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Abstract—Controller Area Network (CAN) has been the de
facto standard in the automotive industry for the past two
decades. Recently, CAN with flexible data-rate (CAN FD) has
been standardized, which achieves noticeably higher throughput.
Further improvements are still possible for CAN, by exploiting its
peculiar physical layer to carry out distributed operations among
network nodes, implemented as atomic transactions mapped on
quasi-conventional frame exchanges.

In this paper, a proposal is made for an extension to the CAN
protocol, termed CAN with eXtensible in-frame Reply (CAN
XR), which enables upper protocol layers to define new custom
services devoted to, e.g., network management, application-
specific functions, and high-efficiency data transfer. The key point
is that CAN XR retains full backward compatibility with CAN,
therefore there is no need to change the protocol specification
once again.

Index Terms—Controller area network (CAN), industrial con-
trol, real-time distributed systems.

I. INTRODUCTION

C
ONTROLLER Area Network (CAN) was introduced by

Bosch at the end of the 1980s for onboard vehicle use.

CAN specifications remained mostly stable until 2012, when

the CAN with flexible data-rate (CAN FD) protocol was

presented [1]. CAN FD relies on the overclocking and oversiz-

ing techniques first appeared in 1999 [2]. Its standardization

proceeded quickly and, recently, it has been included in ISO

11898-1 [3]. CAN FD provides a boost in network throughput

by about one order of magnitude over classical CAN. More-

over, the related network controllers are not expected to be

noticeably more expensive than their traditional counterparts.

For these reasons, chances are that CAN FD will become the

standard solution in the automotive industry in the next years.

Unfortunately, coexistence between classical and FD con-

trollers may be a little tricky [4]–[6]. In fact, the former are

unable to correctly decode the new FD data frame format

and react by transmitting error frames. This drawback cannot

be avoided and is tolerated only because of the performance

advantages brought by CAN FD. In some respect, this re-

sembles what happened 20 years ago, when the extended

frame format (using 29-bit identifiers) was introduced. For the

sake of backward compatibility, every FD controller can be

Copyright © 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

G. Cena, I. Cibrario Bertolotti, and A. Valenzano are with the National
Research Council of Italy, Institute of Electronics, Computer and Telecom-
munication Engineering (CNR-IEIIT), I-10129 Turin, Italy.

T. Hu is with the University of Luxembourg, Faculty of Science, Technology
and Communication (FSTC), L-4364 Esch-sur-Alzette, Luxembourg.

configured so that it behaves exactly the same as a classical

CAN device.

One of the most peculiar features of CAN (and CAN FD as

well) is its physical layer, which performs a wired logical AND

among the signals written on the bus by all the transmitting

nodes. By design the network size is kept limited, so that the

round-trip delay between any pair of nodes is strictly less than

the nominal bit time (actually, it has to be shorter than the

duration of the time segment that spans from the beginning

of each bit to the sampling point). Hence, at any time all

nodes in the network virtually see the same bus level (either

dominant or recessive). This feature, sometimes called “in-bit-

time detection,” is profitably exploited by the medium access

control (MAC) layer of CAN to carry out bit-wise arbitration

(hence avoiding destructive collisions), quickly detect bus

errors (bit monitoring on the sender), perform network-wide

error globalization (by means of error frames), adapt the

transmitter speed to receivers (through overload frames), etc.

The particular behavior of the CAN bus can be leveraged

to achieve additional benefits besides those listed above.

For instance, a technique for quickly generating symmetric

cryptographic keys was proposed in [7], which can help

with the design of security countermeasures (i.e., to grant

authentication, data integrity, privacy, and so on [8]). Basically,

two nodes generate two random bit patterns, which are first

suitably encoded by translating each original bit into a pair

of consecutive bits at complementary levels, and then sent

over the bus in the data field of a CAN FD frame (the FD

format was chosen because of the larger payload), where they

merge according to the wired-AND scheme. By analyzing the

resulting bus levels, the involved senders are able to obtain

information on the original random patterns, which are instead

completely hidden to other nodes. This procedure operates

correctly only if the two nodes start transmission exactly at

the same time and the bit monitoring function is disabled for

them. A custom solution was envisaged in [7] to accomplish

this task.

