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Data-Driven Risk-Averse Stochastic Self-Scheduling
for Combined-Cycle Units

Kai Pan, Member, IEEE, and Yongpei Guan, Senior Member, IEEE

Abstract—With fewer emissions, higher efficiency, and quicker
response than traditional coal-fired thermal power plants, the
combined-cycle units, as gas-fired generators, have been increas-
ingly adapted in the U.S. power system to enhance the smart
grids operations. Meanwhile, due to the inherent uncertainties
in the deregulated electricity market, e.g., intermittent renewable
energy output, unexpected outages of generators and transmis-
sions, and fluctuating electricity demands, the electricity price is
volatile. As a result, this brings challenges for an independent
power producer (served in the self-scheduling mode) owning
combined-cycle units, to maximize the total profit when facing
the significant price uncertainties. In this paper, a data-driven
risk-averse stochastic self-scheduling approach is presented for
the combined-cycle units that participate in the real-time market.
The proposed approach does not require the specific distribution
of the uncertain real-time price. Instead, a confidence set for the
unknown distribution is constructed based on the historical data.
The conservatism of the proposed approach is adjustable based
on the amount of available data. Finally, numerical studies show
the effectiveness of the proposed approach.

Index Terms—Data-driven, stochastic optimization, combined-
cycle units, self-scheduling.

I. NOMENCLATURE

A. Sets
H Set of all edges in the state transition graph.
Hall
m Set of all edges connected to mode m.
Hin
m Set of incoming edges of mode m.
Hout
m Set of outgoing edges of mode m.
Hsl
m Set of self-loop edges of mode m.
Hsd
i Set of edges where turbine i shuts down.
Hsu
i Set of edges where turbine i starts up.
GCT Set of CTs.
GST Set of STs.
M Set of modes in the state transition graph.
Moff

i Set of modes where turbine i is offline.
Mon

i Set of modes where turbine i is online.
B. Parameters
T Number of time periods in planning horizon, with

each period to be one hour.
Cm Generation upper bound of mode m (MW).
Cm Generation lower bound of mode m (MW).

This research was partially supported by the US National Science Founda-
tion under grant ECCS1609794. The work of K. Pan was partially supported
by Hong Kong Polytechnic University under grants 1-ZE73 and G-UABE.

Kai Pan is with the Department of Logistics and Maritime Studies, Hong
Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. E-mail:
kai.pan@polyu.edu.hk.

Yongpei Guan is with the Department of Industrial and Systems Engi-
neering, University of Florida, Gainesville, Florida 32611, USA. E-mail:
guan@ise.ufl.edu.

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Ĉ Total capacity of the combined-cycle unit (MW).
V +
e Ramp-up rate limit at edge e (MW/h).
V −e Ramp-down rate limit at edge e (MW/h).
SUi Start-up cost of turbine i ($).
SDi Shut-down cost of turbine i ($).
T cold
i Cold start time of turbine i (h).
T warm
i Warm start time of turbine i (h).
T mu
i Minimum-up time for turbine i (h).
T md
i Minimum-down time for turbine i (h).
qt(ξ) Electricity price at time period t corresponding to

scenario ξ ($/MWh).
C. First-Stage Decision Variables
yte Binary variable to indicate the status of edge e in

the transition graph at time period t, “1” if edge e
is active at t and “0” otherwise.

uti Start-up cost of turbine i at time period t ($).
vti Shut-down cost of turbine i at time period t ($).
D. Second-Stage Decision Variables
φtm(ξ) Generation cost of mode m at time period t

corresponding to scenario ξ ($).
xtm(ξ) Power generation amount of mode m at time

period t corresponding to scenario ξ (MW).

II. INTRODUCTION

This paper considers the self-scheduling problem that an
independent power producer (IPP) faces when participating
in the deregulated real-time electricity market, where an in-
dependent system operator (ISO) takes real-time generation
offers and clears the real-time market by considering the load
discrepancy between day-ahead and real-time markets [1]. To
maximize its own profit by participating in the real-time mar-
ket, besides the traditional three-part offer approach [2], each
IPP can also use “self-commitment” [3] and “self-scheduling”
modes [4], [5]. For the “self-commitment” mode, an IPP
decides the unit commitment (i.e., generator online/offline
status) and submit it to the ISO, who will decide the generation
amount for each time period. For the “self-scheduling” mode,
an IPP makes the decisions on both the unit commitment and
power generation amount before submitting the selling bids to
the ISO. Thus, the difference between these two modes is on
who decides the generation amount. For the “self-scheduling”
mode, a fundamental task for an IPP is to self-schedule its
generators so that the total profit obtained from selling energy
to the electricity market is maximized [6]. For extensive works
on the self-scheduling problem, the readers are referred to
[7], [8], and [9], among which the thermal and hydro units
are studied in detail. This paper considers the combined-cycle
unit (CCU) that received little attention on the self-scheduling
problem, although its self-commitment mode has been recently
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studied in [3]. Accordingly, an IPP is served as a price-taker
and an optimal strategy is derived for a CCU.

Due to the advantages of their physical characteristics, such
as quick and flexible responses, low emissions, and the afford-
able gas price, among others, the CCUs are becoming more
and more popular in U.S. to support smart grids operations. It
is appealing that CCUs are being widespreadly deployed by
major ISOs of the U.S., e.g., MISO [10], PJM [11], ERCOT
[12], etc. A CCU consists of several combustion turbines (CTs)
and steam turbines (STs), and it can work at different modes
with each mode including a part of CTs and STs ([13] and
[14]). With the given electricity prices, the self-scheduling
decision of a CCU includes the hourly on/off status of each
individual turbine (CTs and STs) and the power generation
amount of each mode.

On the other hand, with the increasing penetration of
renewable energy, unexpected generator and transmission out-
ages, and fluctuating electricity demands, the electricity prices
are significantly volatile, which provides a chance for the
flexible CCU to gain more profit by participating in the real-
time market using the “self-scheduling” mode. However, this
uncertainty brings significant challenges to an IPP for making
an optimal self-scheduling decision under price uncertainty.

