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Abstract—Managing energy efficiency under timing constraints
is an interesting and big challenge. This work proposes an
accurate power model in data centers for time-constrained
servers in Cloud computing. This model, as opposed to previous
approaches, does not only consider the workload assigned to the
processing element, but also incorporates the need of considering
the static power consumption and, even more interestingly, its
dependency with temperature. The proposed model has been
used in a multi-objective optimization environment in which the
Dynamic Voltage and Frequency Scaling (DVFS) and workload
assignment have been efficiently optimized.

Index Terms—Adaptive Systems, Cyber Physical Systems,
Cloud Computing, Real-Time Systems, Energy efficiency,
Industrial-based Services, Multi-Objective Optimization, Parallel
Computing.

I. INTRODUCTION

BOTH Cyber Physical Systems (CPSs) and Cyber Physical
Society [1] combine computing and networking power

with physical components, enabling innovation in a wide range
of domains related to future-generation sensor networks (e.g.,
robotics, avionics, transportation, manufacturing processes, en-
ergy, smart homes and vehicles, medical implants, healthcare,
etc). The design and implementation of CPS involve the
consideration of multiple aspects like energy and tight real-
time constraints. Because of that, real-time scheduling for CPS
brings new research issues in the scope of real-time systems
[2].

Managing energy efficiency under timing constraints is a
big challenge. Most modern micro-controllers already provide
support for various energy saving modes (e.g., Intel Xeon and
AMD Opteron). A common way of reducing dynamic power
is to use the technique called Dynamic Voltage and Frequency
Scaling (DVFS), which changes the processor voltage and
the clock frequency simultaneously, reducing the energy con-
sumption. Decreasing the processor voltage and frequency will
slow down the performance of the processor. If the execution
performance is not a hard constraint, then, decreasing both
processor voltage and frequency allows to reduce the dynamic
power consumption of the processor.
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Nowadays, new embedded devices are collaborating in
distributed environments. In this new scenario, tasks and re-
sources are widely distributed and then, real-time applications
become more complex and more relevant. A cloud datacenter
usually contains a large group of servers connected through the
Internet, and a scheduler has to make an efficiently use of the
resources of the cloud to execute jobs. Since many applications
require Quality of Service (QoS), power consumption in data
centers must be minimized, satisfying the Service Level Agree-
ment (SLA) constraints. Consequently, novel approaches that
base their optimizations on accurate power models must be
devised, performing an optimized setting of the parameters of
the server (frequency, voltage, workload allocation, etc) while
accomplishing with time requeriments and a wide range of
real-time constraints.

DVFS-based solutions for distributed real-time environ-
ments identify two main dimensions of the problem: (i) task-
to-Central-Processing-Unit (CPU) allocation and (ii) run-time
voltage scaling on individual CPUs. In CPS, physical factors
(e.g., the network topology of CPS may dynamically change
due to physical environments) are not entirely predictable and
may lead to problems such as missed task deadlines, that can
impact dramatically on economic loss for individuals or for
the industry. Moreover, a critical task deadline missed could
trigger a disaster (e.g., humans life loss, natural disasters, or
huge economic loss).

In this paper, we propose a method for solving such CPS
problems by introducing new adaptive real-time scheduling
algorithms in distributed computing infrastructures that also
consider energy efficiency. This scheme requires to know a
priori the processing and timing constraints of the set of
tasks, and must be supported by reservation-based real-time
operating systems.

The remainder of this paper is organized as follows: after a
brief summary of the previous works in this field (Section II),
a real-time scheduling algorithm for CPS is sketched (Sec-
tion III). Following, the devised power model is presented
(Section IV), and the optimization of the algorithm developed
is profusely described (Section V). Experimental results can
be found in Section VI. Finally, some conclusions are drawn
(Section VII).

II. RELATED WORK

The energy-efficient scheduling problem in real-time sys-
tems consists in minimizing the energy consumption while
ensuring that all the real-time tasks meet their deadlines. The
work presented in [3] is based on the observation that a
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significant percentage of time spent in idle mode is due to
the accumulation of small gaps between tasks. Whether the
gap between the activation of two periodic tasks is less than
transition-time from idle to deep-sleep, the processor is not
able to transition to the deep-sleep state even though there is
no useful work to be done, and continues in the idle energy
state all the time.