Incorporating the ability to carry out such a kind of op-

erations directly in the data-link layer of CAN is certainly

advantageous, as it helps preventing additional changes to the

protocol (and to the controllers as well) in the foreseeable

future. From a practical viewpoint, leaving the frame format

unchanged is a strict requirement, as failing to do so would un-

avoidably introduce both higher costs and serious compatibil-

ity issues, which could be hardly tolerated by manufacturers,

especially those involved in the production of vehicles.

In this paper, an extensible mechanism is described to solicit

a group of CAN nodes to reply in a coordinated way within
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the same frame exchange. It is termed CAN with eXtensible

in-frame Reply (CAN XR), and somehow it resembles the in-

frame reply feature of Vehicle Area Network (VAN) [9]—

a former competitor of CAN—although it allows multiple

repliers. The main ideas behind CAN XR were first introduced,

in a preliminary form, in [10]. To the best of our knowledge,

no other approaches exist in literature aimed at similar pur-

poses. The basic CAN XR mechanism is quite flexible and

can be used by the upper protocol layers to “tailor” their

own distributed atomic operations. For instance, the following

application-level services can be envisaged: static and dynamic

data slotting, fast minimum discovery, bit-wise data gathering,

distributed consensus, and symmetric key generation according

to [7]. Thanks to data slotting, a communication paradigm

that resembles FlexRay [11] is supported. Therefore, XR

can be leveraged to ease the transition of CAN from event-

driven to time-triggered paradigms. Additional features can be

conceived as well, which rely on the same mechanism.

The idea of applying data slotting to real-time commu-

nications is not new. The summation frame concept was

introduced two decades ago in INTERBUS and, more recently,

in EtherCAT [12] and PROFINET with dynamic frame pack-

ing [13]. These solutions are conceived to exploit either ring

network topologies or full-duplex links (e.g., Fast Ethernet).

Approaches like [14] try to bring slotting on legacy fieldbuses

running on a shared bus, like MODBUS, which have no notion

of time, so as to achieve temporal coherence in acquisition

cycles. In [15] a solution aimed at increasing communication

efficiency is described, which dynamically gathers multiple

process data units from the same sender in a single CAN FD

frame.

Much more interesting, from our point of view, is the time-

triggered version of CAN, known as TTCAN [16]. In TTCAN,

basic cycles are initiated by a specific node, known as the

time master, which periodically transmits a reference message

(RM) on the bus. On RM reception, every node resets its cycle

time (a free-running counter), hence synchronizing operations

of nodes through a common time base. Suitable triggers are

then defined on nodes, each of which activates either frame

transmission or reception whenever the cycle time matches the

related time mark. Basically, this approach splits each basic

cycle into a number of fixed time windows, within which frame

exchanges take place in a disciplined way.

The main difference between TTCAN and CAN XR is that,

the former simply superposes the time-triggered paradigm on

CAN, whereas the latter permits multiple nodes to embed

their data exchanges into the same CAN frame. This has two

important consequences: First, a full-formed CAN message is

fit in each time window in TTCAN, whilst protocol control

information are not replicated for every piece of data in CAN

XR. Second, safety margins between adjacent data exchanges,

which have to be taken into account when computing time

marks in TTCAN, become unnecessary (and forbidden) in

CAN XR. These aspects make communication efficiency of

CAN XR sensibly better that TTCAN.

While a new breed of controllers is required to support XR

operations, the same frame format and protocol as CAN (or

CAN FD) are adopted, so that complete backward compati-

bility is ensured with existing devices. Since multiple CAN

XR nodes are allowed to take part in frame transmissions,

overclocking can not be exploited because, in that case, the

in-bit-time detection property might no longer hold during the

data phase of the frame. In turn, this would make impossible

to ensure that the resulting bit sequence on the bus always

corresponds to a valid CAN frame (strict requirement for

backward compatibility). Therefore, the same bit rate must

be set in FD for both the arbitration and data phases. In this

paper, classical CAN is taken as a basis for CAN XR, in order

to swiftly prove its practical feasibility, although the maximum

size of its message data field (8 B) is probably not large enough

to offer the same level of benefits as CAN FD.