Stochastic optimization approach has been studied exten-
sively to deal with these challenges, as it fits well for the cur-
rent deregulated electricity market. For instance, a stochastic
mixed-integer optimization formulation accommodating price
uncertainty is established in [15] by utilizing an estimation of
price probability density functions. In [16], a stochastic self-
scheduling model is formulated for an IPP participating in
three markets including the day-ahead market, the automatic
generation control market, and the real-time market, with price
volatility represented by a scenario tree. In addition, another
scenario tree-based stochastic optimization model is estab-
lished in [5], where hourly uncertain electricity prices are con-
sidered and risk constraints are incorporated. Furthermore, in
[3], a two-stage stochastic optimization framework is adopted
to make self-commitment decisions for the CCUs considering
real-time market price uncertainty and the influence of risk
aversion.

Robust optimization approach is another approach to deal
with price uncertainty and has been explored in much literature
on power system operations since it can ensure the system
feasibility and reliability under the worst-case scenario. Early
works demonstrating the effectiveness of robust optimization
for the unit commitment (UC) problems appear in [17], [18],
and [19], in which the security-constrained UC problem is
modeled and solved through robust optimization techniques.
For the self-scheduling problem under price uncertainty, ro-
bust optimization also plays an important role since it is
distribution-free [20]. That is, it does not require the pre-
cise distribution of the electricity prices, as the stochastic
optimization approach does. Along this direction, a robust
mixed-integer linear programming model with min-max cost
criterion is proposed in [20] for a price-taker power producer
who participates in the pool-based electricity market. Price
uncertainties are represented with confidence intervals, which
are successively divided into a sequence of nested subintervals

and enables the problem to be easily solved.
However, both stochastic and robust optimization ap-

proaches face challenges in practice. As mentioned above, for
the stochastic self-scheduling model, which uses the stochastic
optimization approach, the electricity prices are usually as-
sumed to follow a certain distribution through price forecast
and estimation. Then, a sampling approach is conducted to
generate a finite number of scenarios that could be realized
in the future, with a certain probability corresponding to
each scenario. This approach, however, leads to a difficult
large-sized stochastic programming model, which is extremely
computationally expensive. In contrast, the robust optimiza-
tion approach is distribution-free. Instead of requiring the
detailed distribution of electricity prices, limited information is
needed to construct the confidence set of the uncertain prices,
which could help reduce the computational time. However,
the robust optimization approach always considers the worst-
case scenario in the system. This leads to a conservative
solution, because the worst-case scenario rarely happens in
practice. Therefore, although robust optimization requires less
information to represent the price uncertainty, it can be too
conservative due to its objective of minimizing the worst-case
cost.

Currently, a large amount of historical data on electricity
prices are available to public for each ISO/RTO online. With-
out explicit price distribution, through observing the historical
data, a confidence set for the unknown price distribution can
be constructed and the self-scheduling model can be further
established. Meanwhile, it is worthwhile exploring how the
price data would affect the self-scheduling decisions and total
profits. Therefore, a data-driven stochastic optimization model
considering price uncertainty is proposed in this paper to
solve the CCU self-scheduling problem. Historical data are
observed to construct the confidence set of price distribution
(instead of the price uncertainty set), and different norms
are applied to measure the distance between the empirical
price distribution and the true price distribution. The proposed
model is solved with the objective of maximizing the total
expected profit under the worst-case distribution, leading to a
risk-averse solution. For this data-driven risk-averse stochastic
optimization model, as more data are observed, the distance
between the empirical distribution and the true distribution
becomes smaller and smaller, i.e., the empirical distribution
converges to the true distribution based on nonparametric
statistical analysis. As a result, the proposed model converges
to the risk-neutral stochastic optimization model. The proposed
risk-averse model is also related to risk based approaches.
There has been extensive literature on applying risk-averse
optimization approach to deal with the problems in smart grid
operations. For instance, a risk-averse stochastic UC model
is introduced in [21] to hedge against the risk from the
load, wind, and photovoltaic (PV) generation uncertainties.
In [22], a risk-averse optimization model is constructed to
maximize the profits of the plug-in electric vehicle (PEV)
under uncertain market prices and fleet mobility. Moreover,
risk neutral and risk averse options are compared in [23] when
deciding the optimal day-ahead schedule under uncertainty by
developing stochastic optimization models for the micro grid
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operations. Different risk measures such as value-at-risk [24]
and conditional value-at-risk [25], [26] can be applied.

Although the data-driven approach has been applied in fault
detection [27], system reliability [28], quality prediction [29],
and system prognostic [30], it was rarely applied in the smart
grid operations. By introducing the data-driven concept to
smart grid operations, the proposed approach in this paper
can help accommodate the disadvantages of both stochastic
and robust optimization approaches by utilizing the historical
data and then provide better decision-marking. The main
contributions are described as follows:
(1) A self-scheduling approach is introduced for IPPs to

submit an offer for a combined-cycle unit, for which IPPs
have better controls of their assets, as compared to the
three-part offering and the self-commitment approaches.

(2) The data-driven stochastic optimization model does not
require the precise price distribution and can be solved
directly based on the observed historical data.

(3) The conservatism of the data-driven risk-averse stochas-
tic optimization model can be adjusted based on how
much data are observed, since the confidence set of
price distribution is adjustable based on the amount of
data with a given level of confidence guarantee. Finally,
the conservatism of the proposed model vanishes as the
amount of available data increases to infinity. The value of
data is also provided by showing how the objective value
changes based on the change of historical data.

The remaining part of this paper is organized as follows. The
nominal formulation for CCU self-scheduling is first reported
in Section III. Then, in Section IV the data-driven stochastic
self-scheduling model for a CCU is described. In Section
V, a solution approach based on Bender’s decomposition
framework is elaborated, and the corresponding computational
results are presented in Section VI. Finally, this paper is
summarized in Section VII.