There are extensive research works on energy-aware real-
time scheduling by using DVFS (e.g., [4]). Different works
using this technique within a real-time context, considered an
offline scheduling algorithm and a set of a periodic jobs on
an ideal processor. Each job is characterized by its release
time, deadline, and execution CPU cycles, and all jobs have
the same power consumption function.

Several papers have also proposed DVFS-based solutions
for real-time multi-processor systems. As the complexity of
CPS increases, Chip Multicore Processors (CMP) and parallel
tasks scheduled in a real-time way are needed. The fact that
the processing cores share a common voltage level makes the
CMP energy-efficiency problem different from multi-processor
platforms. The work presented in [5] provides a simple, elegant
and effective solution on energy-efficient real-time scheduling
on CMP. This solution addresses fixed-priority scheduling of
periodic real-time tasks having a deadline equal to their period.
Note that this problem is NP-hard.

The load balancing in CMP is particularly important be-
cause the main contributor to the overall energy consumption
in the system is the core with the maximum load. This fact is
given by the global voltage/frequency constraint. Considering
a CMP system with a workload perfectly balanced across
the processors, the Earliest Deadline First (EDF) scheduling
minimizes the total energy consumption. This is not the case
of Rate Monotonic Scheduling (RMS) where load-balancing
does not always result in lowering energy consumption [5].

In mixed-criticality systems, varying degrees of assurance
must be provided to functionalities of varying importances.
As shown in [6] there is a conflict between safety and energy
minimization because critical tasks must meet their deadlines
even whether exceeding their expected Worts Case Execution
Time (WCET). This work integrates continuous DVFS with the
EDF with Virtual Deadlines (EDF-VD) scheduling for mixed-
criticality systems [7] and shows that speeding up the system
to handle overrun is beneficial for minimizing the expected
energy consumption of the system.

Generally, large-scale distributed applications require real-
time responses to meet soft deadlines. Hence, the middleware
coordinates resource allocation in order to provide services
accomplishing with SLA requirements. In [8], we can find
a scheduling algorithm based on DVFS for clusters, which
develops a green SLA-based mechanism to reduce energy
consumption by increasing the scheduling makespans. In [9],
we can find an energy-aware resource allocation for Cloud
computing with negotiated QoS. However, similarly to the
solution presented in [8], this method sacrifices system per-
formance.

The work presented in [10] proposes a priority-based sched-
uler, which satisfies the minimum resource requirement of a
job by selecting a Virtual Machine (VM) according to both

the SLA level and the Wi parameter that is described as
Wi = Pi × Ri, where Pi is the unit power cost of VMi,
and Ri defines the resources used by the VMi.

The location of nodes in CPS affects the effective release
time and deadline of real-time tasks, which may be different
depending on the node location and the migration delay time
among the network nodes. Because of that, traditional real-
time scheduling algorithms have to be modified to include the
location node and the spatial factors. The work presented in
[11] proposes a CPS scheduling algorithm, where the servicing
node (i.e., the CPU) needs to move to serviced (i.e., the
executed Job) node for real-time services.

The power modeling technique proposed in [12] is most
relevant for us. A correlation between the total system’s
power consumption and the component utilization is observed,
defining a four-dimensional linear weighted power model for
the total power consumed (i.e., P = c0+c1PCPU+c2Pcache+
c3PDRAM + c4Pdisk). Our work follows a similar approach
but also incorporates the contribution of the static power
consumption, its dependency with temperature, and the effect
of applying DVFS techniques.

Static power consumption has a high impact on energy,
due to the temperature-dependent leakage currents. In this
manner, novel optimizations may be devised by quantitatively
understanding the power-thermal trade-offs of a system, thus
developing analytical models.

Finally, Rafique et al. [13] makes a description of the
complexity of the power management and allocation chal-
lenge. Authors demonstrate that achieving an optimal alloca-
tion depends on many factors as the server’s maximum and
minimum frequencies, the job’s arrival rate, and consequently,
the relationship between power and frequency. They conduct
a set of experiments that provides significant savings in terms
of energy in both homogeneous and heterogeneous clusters.
However, our work presented in this paper outperforms these
savings by exploiting a multi-objective optimization strategy
to help to minimize the servers’ power for time-constrained
Cloud applications.