The paper is organized as follows: in Section II the basic

principles behind CAN XR are introduced, while Section III

describes the way data slotting is carried out. In Section IV

some details are provided about the way XR services can be

defined in CAN controllers and, in Section V, a prototype

implementation is presented, based on real embedded devices

communicating over the CAN bus, where XR protocol opera-

tions are emulated in real-time in software. In Section VI some

light is shed concerning possible application-level services

that rely on CAN XR and the advantages they bring on

communication performance.

II. CAN XR

CAN XR is conceived as a proper extension of CAN. It is

important to remark that XR extensions apply to both classical

CAN and CAN FD, with either base or extended identifiers.

Unless strictly necessary, in the following we will refrain from

discriminating between the different flavors of the protocol,

and will refer to all of them simply as CAN. Moreover, we will

denote existing nodes (or controllers), which do not support

XR extensions, as non-XR.

The most important requirement that drove CAN XR defini-

tion is that the sequence of bits sent on the bus by the related

nodes shall comply completely to CAN frames, so that no

error is raised by non-XR CAN controllers as a consequence

of their inability to understand the format of the new frames.

A. Protocol Basics

During message transmission, CAN considers two kinds of

nodes, namely the producer and the consumers. Each message

must have exactly one producer, unless other countermeasures

are taken to prevent different nodes from sending messages

with the same identifier at the same time (which would prevent

arbitration from operating correctly and cause unsolvable bus

contentions). Frames with fixed data field are exceptions, but

they are typically useless, except for frames with an empty

data field (e.g., remote frames). Conversely, any number of

consumers is allowed for the same message (including having

no consumers at all).

In CAN XR the role of producer is played by two kinds of

cooperating nodes, namely the initiator and the responders.

Together, they carry out atomic “initiate-response” XR trans-

actions over the bus. Basically, the initiator starts a transaction

by sending the arbitration and control fields, which together

make up the frame header. Reception of the header triggers

a group of responders and consumers. The former reply by



3

SO
F

Identifier R
R

S

ID
E

FD
F

re
s

BR
S

ES
I

DLC SBC CRC AS EOFData

SO
F

Identifier R
R

S

ID
E

FD
F

re
s

BR
S

ES
I

DLC SBC CRC AS EOFData

Header (Initiator) Completion trailer (Supervisor)

CAN FD data frame

CAN XR frame (initiate-response transaction)

Static slot Static slot Static slot Dynamic slot 1
mini 

slot

mini 

slot
Dynamic slot 4

mini 

slot
Dynamic slot 6

Static segment Dynamic segment

Group of Responders (plus, for stuff bits, the Supervisor)

Fig. 1. Format of (ISO) CAN FD base frames with no bit-rate switch (above) and their usage to encode a sample XR transaction (below).

filling portions of the data field (slots) according to the rules

given below, whereas the latter read in the relevant information

in a similar way. Although initiators and responders are not

conventional CAN nodes, to preserve full compatibility with

CAN the bit sequence sent on the bus during a transaction has

to be indistinguishable from CAN frames to all other nodes.

XR nodes discriminate between XR and non-XR frames by

inspecting the identifier field: when it corresponds to specific,

configurable patterns, atomic transactions take place. However,

if XR extensions are applied to CAN FD, as in the case

depicted in Fig. 1, protocol robustness can be increased if

XR frames are additionally tagged corresponding to slightly-

off-specification FD frames. In this way, misconfigured XR

nodes are prevented from injecting on the bus undue responses

and disrupting conventional data exchanges. As Fig. 1 shows,

the Remote Request Substitution (RRS) bit can be used to

distinguish between FD and XR frames. Only the base format

is shown in the figure, but the same mechanism applies to the

extended format as well. CAN FD does not define any specific

“FD remote frame” and the RRS bit—located in the same

position as the Remote Transmission Request (RTR) bit in

classical CAN frames—must be sent dominant by transmitters.

As happens to all reserved bits, its value is ignored by non-XR

receivers.

In the following, RRS will be renamed Reply Request

Select: it is set dominant in conventional FD frames, whereas

a recessive value means that the frame is carrying an XR

transaction. FD controllers lacking XR support see XR frames

as FD data frames (off-specification is irrelevant for them in

this case). Hence, they can decode the carried data in software

and perform the role of consumers. Seemingly, using RRS

to discriminate between FD and XR frames could help also

in those cases where bus errors corrupt the identifier field

and turn a conventional frame into an XR transaction (hence

forcing responders to mistakenly reply, overwriting legal data).