III. NOMINAL FORMULATION FOR CCU
SELF-SCHEDULING

This section describes the nominal formulation of the deter-
ministic CCU self-scheduling model based on the edge-based
model described in [31]. For a CCU with mCTs and nSTs,
a mode in which this unit can work can be represented as
aCTs+bSTs, with 0 ≤ a ≤ m and 0 ≤ b ≤ n. Note that
the steam turbine cannot start up unless the corresponding
combustion turbine is online, and thus b ≤ a. In addition, the
CTs are distinguished as CT1, CT2, · · · , CTm and the STs as
ST1, ST2, · · · , STn.

As shown in Figure 1, there are transition edges indicating
the transitions between different modes. (As opposed to the
configuration-based model [14], this paper focuses on the
edges connecting different modes to describe exactly the
physical characteristics of each CT and ST in a CCU [31].)
For each mode i, as shown in Figure 1, there are incoming
edges such as Emi and Eni indicating that modes m and n
can transit to mode i. Meanwhile, mode i can stay on the
same mode on two consecutive time periods through the self-
loop edge Eii or transition to other modes, e.g., mode j and

mode k, through outgoing edges Eij and Eik. For illustrative
purposes, the transition edges of the state transition paragraph
for a CCU with 2CTs+1ST are summarized in Table I.

Mode i

Mode m

Mode n

Mode j

Mode k

Emi

Eni

Eij

Eik

Eii

Fig. 1. An example for mode transitions

TABLE I
TRANSITION EDGES FOR 2CTS+1ST

Mode
No mCTs+nSTs Self-loop

edge Incoming edges Outgoing edges

0 0CT+0ST E00 E10, E20, E50 E01, E02, E05
1 CT1 E11 E01, E31, E51 E10, E13, E15
2 CT2 E22 E02, E42, E52 E20, E24, E25
3 CT1+ST E33 E13, E63 E31, E36
4 CT2+ST E44 E24, E64 E42, E46
5 CT1+CT2 E55 E05, E15, E25, E65E50, E51, E52, E56
6 CT1+CT2+ST E66 E36, E46, E56 E63, E64, E65

Now, the deterministic self-scheduling model is provided
for a single CCU to maximize the total profit, i.e., the total
revenue minus the total cost, as follows:

max

T∑
t=1

( ∑
m∈M

(qtx
t
m − φtm)−

∑
i∈GCT

(uti + vti)

)
s.t.

∑
e∈H

yte = 1, ∀t, (1)∑
e∈(Hin

m

⋃
Hsl
m)

yte =
∑

e∈(Hout
m

⋃
Hsl
m)

yt+1
e , ∀m ∈M, ∀t, (2)

∑
e∈
⋃
m∈Moff

i
Hall
m

yτe ≤ 1−
∑
e∈Hsu

i

yte, ∀i ∈ GCT ∪ GST,

∀τ ∈ {t+ 1, · · · ,min{T, T mu
i + t− 1}}, ∀t, (3)∑

e∈
⋃
m∈Mon

i
Hall
m

yτe ≤ 1−
∑
e∈Hsd

i

yte,∀i ∈ GCT ∪ GST,

τ ∈ {t+ 1, · · · ,min{T, T md
i + t− 1}}, ∀t, (4)

uti ≥ SUhot
i

∑
e∈Hsu

i

yte, ∀i ∈ GCT, ∀t, (5)

uti ≥ SUwarm
i

( ∑
e∈Hsu

i

yte −
Twarm
i∑

τ=Tmd
i +1

∑
e∈Hsd

i

yt−τe

)
,∀i ∈ GCT,∀t,(6)

uti ≥ SUcold
i

( ∑
e∈Hsu

i

yte −
T cold
i∑

τ=Tmd
i +1

∑
e∈Hsd

i

yt−τe

)
, ∀i ∈ GCT, ∀t, (7)

vti = SDi
∑
e∈Hsd

i

yte, ∀i ∈ GCT,∀t, (8)

φtm ≥ αnm
( ∑
e∈(Hin

m

⋃
Hsl
m)

yte

)
+ βnmx

t
m,

m ∈M, ∀t, n = 1, · · · , N, (9)

Cm

( ∑
e∈(Hin

m

⋃
Hsl
m)

yte

)
≤ xtm, ∀m ∈M, ∀t, (10)
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xtm ≤ Cm
( ∑
e∈(Hin

m

⋃
Hsl
m)

yte

)
,∀m ∈M, ∀t, (11)

∑
m∈M

xt+1
m −

∑
m∈M

xtm ≤ V +
e y

t+1
e + Ĉ(1− yt+1

e ),

∀e ∈ H,∀t, (12)∑
m∈M

xtm −
∑
m∈M

xt+1
m ≤ V −e yt+1

e + Ĉ(1− yt+1
e ),

∀e ∈ H,∀t, (13)
yte ∈ {0, 1}, xtm ≥ 0, φtm free,∀m ∈M, ∀e ∈ H, ∀t. (14)

In the above formulation,
∑
i∈GCT(uti + vti) represents the

total transition costs (usually the summation of start-up and
shut-down costs for all CTs) at time period t. Constraints (1)
indicate that only one of all edges is active at each time period
since the CCU moves along one edge at each time period.

Constraints (2) indicate the flow balance constraint. That is,
for each mode m, the summation of the incoming edge flow
at time t is equal to the summation of the outgoing edge flow
at time t+1. For instance, for mode 0 in Table I, ytE00 +ytE10 +
ytE20 + ytE50 = yt+1

E00 + yt+1
E01 + yt+1

E02 + yt+1
E05 ,∀t.