III. THE INDUSTRIAL SERVICES EXECUTION MODEL

CPS comprise a large number of sensors and actuators, and
computing units that exchange different types of data, some of
these interactions have real-time constraints. Real-time system
abstraction and hybrid system modeling and control are among
the CPS research challenges. The hybrid system model of
CPS requires the design and integration of both the physical
and computational (i.e., cyber) elements. While physical ele-
ments behave in continuous real-time, computational elements
change according to discrete logic. This fact requires to merge
continuous-time based systems with event-triggered logical
systems, and also we must address the dimensional scale (i.e.,
from on-chip level to the cloud). Moreover, the interaction
with physical world introduces uncertainty in CPS because of
randomness in the environment, errors in physical devices, and
security attacks.

Control and scheduling co-design is a well-known area in
the embedded real-time systems’ community. However, since
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CPS are typically networked control systems, the tradeoff
between the effects of the network must be included in
the real-time schedulability, that results in a non-periodic
control approach. In this work, we study how to guarantee the
overall system stability with minimum computational resource
and power usage. System properties and requirements (e.g.,
the control laws, real-time and power constraints) must be
captured and supported by data abstractions encapsulated in
components.

A. Task characterization

Typically CPS’s are composed of hard real-time tasks and
feedback control tasks. Whereas real-time tasks present time
constraints (i.e., deadlines) that must always be satisfied, feed-
back control tasks are characterized by their Quality of Control
(QoC), which needs to be optimized. A typical approach to the
above scheduling problem is to translate the QoC requirements
into time constraints and then, to apply traditional real-time
scheduling techniques [14]. Real-time systems are structured
as a set of schedulable tasks, where parameters used for the
scheduling (e.g., execution time, deadline, or period) are a
priori known and clearly defined. However, this solution is
very conservative and consequently it is not efficient for CPS.

An alternative solution is the given in [15], that deals
with this problem using a multi-layered scheme based on
mixed-critical real-time systems: (i) for real-time tasks it uses
triggering patterns (i.e., uses arrival curves), which allow a
more general characterization regarding the classical real-time
task models (i.e., periodic or sporadic), and (ii) for control
tasks, it is based on three QoC-oriented metrics. Mixed-
critical real-time systems literature focuses on tasks with
different criticality levels and certification issues1, providing
heterogeneous timing guarantees for tasks of varying criticality
levels.

As an example, in the Unmanned Aerial Vehicles (UAVs),
functionalities can be categorized as safety-critical tasks (e.g.,
like flight control and trajectory computation) or mission-
critical tasks (e.g., object tracking for surveillance purposes).
Note that the system is still safe although mission-critical
functionalities can be lost. This makes the design parameters
for safety-critical tasks (e.g., WCET) much more pessimistic
than those for mission-critical tasks. However, in CPS, tasks
are not characterized by criticality levels, but by their criticality
types.

There has been considerable research on schedule synthesis
for control applications. However, these works are particularly
centered on control/scheduling co-design for optimized QoC,
and only deal with control tasks. On the other hand, CPS focus
on mixed task sets comprising of feedback control tasks and
hard real-time tasks, which requires a joint schedule synthesis.

B. The task model

In CPS, tasks may be classified according to their criticality
types (e.g., deadline-critical real-time tasks and QoC-critical

1When there are tasks with different safety requirements into the same
real-time platform, it is called mixed-criticality system.

feedback control tasks). While the system must satisfy always
the deadlines of real-time tasks, particularly for those that
are critical, only the QoC parameters for control tasks need
to be optimized. In order to do that, we require stochastic
hybrid systems to identify the interaction between continuous
dynamical physical models and discrete state machines, and
the CPS architecture must follow the new paradigm “globally
virtual, locally physical”.

We consider a set of independent tasks, (i.e., Σ) which are
executed remotely in a set of physical servers m. We define
our real-time problem as a pair P = (Σ, S) where S is a
scheduling solution and Σ = τ1, ..., τn is a set of n tasks with
different timing characteristics (i.e., strict, flexible, and firm)
as shows Figure 1.

Fig. 1. An overrun in response time (i.e., a deadline miss) has a different
value function depending on its possible consequences

Each task τi is a possibly infinite sequence of jobs (i.e.,
demands for processing time), each one with an associated
deadline. Jobs of the same task must be executed sequentially
and in First-In-First-Out (FIFO) order. If the timing charac-
teristics of the task τi are soft or firm, the jobs may be not
identical.

