformation 

[6]. We also estimated the nitrogen content using the 

greenness index developed by [35] (𝐼𝑘𝑎𝑤). 𝐼𝑘𝑎𝑤  is defined as 

follows: 

 

𝐼𝑘𝑎𝑤 =
𝑅−𝐵

𝑅+𝐵
         (46) 

 

Based on the 𝐼𝑘𝑎𝑤 formula, [36] modified the greenness 

index to estimate nitrogen content in barley leaves and use the 

principal component analysis (PCA) to produce a new 

greenness index (𝐼𝑃𝐶𝐴), as follows: 

 

𝐼𝑃𝐶𝐴 = 0.7582|𝑅 − 𝐵| − 0.1168|𝑅 − 𝐺| + 0.6414|𝐺 − 𝐵| (47) 

 

According to our investigation, single color features and 

their combinations, including 𝐼𝑃𝐶𝐴 and 𝐼𝑘𝑎𝑤 , are not suitable for 

nitrogen estimation. The estimation errors of those analyses 

are too high, compared to our proposed method, as seen in 

Table IV. The RGB values in those analyses are only obtained 

from the mean value of the observed leaves color. This value 

is not sufficient to represent the color distribution of leaves 

color. In the proposed method, we utilize not only mean value, 

but also variance, skewness and kurtosis of the observed 

leaves color. The use of these statistical features is more 

effective to describe the color distribution of leaves color. As 

seen in the table our proposed method is superior to all the 

discussed methods, as it provides an estimation error of 

2.73%.  

VII. CONCLUSION 

A low cost, simple and accurate nitrogen estimation of 

wheat leaves has been conducted using the proposed method. 

The proposed method focuses on color constancy to normalize 

plant images that are subject to a variation in lighting 

conditions, besides the application of back-propagation neural 

network for image segmentation and committee machines for 

nitrogen content estimation. The developed neural network 

based image segmentation can remove unnecessary 

components of plant images and retain the leaves as the region 

of interest. The genetic algorithm based committee machine to 

combine six neural networks with 12 statistical RGB color 

features as predictors can be used to estimate nitrogen content 

in wheat leaves more accurately than by using simple 

averaged neural networks, as well as the SPAD meter and 

greenness index based methods from previous related works. 
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TABLE IV 

COMPARISON OF ESTIMATION ERRORS USING COLOR FEATURES AND THE 

PROPOSED METHOD 
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