Constraints (3) represent the minimum-up time limits. For
each turbine in CCU, once it starts up, the modes that do
not contain this turbine to be online should be offline for the
following T mu

i consecutive time periods (or T − t + 1 time
periods if T < T mu

i + t − 1). For instance, for CT2 in Table
I with T mu

CT2
= 2 and t + 1 ≤ T , the edges indicating that

CT2 starts up (i.e., Hsu
CT2

) are E02, E05, E15, and E36; the
modes that do not contain CT2 are Modes 0, 1, and 3. Thus it
follows that yt+1

E00 +yt+1
E10 +yt+1

E20 +yt+1
E50 +yt+1

E01 +yt+1
E02 +yt+1

E05 +
yt+1

E11 + yt+1
E31 + yt+1

E51 + yt+1
E13 + yt+1

E15 + yt+1
E33 + yt+1

E63 + yt+1
E36 ≤

1− ytE02 − ytE05 − ytE15 − ytE36, where the left-hand side is the
summation of the statuses of the edges connected to Modes
0, 1, and 3, since

⋃
m∈Moff

i
Hall
m is the set of edges connected

to the modes with turbine i offline.
Similarly, constraints (4) represent the minimum-down time

limits and show that if turbine i shuts down at t, then the
modes that contain this turbine should be offline for the
following consecutive minimum-down time periods. Note here
that the term

⋃
m∈Mon

i
Hall
m is the set of the edges connected

to the modes with turbine i online.
Constraints (5) - (8) represent the transition cost constraints,

with SUhot
i ,SUwarm

i , SUcold
i , and SDi representing the hot start-up,

warm start-up, cold start-up, and shut-down costs, respectively,
and SUhot

i < SUwarm
i < SUcold

i . The transition among different
modes (i.e., one of the incoming and outgoing edges is
active) results in transition cost for the CCU. Denote it as
the summation of start-up and shut-down costs involved in
this transition. Note that no transition cost is triggered for
each self-loop edge. In addition, the start-up/shut-down costs
for STs are omitted here due to the fact that ST is driven
by CTs. For each CT, uti is calculated through constraints (5)
- (7) by considering three types of start-up costs (i.e., cold
start-up cost, warm start-up cost, and hot start-up cost). The
calculation of vti is given by constraints (8). For more details
on explaining constraints (5) - (7), readers are referred to [31].

Constraints (9) show how to calculate the generation cost
that is normally a quadratic curve [32], i.e., a(xtm)2 +

bxtm+ c
(∑

e∈(Hin
m

⋃
Hsl
m) y

t
e

)
, which can be represented by an

N−piece piecewise linear approximation. Note here that for
a CCU, the generation cost at each time period is equal to the
total generation costs of all modes at each time period, since
there is only one mode online for each time period. Parameters
α and β are defined in the piecewise linear approximation.
Here

(∑
e∈(Hin

m

⋃
Hsl
m) y

t
e

)
represents the status of mode m at

t, since mode m online at t means one of the incoming or
self-loop edges of mode m is active at t.

Constraints (10) - (11) represent the generation amount
limits. Similar to the generation cost, the generation amount
of a CCU is the summation of the generation amounts over
all the modes.

Constraints (12) - (13) represent the ramping constraints,
where the right sides indicate that if an edge e is not active
(i.e., yt+1

e = 0), then the ramping constraints are relaxed,
following the definition of Ĉ. Otherwise, if this edge e is
active (i.e., yt+1

e = 1), then this edge provides the ramp rate
limit for the whole CCU. Note here that constraints (12) and
(13) describe the ramp rate limit for both self-loop edges and
incoming/outgoing edges, with the former representing the
ramp rate within a mode and the latter representing that of
the transition between different modes.

IV. DATA-DRIVEN STOCHASTIC SELF-SCHEDULING
MODEL

In this section, a two-stage risk-averse stochastic optimiza-
tion model for the combined-cycle unit self-scheduling prob-
lem is firstly proposed and then the confidence set construction
for the unknown price distribution and the corresponding
convergence analysis are discussed.

A. Two-Stage Risk-Averse Stochastic Optimization Model

The proposed model is extended from the traditional two-
stage stochastic optimization framework, and the distribution
of random parameter is denoted as P. In the proposed model,
the decisions of edge statuses (i.e., binary variable y) are
made in the first stage, and power generation amounts (i.e.,
continuous variable x) are made in the second stage under the
worst-case price distribution, as the objective is to maximize
the total expected profit under the worst-case price distribution.
For the traditional two-stage stochastic optimization model, P
is given, which means the probability corresponding to each
possible scenario ξ is assumed to be known. However, as
it is biased to assume any particular distribution for P, in
this paper, the distribution P is set to be unknown and it is
assumed ambiguous (denoted as P for notation clarification).
Instead, historical data is available, and based on a given set
of historical data, a pre-defined confidence set A for P is
constructed so that the probability distribution P can run freely
within set A. The detailed description on the construction of
set A is provided in Section IV-B. Accordingly, the detailed
formulation of the proposed model is described as follows:

max −
T∑
t=1

∑
i∈GCT

(uti + vti) + min
P∈A

EP [Q(y, ξ)] (15)
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s.t. (1)− (8), yte ∈ {0, 1},∀e ∈ H,∀t,

where EP [·] means the expectation under P and Q(y, ξ) is
equal to

max

T∑
t=1

∑
m∈M

(qt(ξ)x
t
m(ξ)− φtm(ξ)) (16)

s.t. (9)− (13), ∀ξ;
φtm(ξ) free, xtm(ξ) ≥ 0,∀m ∈M,∀t.

This study assumes that ξ has a finite support, i.e.,
ξ1, ξ2, · · · , and ξJ , indicating a finite number of possible
realizations. Then it follows that

EP [Q(y, ξ)] =

J∑
j=1

pjQ(y, ξj), (17)

where pj is the probability corresponding to scenario j. Since
P is ambiguous, the probability pj , j = 1, · · · , J , for each
scenario is random and satisfies the constraints describing A
in the model.