CPS requires jointly scheduling hard real-time, soft real-
time or best-effort, and control-feedback tasks. Due to the
stringent stability requirements, we classify control tasks as
firm deadline. While a hard deadline cannot be missed, soft
deadlines may be occasionally missed and it does not harm
the system safety. Similarly, firm deadlines can be missed but
there is an upper limit on the number of misses within a
given time interval. However, as we aim to optimize the QoC,
we must minimize the number of deadline misses to avoid
QoC degradation. The characterization of each type of task is
fundamentally different as follows.

1) Hard real-time tasks: A real-time system is considered
hard if an overrun in a task response time leads to poten-
tial loss of life and/or big financial damage. The system
is considered to be safety critical or high integrity, and is
often mission critical. We consider a real-time task as a tuple
τi = (Ri, Ci, Ti, Di) where:
Ri is the first release time of the task (i.e. the phase of

the task),
Ci is the WCET,
Ti is the activation period (i.e., minimum inter-release

time), and
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Di is the relative deadline (ri ≤ Di ≤ Ti). The absolute
deadline is the relative deadline plus the current
arrival time.

We compute the CPU utilization factor of τi as Ui = Ci

Ti
.

2) Soft real-time tasks: For soft real-time tasks, deadline
overruns are tolerable but not desired (i.e., there are not
catastrophic consequences of missing one or more deadlines).
There is a cost function associated with these systems, which
is often related to QoS. Hence, we consider a stochastic task
model based on the one presented in [16]. Then, we represent
each soft-real-time task using a tuple τi = (ri, si, ai, di)
where:
ri is the release time of the task,
si is the service time, which follows an exponential

distribution of average µ−1 (i.e., µ is the number
of serviced jobs of τi per unit time),

ai is the arrival time; tasks arrive according to a renewal
process with exponential distribution of average λ−1,
and

di is the absolute deadline; the relative deadline is Di =
di − ai, Di distributed on [0, D].

We compute the response time of τi as ρi = ci−ai, where ci
is the completion time (i.e., ci = ai + si). The average CPU
utilization factor is given by Υi = µi

λi
.

3) Feedback control tasks: For a firm real-time task the
computation is obsolete whether the job is not finished on
time. In this case, the cost function may be interpreted as loss
of value associated to QoC. This is the case of the feedback
control task in CPS. For this kind of task we can consider
Di ≥ Ti) to guarantee that the controlled physical tasks are
still stable in the worst case scenario. However, this sacrifices
the system performance and also may result unstable under
physical perturbations.

In most cases, feedback control systems become unstable
with too many missed control cycles. Therefore, a critical
question is how to determine Ti to ensure both schedulability
and robustness of the physical system. Considering a simple
proportional-gain feedback controller, which is fixed for each
control task, in order to determine Ti, we can find the mini-
mum Ti ∈ (T1, T2, . . . , Tn) under the following constraints:

0 ≤
∑
i
Ci

Ti
≤ p (1)

Ci ≤ Ti ≤ Di (2)

where p < 1 is a priori known. However, some controller
parameters may need to be adjusted when the task period
is changed. Alternatively, we can use a multiple-versions
approach or a predictive model with a quadratic optimization
computed iteratively for each job. However, very often, prob-
abilistic guarantees are sufficient (e.g., t out of k deadlines
have to be met).

Permitting skips in periodic tasks increases the system
flexibility [17]. The maximum number of skipped jobs for each
task can be controlled by a specific parameter Si associated
with the task, which gives the minimum distance between two
consecutive jobs skips (e.g., if (Si = 3) the task can skip one
job every three). This parameter can be considered as a QoC
metric (i.e., the higher S, the better QoC).

When Si = ∞ no skips are allowed, meaning that τi is a
real-time hard periodic task. We then consider a control task
as a tuple τi = (Ri, Ci, Ti, Di, Si) where Ti = Di.

C. The parallel scheduling

For each of the above described tasks τi ∈ Σ, we consider
a set of independent subtasks τi = τi,1, ..., τi,q , where τi,j
denotes the subtasks j of task τi. Therefore, ei ≥ 0, is the
energy consumption rate of the task τi per time unit:

ei =

|τi|⋃
j=1

ei,j (3)

The scheduling allocates each τi,j subtask in a set of m
physical servers, taken into account the critical timing charac-
teristics of each task τi and the minimal energy consumption
of the task set Σ.