B. Confidence Set Construction and Convergence Analysis

Now describe how to construct A based on historical data.
Given a set of historical data, e.g., S samples, J bins are
constructed to separate the data so that each bin consists
of S1, S2, · · · , and SJ samples. In this way, a histogram
with S =

∑J
j=1 Sj are constructed. Consequently, the em-

pirical distribution for the uncertain parameter based on the
historical data is described P0

> = (p01, p
0
2, · · · , p0J), with

p01 = S1/S, p
0
2 = S2/S, · · · , and p0J = SJ/S. For better

illustration purpose, a simple example is given as follows.
Given S = 10 one-dimensional data samples corresponding
to an uncertain parameter, i.e., 5, 12, 16, 21, 30, 43, 55, 72,
89, and 93, five bins can be constructed as Bin 1: (−∞, 20),
Bin 2: [20, 40), Bin 3: [40, 60), Bin 4: [60, 80), and Bin 5:
[80,∞). Through separating the data samples into each bin,
it follows that the number of data samples falling into each
bin is S1 = 3, S2 = 2, S3 = 2, S4 = 1, and S5 = 2,
respectively. Thus, the empirical distribution for the uncer-
tain parameter is described as P0

> = (p01, p
0
2, p

0
3, p

0
4, p

0
5) =

(3/10, 2/10, 2/10, 1/10, 2/10).
Since the true distribution might be different from the

empirical distribution, statistical inference is used to define
the confidence set A, which includes the possible realizations
of the true distribution P . Based on the given set of historical
data, the distance (denoted as θ) between the true distribution
and the empirical distribution can be estimated under different
distance measures (or metrics). For better explaining the con-
cept of distance measure, a simple example is given as follows.
In the real space Rn, the distance between two points (vectors)
such as r1 = (r11, r

1
2, · · · , r1n) and r2 = (r21, r

2
2, · · · , r2n)

can be represented by Euclidean norm (or L2 norm) as
d2(r1, r2) =

√∑n
i=1(r1i − r2i )2. Note here that the distance

between r1 and r2 can also be represented by other distance
measures such as L1 norm.

In this paper, two norms, L1 and L∞ norms, are applied
to measure the distance between the true distribution P and

the empirical distribution P0 and thus to construct two types
of confidence sets. These two norms are utilized since the
empirical distribution converges to the true distribution under
these two norms as the amount of available historical data (i.e.,
S) goes to infinity. That is, these two norms have advantages
in guaranteeing the convergence. On the other hand, with these
two norms, the model can be reformulated as a mixed-integer
linear programming (MILP) formulation, which can be solved
easily by commercial optimization solvers (e.g., CPLEX) and
then better applied in practices.

First, the confidence sets, A1 and A∞, are defined corre-
sponding to L1 and L∞ norms, respectively: A1 = {P ∈ RJ+ |
d1(P, P0) = ‖P −P0‖1 ≤ θ} = {P ∈ RJ+ |

∑J
j=1 |pj−p0j | ≤

θ} and A∞ = {P ∈ RJ+ | d∞(P, P0) = ‖P − P0‖∞ ≤ θ} =
{P ∈ RJ+ | max1≤j≤J |pj − p0j | ≤ θ}.

Next, for these two sets, the value θ is determined by the
amount of given historical data and the confidence level, i.e.,
how much percentage is required for the distance between
the true distribution and the empirical distribution to be less
than θ. For example, if the confidence level is equal to 95%,
then the constraint describing A1 (resp. A∞) guarantees that
the true distribution is within A1 (resp. A∞) with at least
95% confidence level. Here θ is called the distance level,
which can be calculated based on the given confidence level
and the amount of historical data. Intuitively, the more the
historical data is available, the smaller the distance between
the empirical distribution and the true distribution. Therefore,
for a confidence set with a fixed confidence level, the more
the historical data is available, the smaller the value of θ. It
follows that this confidence set shrinks. Meanwhile, similar to
the related studies as described in [33] and [34], we have the
following convergence rates available:
1) Corresponding to the given set of historical data (with S

samples) and J bins, the convergence rate between P and
P0 under L1 norm is described as follows:

Pr{‖P − P0‖1 ≤ θ} ≥ 1− 2Je
−2Sθ
J . (18)

2) Corresponding to the given set of historical data (with S
samples) and J bins, the convergence rate between P and
P0 under L∞ norm is described as follows:

Pr{‖P − P0‖∞ ≤ θ} ≥ 1− 2Je−2Sθ. (19)

Based on the above descriptions, assuming the confidence
level to be γ, i.e., the right-hand sides of inequalities (18)
and (19) are γ, i.e., γ = 1 − 2Je

−2Sθ
J under L1 norm and

γ = 1− 2Je−2Sθ under L∞ norm. It follows that the values
of θ with respect to different norms can be obtained as follows:

θ for L1 norm: θ1 =
J

2S
log

2J

1− γ
, (20)

θ for L∞ norm: θ∞ =
1

2S
log

2J

1− γ
. (21)

From (20) and (21), it is easy to observe that as the size
of historical data S increases to infinity, both θ1 and θ∞
decrease to 0. It follows that the confidence sets A1 and
A∞ become singletons and that the corresponding two-stage
risk-averse stochastic self-scheduling problem converges to
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the traditional two-stage risk-neutral stochastic self-scheduling
problem. Note here that the historical data in this paper are
used to construct the confidence set, which is incorporated
in the decision making/optimization model (15), rather than
forecasting the value or distribution of the uncertain parameter.
For detailed forecasting methods, the readers are referred to
[35], [36], [37], and [38], among others.

V. BENDER’S DECOMPOSITION ALGORITHM

To solve the problem presented in (15) - (17), the Bender’s
decomposition framework [39] is applied. Due to the indepen-
dence of scenarios ξ1, ξ2, · · · , ξJ , for equation (17), the outer
summation and inner maximization part inherited from (16)
can be interchanged. Thus, the problem can be reformulated
as follows.

max
y,u,v

−
T∑
t=1

∑
i∈GCT

(uti + vti)

+ min
P∈A

max
x,φ

J∑
j=1

pj

( T∑
t=1

∑
m∈M

(qt(ξ
j)xtm(ξj)− φtm(ξj))

)
s.t. (1)− (8), (9)− (13), ∀ξ;

yte ∈ {0, 1},∀e ∈ H,∀t;
φtm(ξ) free, xtm(ξ) ≥ 0,∀m ∈M,∀t. (22)

A. Bender’s Decomposition Framework
Before describing the solution approach in detail to solve

the problem above, in this subsection the fundamental concepts
and steps of Bender’s decomposition framework are firstly
introduced. Bender’s decomposition is a solution algorithm
to solve the large-scale (mixed-integer) linear program by
partitioning the original problem into a small master problem
and a subproblem, both of which are solved in an iterative
process. For each iteration, new constraints are generated after
solving the sub-problem and then are added to the master
problem, which is solved again towards the final optimal
solution. For simplicity, a mixed-integer linear program is
considered as follows.

(MIP) min
$,ζ

c>$ + f>ζ

s.t. A$ +Bζ ≥ b,
ζ ∈ ∆, $ ≥ 0,

where $ is a continuous variable, ζ is an integer variable, and
∆ represents an integer set.

If ζ is fixed to a feasible integer solution (denoted as ζ̄),
the resulting model to solve is the following left model and its
corresponding dual form is described in the right hand side:

(SP) min
$

c>$

s.t. A$ ≥ b−Bζ̄,
$ ≥ 0,

(SP-D) max
τ

(b−Bζ̄)
>
τ

s.t. A>τ ≤ c,
τ ≥ 0,

Therefore, the master problem can be set as maxζ{f>ζ +
ϑ|ζ ∈ ∆, new constraints/cuts, ϑ free}, where new con-
straints/cuts are added after each iteration in which the sub-
problem (SP-D) is solved and certain conditions are satisfied.
The detailed algorithmic steps can be described as follows.

• Initialization: Let ζ̄ := initial feasible solution, the prob-
lem’s lower bound LB := −∞, and the problem’s upper
bound UB :=∞.

• Step 1: Solve the subproblem (SP-D). If (SP-D) is un-
bounded, then get unbounded ray τ̄ and add feasibility cut
(b−Bζ)

>
τ̄ ≤ 0 to the master problem; otherwise, get

optimal solution τ̄ , add optimality cut ϑ ≥ (b−Bζ)
>
τ̄

to the master problem, and set UB := min{UB, f>ζ̄ +

(b−Bζ̄)
>
τ̄}.

• Step 2: Solve the master problem and get the optimal
solutions ζ̄ and ϑ̄. Set LB := max{LB, f>ζ̄ + ϑ̄}.

• If UB−LB < ε, the current solution is optimal and stop;
otherwise go to Step 1.

In the following subsections, through following this Ben-
der’s decomposition framework, a solution approach is derived
to solve the original problem (22) by first describing the master
problem in Subsection V-B, then detailing the subproblem
in Subsection V-C, and finally providing the reformulation
techniques and the steps on how to add the optimality cuts
in Subsection V-D.

B. Master Problem

Through the decomposition framework, denote z as the
second-stage objective and build the master problem in the
following (23). In each iteration, the master problem is firstly
solved and provides the solutions to the optimality check
subproblem, where the corresponding optimality cut would
be typically obtained and added to the master problem. Note
here that for any solution provided in the master problem,
there is no feasibility issue in the second-stage subproblem
since a feasible solution based on the given first-stage unit
commitment decision can always be found. In other words,
there is no need to add feasibility cuts to the master problem.
The master problem can be summarized as follows:

max
y∈{0,1}
z,u,v

−
T∑
t=1

∑
i∈GCT

(uti + vti) + z (23)

s.t. (1)− (8),
Optimality cuts.

C. Optimality Check Subproblem
From master problem (23), given the first-stage solution

(y, z), the second-stage subproblem can be described as:

min
P∈A

max
x,φ

J∑
j=1

pj
( T∑
t=1

∑
m∈M

(
qt(ξ

j
)x
t
m(ξ

j
)− φtm(ξ

j
)
))

(24)

s.t. −βnmx
t
m(ξ

j
) + φ

t
m(ξ

j
) ≥ αnm

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

)
, ∀j,t,m,n, (25)

x
t
m(ξ

j
) ≥ Cm

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

)
, ∀j, t,m, (26)

−xtm(ξ
j
) ≥ −Cm

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

)
, ∀j, t,m, (27)

−
∑
m∈M

x
t
m(ξ

j
) +

∑
m∈M

x
t−1
m (ξ

j
)

≥ −V +
e y

t
e − Ĉ(1− yte), ∀j, t, e, (28)

−
∑
m∈M

x
t−1
m (ξ

j
) +

∑
m∈M

x
t
m(ξ

j
)

≥ −V −e y
t
e − Ĉ(1− yte), ∀j, t, e, (29)
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φ
t
m(ξ) free, xtm(ξ) ≥ 0, ∀j, t,m. (30)

To solve this min-max problem, the inner
maximization problem is dualized, with dual variables
δjtmn, λ

+
jtm, λ

−
jtm, η

+
jte, and η−jte corresponding to constraints

(25), (26), (27), (28), and (29), respectively. Then the
two minimization parts are combined together as follows
(subproblem):

ψ(y) = min
P,δ,λ,η

J∑
j=1

T∑
t=1

{ ∑
m∈M

N∑
n=1

δjtmnα
n
m

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

)

+
∑
m∈M

(
λ
+
jtmCm

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

)

−λ−jtmCm
( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

))

+
∑
e∈H

(
η
+
jte(−V

+
e y

t
e − Ĉ(1− yte))

+η
−
jte(−V

−
e y

t
e − Ĉ(1− yte))

)}

s.t.

J∑
j=1

pj = 1, P ∈ A,
N∑
n=1

δjtmn = −pj , ∀j, t,m,

N∑
n=1

δjtmn(−βnm) + λ
+
jtm − λ

−
jtm +

∑
e∈H

(−η+jte

+η
+
j(t+1)e + η

−
jte − η

−
j(t+1)e) ≥ pjq

t
j , ∀j, t,m,

δjtmn, λ
+
jtm, λ

−
jtm, η

+
jte, η

−
jte ≤ 0, ∀j, t,m, n.

D. Reformulation Techniques

To characterize the constraints P ∈ A, the reformulation
techniques in the following are introduced so that the sub-
problem above can be transformed into a mixed-integer linear
programming problem.