The performance criteria generally used in systems when the
model task does not have explicit deadlines, is to minimize the
task delay (i.e., the response time of all tasks). However, when
there are explicit deadlines, we must ensure that critical tasks
fulfill their deadline and minimize the fraction of non-critical
tasks that do not meet their timing requirements.

We can consider lateness constraints of the form α(x) ≤ β,
where α(x) is the fraction of jobs that miss their deadline by
more than x time units. Here, missing a deadline by x time
units is considered as a failure.
• For firm deadlines, we require that α(0) ≤ β (i.e., the

fraction of tasks missing their deadliness were limited
to β). Note that this has a different meaning for the S
parameter, which is the minimal distance between the
consecutive misses of the task τi. Hence, we consider a
τi missing whether one or more subtasks τi,j of a job
miss the deadline.

• For hard real-time tasks, we establish α(0) ≤ 0 (i.e.,
we do not tolerate any deadline missed), while for each
control task τi, α(0) ≤ Si−1

Si
.

• For soft real-time tasks, we generalize, α(xi) ≤ βi, for a
set of time values x1, ..., xp and constraint specifications
β1, ..., βp, where 1 ≤ i ≤ p, which allows to take into
account the stochastic nature of task arrivals and service
time of soft real-time tasks.

IV. POWER AND ENERGY MODEL

Traditionally in electronic systems, dynamic consumption
has been the major contributor to the power budget. In contrast,
when scaling technology below 100nm, static consumption
reaches the 30−59% of the total power, thus becoming much
more significant [18]. Moreover, the exponential impact of
temperature on leakage currents intensifies this effect. Thus,
modeling leakage will allow the exploitation of the trade-offs
between leakage and temperature at the server level when
taking decisions on resource configuration and selection.

Therefore, the impact of static consumption must be consid-
ered, taking into account its correlation with temperature. This
section presents our leakage-aware static power model. We
validate this model using real data gathered from real machines
of our case study (e.g., Intel Xeon and AMD Opteron).
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A. Leakage power

Equation (4) shows the impact of leakage on the currents in
a MOS device. Rabaey demonstrates in his work that, when
VDS > 100mV , the second exponential may be considered
negligible [19]. Consequently, the previous equation may be
revised as in (5), also regrouping technological parameters
together obtaining the formula presented in equation (6).

Ileak = Is · e
VGS−VTH

nkT/q · (1− e
V ds
kT/q ) (4)

Ileak = Is · e
VGS−VTH

nkT/q (5)

Ileak = B · T 2 · e
VGS−VTH

nkT/q (6)

The leakage power consumption for the physical machine
m ∈ {1, . . . ,M} presented in Equation (8) can be in-
ferred from the expression in (7). Then, the expansion of
the mathematical expression in its Taylor 3rd order series
provides Equation (9), where Bm, Cm and Dm represent the
technological constants of the server.

Pleak,m = Ileak,m · VDD,m (7)

Pleak,m = Bm · T 2
m · e

VGS−VTH
nkT/q (8)

Pleak,m = Bm · T 2
m · VDD,m

+ Cm · Th · V 2
DD,m +Dm · V 3

DD,m (9)

B. Dealing with DVFS

The main contributors to energy consumption in nowadays
servers are CPU and memory devices. Despite DVFS is easily
found in CPUs, there are still few memories with these capabil-
ities. However, memory consumption in some cases (memory-
intensive applications) is very significant compared to the CPU
consumption and, because of this, it was considered important
enough to be studied independently.

Equation 10 provides the consumption of a physical server
that has k ∈ {1 . . .K} DVFS modes, while memory remains
at a constant voltage. This expression takes into account
the impact of temperature on the static power contribution.
We define Em as the contribution of other server resources
operating at constant values of frequency and voltage.

Pleak,mk = Bm · T 2
CPU,m · VDD,mk

+ Cm · TCPU,m · V 2
DD,mk +Dm · V 3

DD,mk

+ Em +Gm · T 2
MEM,m +Hm · TMEM,m(10)

In order to measure temperature-dependent leakage we
must understand also the dynamic contribution of the server’s
power consumption. To maintain constant conditions, we use
lookbusy 2, which is a synthetic application that stresses the
CPU during specifics periods of time. Lookbusy is able to
stress, not only the cores but also the hardware threads of the
CPU at a precise utilization, having no impact on memory
or disk devices. Synthetic workloads help us to maintain the
utilization rate constant (in terms of instructions per cycle),

2http://www.devin.com/lookbusy/

thus revealing the leakage contribution due to temperature
variations. The formulation of the dynamic power consumption
is shown in Equation 11.