1) L1 Norm Case: For the L1 norm case, P ∈ A represents∑J
j=1|pj − p0j | ≤ θ, which is equivalent to∑J

j=1 wj ≤ θ,
wj ≥ pj − p0j ,∀j = 1, · · · , J,
wj ≥ p0j − pj ,∀j = 1, · · · , J.

2) L∞ Norm Case: For the L∞ norm case, P ∈ A
represents max1≤j≤J |pj − p0j | ≤ θ, which is equivalent to

|pj − p0j | ≤ θ,∀j = 1, · · · , J.

Therefore, the second-stage subproblem can be reformulated
as an MILP problem, with the first-stage solution (y, z) given.
After solving the problem above, the solutions δ, λ, and η and
the value ψ(y) are obtained.

1) If ψ(y) ≥ z, the master problem is optimal;
2) If ψ(y) < z, generate a corresponding optimality cut in

the following form and add it to the master problem,

J∑
j=1

T∑
t=1

{ ∑
m∈M

N∑
n=1

δjtmnα
n
m

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

)
+
∑
m∈M

(
λ
+
jtmCm

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

)
− λ−jtmCm

( ∑
e∈(Hin

m
⋃
Hsl
m)

y
t
e

))
+
∑
e∈H

(
η
+
jte(−V

+
e y

t
e − Ĉ(1− yte)) + η

−
jte(−V

−
e y

t
e − Ĉ(1− yte))

)}
≥ z.

VI. COMPUTATIONAL RESULTS

In this section, the proposed approach is implemented for
a CCU in the IEEE 118-bus system available online at http://
motor.ece.iit.edu/data. This CCU consists of two combustion
turbines and one steam turbine (2CTs + 1ST). In addition, the
time horizon is set to be 24 hours. All the experiments were
carried out using a computer with Intel Dual Core 2.60 GHz
and 8 GB memory. CPLEX 12.5 via C++ Concert Technology
was applied to solve the problem under its default setting.

A. Data Setting

For the CCU, its physical parameters are presented as shown
in Table II, where the first column shows the mode indices and
for each mode, the remaining columns show the combination
of CTs and STs of this mode, its generation lower bound,
generation upper bound, ramp-up rate limit, ramp-down rate
limit, and generation cost function coefficients of the quadratic,
linear, and constant terms, respectively.

TABLE II
PHYSICAL PARAMETERS

Mode
No

mCTs
+nST

C
(MW)

C
(MW)

V +

(MW/h)
V −

(MW/h)
a

($/MW2h)
b

($/MWh)
c

($/h)
0 0+0 0 0 0 0 0 0 0

1,2 1+0 5 25 25 25 0.025 34.39 16.54
3,4 1+1 10 37.5 37.5 37.5 0.014 61.30 14.33
5 2+0 10 50 50 50 0.013 68.78 16.54
6 2+1 15 75 75 75 0.010 134.13 13.51

For the price data, the number of bins is set as J = 5
and each individual data is generated through Monte Carlo
sampling based on the forecasted price (see Fig. 2), which is
generated based on the PJM real-time price in 2015 [40].

Fig. 2. Price Evolution Over Time

B. Effects of Historical Data

This experiment first tests the effects of historical data on
the conservatism of the proposed model, i.e., how the objective
value and θ change as the amount of available historical data
varies. Let the confidence level γ fixed at 99% and allow the
amount of historical data to vary in the range [5, 10000]. In
addition, the results are obtained by comparing three models:
(1) data-driven risk-averse stochastic self-scheduling with L1

norm (denoted as DD-1), (2) data-driven risk-averse stochastic
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self-scheduling with L∞ norm (denoted as DD-Inf), and (3)
risk-neural stochastic self-scheduling, i.e., the traditional two-
stage stochastic self-scheduling (denoted as SS), as shown in
Table III and Figures 3 - 4. Meanwhile, Table III reports the
time (in seconds) to solve each model, as shown in the column
labeled “Time(s)”.

TABLE III
EFFECTS OF HISTORICAL DATA

# of
data

DD-1 DD-Inf SS
OBJ($) θ Time(s) OBJ($) θ Time(s) OBJ Time(s)

5 31711.1 3.4539 12.0 31868.6 0.6908 12.2 57235.65 3.7
50 39598.6 0.3454 8.3 49090.5 0.0691 8.1 57235.65 3.7
100 48417.1 0.1727 8.6 53169 0.0345 8.9 57235.65 3.7
500 55474 0.0345 8.7 56422.3 0.0069 8.9 57235.65 3.7

1000 56352.3 0.0173 8.9 56823.1 0.0035 8.7 57235.65 3.7
2000 56796.5 0.0086 8.7 57035.3 0.0017 8.8 57235.65 3.7
5000 57056.9 0.0035 8.5 57153.1 0.0007 8.5 57235.65 3.7
1000057148.8 0.0017 8.5 57200.3 0.0003 8.7 57235.65 3.7

Fig. 3. Effects of Historical Data on the Value of θ

Fig. 4. Effects of Historical Data on the Total Profit

From Table III and Figures 3 - 4, it can be observed that, as
the amount of historical data (i.e., S) increases, the value of
θ decreases and the total profit increases with respect to both
norms used in this paper. The reason is that the confidence
set of the true distribution shrinks as the amount of historical
data increases, and it follows that the value of θ decreases.
Also, the problem becomes less conservative and thus the total
profit increases and converges to the objective value of the
risk-neutral stochastic optimization model. From Figures 3 -
4, it can be observed that this convergence is gained very fast

(e.g., almost converge when S = 500) for the proposed model.
Furthermore, given the same amount of data, the model DD-1
is more conservative than DD-Inf, since L1 norm leads to a
larger confidence set than L∞ norm.