PCPU,dyn,imk = Am · V 2
DD,mk · fmk · uCPU,imk (11)

where Am defines the technological constant of the physi-
cal machine m and fmk and VDD,mk are respectively the
frequency and the supply voltage at the k DVFS mode of
the CPU. uCPU,imk represents the CPU utilization and it is
correlated with the number of CPU cycles.

C. Energy model

So far, the power model is derived as in (12).

Ptot,mk = Am · V 2
DD,mk · fmk ·

∑
i

uCPU,imk

+ Bm · T 2
CPU,m · VDD,mk

+ Cm · TCPU,m · V 2
DD,mk

+ Dm · V 3
DD,mk + Em (12)

The corresponding energy model can be easily obtained
taking into account that E = P × t, being P the power
model in (12) and t, the execution time. Thus, the total energy
consumed per host is described as the summation of the
following equations:

ECPU,dyn,mk = Am · V 2
DD,m · CPI

·
∑
i

uCPU,imk · nCPU,imk (13)

Eleak,mk = [

Bm · T 2
CPU,m · VDD,m

+ Cm · TCPU,m · V 2
DD,m +Dm · V 3

DD,m

+ Em +Gm · T 2
MEM,m +Hm · TMEM,m

] · CPI
fmk

·
∑
i

nCPU,imk (14)

where
• CPI is the number of cycles per instruction
• nCPU,imk is the number of CPU instructions of each task
i assigned to be executed in a specific server m and DVFS
mode k.

The summation of both the instructions to execute and
the resources used by the workload hosted on the server are
needed in order to get the execution time of all tasks executed
in parallel considering the resources offered by each server, as
seen in (14).

Etot =
∑
mk

(ECPU,dyn,mk + Eleak,mk) (15)

V. MULTI-OBJECTIVE OPTIMIZATION ALGORITHM

In this work, we aim for a workload allocation in a cloud
that allows to optimize energy consumption. In addition, the
benefits offered by virtualization are exploited, allowing to
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allocate the tasks in a more versatile way. The proposed system
is defined as a cluster of machines of a cloud facility.

The proposed solution considers server heterogeneity, so the
technological parameters will vary from one architecture to
another, resulting in a different energy consumption. Since the
resultant power model is non-linear and there exists a large
set of constraints, the problem is tackled as a multi-objective
optimization:

Minimize

y = f(x) = [λ, (1 + λ) · Etot(x)]

Subject to

x = (x1, x2, . . . , xn) ∈ X (16)

where x is the vector of n decision variables, f is the vector
of 2 objectives function, λ is the number of constraints not
satisfied, Etot is the total energy, and X is the feasible region
in the decision space. Using λ as shown in Equation 16,
unfeasible solutions are also allowed, but only when no other
alternatives are found. In this particular case, Etot is measured
using (15), whereas λ is computed as a penalization over the
control and soft tasks that are delivered after the deadline (see
Figure 1).

Using this formulation, we are able to obtain optimal energy
savings, realistic with the current technology. To provide an
efficient assignment in data centers it is necessary to consider
both the energy consumption and the resource needs of each
task of the workload.

A task τi can be split in different subtasks τi,j in order to
achieve energy savings. Therefore, a task τi can be executed
using a specific amount of resources of one or more servers de-
fined by uCPU,imk. The utilization percentage of the resources
assigned to a task determines its execution time (i.e., Ci or si).
In summary, the proposed multi-objective formulation, once
solved, decides the following aspects:
• Operating server set, indicating which hosts are active

according to the operating conditions of each physical
machine.

• Best assignment for the various tasks of the workload,
distributing each CPU instruction and memory require-
ments according to the minimum energy consumption
of the applications in the computing infrastructure. For
control tasks, S = 2 must be fulfilled. However, a penalty
is added to λ when one control task is aborted, even when
S is being satisfied.

• Percentage of resources used by every task in each host
where it is allocated, achieving best energy consumption.

A. The solver

Evolutionary algorithms have been used to run the proposed
multi-objective formulation. In this work, we use the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [20],
which has become a standard approach to solve this kind
of problems [21]. The chromosome encoding is shown in
Figure 2.
In this case, each gene represents a decision variable. Because
many decision variables are integer, the chromosome uses

DV FS1 · · · DV FSM nCPU,11 · · · nCPU,NM

Fig. 2. Chromosome encoding

integer encoding. Decision variables like nCPU,imk are scaled
to the integer interval 0 ≤ nCPU,imk ≤ 100, and transformed
to its real value (i.e., multiplying the percentage by the total
number of instructions in the multi-objective function for
evaluation).

NSGA-II is always executed with an initial random popu-
lation of 100 chromosomes. After that, the algorithm evolves
the population applying (1) the NSGA-II standard tournament
operator, (2) a single point crossover operator with probability
of 0.9 as recommended in [20], (3) a integer flip mutation
operator (with probability of 1/number of decision variables
as also recommended in [20], and (4) the multi-objective
evaluation. Steps (1) to (4) are applied for a variable number
of iterations or generations, which depend on the time that the
parameter λ becomes 0 (usually 25000 iterations have been
enough).

VI. RESULTS

Tests have been conducted gathering real data from a Fujitsu
RX300 S6 server based on an Intel Xeon E5620 processor and
a SunFire V20z Dual Core AMD Opteron 270, both operating
at the set of frequencies fmi given in Table I. Total power
consumption and CPU temperature have been collected via
the Intelligent Platform Management Interface (IPMI) during
the execution of lookbusy at different utilization levels ranging
from 0% to 100%, where a 65% of these levels were used to
fit the energy model and the remaining 35% for validation.
We used MATLAB to fit our data, obtaining the constants and
validation errors shown in Table II.

TABLE I
INTEL XEON E5620 AND SUNFIRE V20Z DUAL CORE AMD OPTERON

270 FREQUENCIES

Platform fm1 fm2 fm3 fm4 fm5 fm6

Intel (GHz) 1.73 1.86 2.13 2.26 2.39 2.40
AMD (GHz) 1.0 1.8 2.0

The efficiency of the power supplies affects the calculation
of these constants for different temperatures. In consequence,
negative constants appear due to the fact that only CPU and
memory have been characterized in this work because of their
dominant contribution. In order to adapt the problem to more
generic Cloud computing environments, our model constants
can be calculated for data obtained during the execution of the
workload in virtual machines. In that experimental approach,
both the power model and the multi-objective optimization
formulations would still be valid.

Once the model proposed in section IV for both Intel
Xeon and AMD Opteron servers have been validated, we
have proceeded with the analysis of results. The considered
performance parameters are the temperature of both CPU and
memory, as well as the frequency and voltage of the DVFS
modes available to the CPU in each physical machine. These
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TABLE II
CONSTANTS OBTAINED FOR POWER CURVE FITTING

Server A B1 B2 C1 C2 D E F G1 G2 H1 H2 Error Temp. range
Intel 14.3505 0.1110 - -0.0011 - 0.3347 -40700 64.9494 275.702 - -0.4644 - 11.28% 293-309K
AMD 11.2390 1.9857 -6.1703 -0.0002 0.0132 426.51 -5.3506 25.1461 -444.480 464.076 0.6977 -0.7636 9.12% 293-312K

variables modify independently the dynamic and static con-
sumption of servers in each architecture, so different behaviors
for Intel and AMD have been found. Table III shows the set
of tasks used for the optimization.

TABLE III
PROFILE OF TASKS ALLOCATED

Task Id Type # Ins Period Deadline # Jobs
0 REAL 7740796 114.20 0.021 131
1 CTRL 5594832 114.21 0.015 115
2 REAL 4138643 137.12 0.011 112
3 CTRL 98156923 124.66 0.267 95
4 REAL 739437676 124.76 2.01 118
5 SOFT 2591877 124.86 0.007 103
6 SOFT 3093531 124.85 0.008 112
7 SOFT 5447445 105.76 0.015 115
8 SOFT 5722568 152.21 0.016 99

These tasks have been adapted from the TUDelft workloads
archive3. The task set consists of a number of deadline-critical
tasks τhrt = {τ0, τ2, τ4}, a number of QoC-critical control
tasks τc = {τ1, τ3}, and a number soft real-time tasks τsrt =
{τ5, τ6, τ7, τ8}. We assume that all tasks are independent from
each other. However, due to the interference from other tasks,
each task τi experiences a response time or delay Ri. Periods
and deadlines are given in seconds. Each real-time tasks τhrt is
bounded to one single host. Only control τc and soft tasks τsrt
are allowed to loss their deadline, increasing the λ parameter
in the multi-objective function. Control tasks are configured
with S = 2.