In addition, to further investigate how extra data can help
reduce the conservatism of the proposed model corresponding
to a given amount of historical data, referred as the value of
data, the results are reported in Table IV. Given s historical
data, two gaps (labeled “Gap” in Table IV) are defined as
follows:

Gap1(s) = OBJ0 − OBJ1(s), (31)
Gap∞(s) = OBJ0 − OBJ∞(s), (32)

where OBJ0, OBJ1(s), and OBJ∞(s) are the objective values
obtained from the models SS, DD-1, and DD-Inf, respectively.
Based on these gaps, the value of data (labeled “VoD” in Table
IV) are defined as follows:

VoD1(s, s̄) =
Gap1(s)− Gap1(s̄)

s̄− s
, for s̄ > s, (33)

VoD∞(s, s̄) =
Gap∞(s)− Gap∞(s̄)

s̄− s
, for s̄ > s. (34)

The value of data indicates the decrement of the gap
between the risk-averse stochastic optimization objective
value and the risk-neutral stochastic optimization objective
value by collecting additional data. For instance, in Table
IV, VoD1(5, 50) = (Gap1(5) − Gap1(50))/(50 − 5) =
(25524.5 − 17637)/45 = 175.28 and VoD∞(5000, 10000) =
(Gap∞(5000) − Gap∞(10000))(10000 − 5000) = (82.5 −
35.3)/5000 = 0.01.

From Table IV, it is easy to observe that both “Gap” and
“VoD” decrease as the amount of historical data increases. The
value of data is even less than 1 after there are already 1000
historical data, for both DD-1 and DD-Inf models. That means
the proposed risk-averse model converges to the risk-neutral
model so quickly that not too much data are needed to obtain
a solution close to that of the risk-neutral one with the same
confidence guarantee.

TABLE IV
VALUE OF DATA

# of data DD-1 DD-Inf
Gap VoD Gap VoD

5 25524.5 25367
50 17637 175.28 8145.1 382.71
100 8818.5 176.37 4066.6 81.57
500 1761.6 17.64 813.3 8.13

1000 883.3 1.76 412.5 0.80
2000 439.1 0.44 200.3 0.21
5000 178.7 0.09 82.5 0.04

10000 86.8 0.02 35.3 0.01

C. Effects of Confidence Level

This experiment tests the effects of confidence level γ on
the conservatism of the proposed model, as the change of γ
leads to the change of θ from (20) and (21). The amount
of historical data (i.e., S) is set as 500 and γ can be varied
in the range [0.5, 0.99]. Then this experiment shows how the
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objective values and θ change as γ changes for both DD-
1 and DD-Inf models in Table V. Meanwhile, the time (in
seconds) to solve each model is reported, as shown in the
column labeled “Time(s)”.

TABLE V
EFFECTS OF CONFIDENCE SET

γ
DD-1 DD-Inf

OBJ($) θ Time(s) OBJ($) θ Time(s)
0.5 56469.7 0.0150 8.9 56882 0.0030 9.2
0.6 56413.5 0.0161 8.9 56858.4 0.0032 8.6
0.7 56342.1 0.0175 8.8 56823.1 0.0035 8.7
0.8 56234.8 0.0196 8.5 56775.9 0.0039 8.3
0.9 56061.2 0.0230 8.8 56693.4 0.0046 8.9

0.95 55882.5 0.0265 8.6 56610.9 0.0053 9.5
0.99 55474 0.0345 8.7 56422.3 0.0069 8.9

Fig. 5. Effects of Confidence Level on the Value of θ

Fig. 6. Effects of Confidence Level on the Total Profit

From Table V and Figures 5 - 6, it can be observed that,
as the confidence level increases, the value of θ increases and
the objective value decreases for both models. The reason is
that with the confidence level increasing, a larger confidence
set is needed to ensure that the true distribution is within
the confidence set with a higher confidence level (chance).
As a result, the model becomes more conservative and thus
the objective value (i.e. total profit) decreases. Similar to the
results in Table III, DD-1 model is more conservative than
DD-Inf model, as L1 norm leads to a smaller convergence
rate than L∞ norm.

D. Comparisons with Both Stochastic and Robust Optimiza-
tion Approaches

In this subsection, with further tests on more variations,
the proposed approach is compared with traditional two-
stage stochastic optimization approach and traditional two-
stage robust optimization approach (denoted as RS) together.
The confidence level γ is fixed at 95% and let the number
of data increases from 5 to 500. For fair comparison, the
online/offline status of each edge in the transition graph (which
is the first-stage decision of each model) is first obtained from
each model, then through fixing the edge status at each time
period, the second-stage problem is solved for each model
under different distributions in two cases, i.e., the worst-case
distribution (which is obtained from the data-driven model)
and a randomly generated distribution from the confidence
set, respectively. The results are reported in Tables VI and
VII. In both tables, the column labeled “Trans($)” represents
the transition cost of the CCU obtained from the first-stage
problem, the columns labeled “Worst($)” and “Rand($)” rep-
resent the total profits under the worst-case distribution and the
randomly generated distribution, respectively, and the column
labeled “Time(s)” represents the time to solve each model.

From Tables VI and VII, it can be observed that under each
setting of θ, the proposed data-driven approach provides a
higher profit than both SS and RS under both the worst-case
distribution and randomly generated distribution. In addition,
the data-driven model has a little higher transition cost than
SS and lower than RS. The reason is that data-driven model
results in more transitions than SS does to accommodate the
electricity price uncertainty , while RS is very conservative
and leads to a even higher transition cost. It indicates that the
data-driven model provides more reliable solutions than SS
and less conservative solutions than RS.

VII. CONCLUSIONS

In this paper, a two-stage data-driven risk-averse stochastic
self-scheduling model is proposed for combined-cycle units
participating in the real-time market under price uncertainty.
The model utilizes the historical data and does not require the
precise price distribution as the traditional two-stage stochastic
model does. Instead, the confidence set of the unknown price
distribution is constructed based on the empirical distribution
obtained from the historical price data. It can be shown that
corresponding to a given confidence level, as the amount of
historical data increases to infinity, the conservatism of the
proposed model vanishes and converges from risk-averse to
risk-neutral. Thus, the proposed model is data-driven and its
conservatism can be adjusted depending on the amount of data
and the value of confidence level. Furthermore, with a given
amount of historical data, the value of data is also explored to
show how additional data can help reduce the conservatism of
the proposed model, while maintaining the same confidence
level guarantee.
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