NSGA-II has been executed with the minimum frequency
in all the CPUs (labeled in the results as DVFS-MIN), the
maximum frequency (labeled as DVFS-MAX) and a range
of 5 possible DVFS modes (from 1 to 5). This algorithm has
been compared with a more traditional approach, the EDF-VD
algorithm. The overall goal is to design a priority assignment
technique with the following objectives:
• All the real-time tasks τhrt meet their deadlines Dhrt in

the WCET
• The overall QoC of all the control tasks τc and QoS of

all the soft real-time tasks τsrt is maximized.
• The overall energy is minimized.
Figure 3 depicts the three obtained Pareto fronts for the

Intel architecture. Both objectives have been normalized to the
worst value in all the Intel and AMD optimizations (1 unit of
energy = 95.6 KJ). As can be seen, the DVFS-MAX Intel
framework is able to allocate all the tasks in Table III without
penalizations (labeled as full feasibility). Using DVFS-MIN,
the algorithm was not able to allocate all the required tasks,
having to break some soft timing constraints (labeled as partial
feasibility). As can be seen, there is at least one DVFS-VAR

3http://gwa.ewi.tudelft.nl/datasets/gwa-t-1-das2

Fig. 3. Pareto front obtained with NSGA-II after optimizing the allocation
of tasks over the Intel architecture.

Fig. 4. Pareto front obtained with NSGA-II after optimizing the allocation
of tasks over the AMD architecture.

configuration able to execute all the tasks without penalization
and with less energy than DVFS-MAX and close to DVFS-
MIN. Table IV shows the DVFS modes selected by the DVFS-
VAR solution with full feasibility.

Similarly, Figure 4 shows the three obtained non-dominated
fronts for the AMD architecture. As with the Intel scenario,
the algorithm was not able to execute all the REAL, CTRL
and SOFT tasks without penalization using the minimum
DVFS mode (DVFS-MIN), although all the REAL tasks were
properly executed. However, we found a completely feasible
solution in DVFS-VAR (feasibility=0), consuming less energy
than DVFS-MAX. Table IV shows the DVFS models selected
by the multi-objective algorithm in the DVFS-VAR AMD
optimization.

EDF was able to schedule all the tasks in both cases, but
using the maximum DVFS mode and thus consuming more
energy than the proposed algorithm.
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TABLE IV
DVFS MODES OBTAINED BY NSGA-II PARETO FRONT IN THE

DVFS-VAR OPTIMIZATION

Platform CPU 1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 6
Intel 2 2 2 2 2 5
AMD 5 1 5

As a result, the best DVFS configuration that can execute
all the demanded services given in Table III has been found
without penalizations, obtaining a high diversity in terms of
energy consumption.

VII. CONCLUSIONS

CPS and Mobile Cloud Computing have collided with
the lack of accurate power models for the energy-efficient
provisioning of their devised infrastructures, and the real-time
management of the computing facilities. In this paper, we have
presented a reservation-based scheme aiming to jointly sched-
ule deadline-critical, QoS non-critical, and QoC tasks. The
work proposed in this paper has made substantial contributions
in the area of power modeling of high-performance servers for
Cloud computing services under timing constraints, which is
an interesting and big challenge.

We have proposed an accurate power model in data centers
for time constrained servers in Cloud computing, which does
not only consider the workload assigned to the processing el-
ement, but also incorporates the need of considering the static
power consumption and its dependency with temperature.

The proposed model has been used in a multi-objective
optimization environment in which the DVFS and workload
assignment have been efficiently optimized in a realistic sce-
nario composed of Fujitsu RX300 S6 servers based on an Intel
Xeon E5620 and SunFire V20z Dual Core AMD Opteron 270.
Results show that the proposed multi-objective optimization
framework is able to find the best DVFS configuration that can
execute all the given demanded services without penalizations.
In addition, the set of non-dominated solutions found presents
a high diversity in terms of energy consumption.

The obtained results open a motivating research line that
could enable intensely sought Green computing paradigm with
hard timing constraints. Future work envisages to extend the
scheduling model to integrate the concept of criticality levels.
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