However, this kind of errors are not particularly worrying, as

they are likely to trigger CAN error detection mechanisms.

To increase flexibility, tagging XR transactions based on the

CAN FD format with the RRS bit should be optional and not

mandatory. When RRS is exploited, using the same identifier

for non-XR and XR messages is actually possible (though not

advisable), provided that the Data Length Code (DLC) field—

which specifies the size in bytes of the data field—is set to

the same value. In case of arbitration clash, the FD frame will

simply have precedence over XR because of the dominant RRS

value. This is useful when the initiator (or any FD node) wants

to mimic an XR transaction and enforce specific responses

on its own. In fact, responders will not detect the transaction

and refrain from replying. FD consumers, which are unable to

distinguish between XR and FD frames, deal with both of them

in the same way in software. Concerning XR consumers, they

can be configured to decode specific FD frames in hardware

according to XR rules.

B. Supervising Transactions

If more than one node is allowed to take part in the

transmission of the frame part which follows the arbitration

field, as in the case of XR transactions, some means must be

defined to ensure that what is sent on the bus corresponds

to a proper CAN frame. The node in charge of this task

is referred to as the transaction supervisor. The supervisor

is responsible for inserting stuff bits in the data field when

required, so that CAN rules are never violated in the signal

sent on the bus, not even in the case some responders do

not reply. Moreover, the supervisor also finalizes the frame

by dealing with the completion trailer, which includes the

Cyclic Redundancy Check (CRC), Acknowledgment (ACK),

and End of Frame (EOF) fields. In particular, it transmits

the bit pattern corresponding to the CRC—that in CAN FD

also encodes the stuff bit count (SBC)—immediately after the

data field, then it checks the ACK slot (denoted as AS in

Fig. 1) and EOF field, and deals with ACK and form errors,

respectively. In computing the CRC value and determining

values and positions of stuff bits, bit levels sensed on the

bus have to be considered, since no node in the network can

know the bit sequence corresponding to the entire transaction

in advance. Carrying out operations in such a short time is not

a problem. In fact, all existing CAN controllers are able to take

decisions—including determining the value of the next bit to

be sent—based on the bus level they sense at the previous

sampling point.

In principle, any node could play the supervisor role, but

reserving this to the initiator is by far the best choice. In fact,

the transmission of the transaction’s header implies that the

related initiator is currently up and running. Relying on other

nodes (e.g., a responder), which might be unavailable, could

seriously undermine reliability. Concerning stuff bit insertion,

responders that are in the process of transmitting their reply

are also involved, besides the initiator.

Operations of the nodes involved in an XR transaction are

sketched in the example in Fig. 2, which refers to a network

that includes an initiator/supervisor and 4 responders (nodes

A, B, C, and D). The reply of each responder is assumed

to consist of exactly one byte. At any time during data field
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transmission, the active responder (if any) and the supervisor

cooperate in inserting stuff bits (marked as “S” in the figure).

When a responder does not reply (as in the case of node C), the

supervisor prevents the bus from remaining stuck at recessive

level for more than 5 bit times.

The bit monitoring mechanism must be enabled only when

the node is actually transmitting. This happens in the header

for the initiator, during the relevant reply for each responder,

and when sending the completion trailer (ACK slot excluded)

for the supervisor. In the latter, bit monitoring is also switched

on whenever it is writing stuff bits in the data field.

In order to retain backward compatibility, error management

for XR frames behaves exactly the same as CAN: as soon as

any node (either XR or non-XR, and irrespective of its role)

discovers an error, as per the CAN error detection mechanisms,

it starts transmitting an error frame. This implies that all the

responses included in the XR transaction are lost and have to

be sent again. In theory, distinct responses could be checked

and confirmed separately, but this would increase noticeably

protocol complexity and overheads, lowering at the same time

reliability since atomicity is lost. For this reason, we preferred

to leave the basic XR protocol as simple as possible. It is

worth pointing out that errors due to failures affecting the

initiator/supervisor during a transaction are dealt with using

the very same rules. By adopting the arrangements above,

the original CAN robustness is not jeopardized, despite the

producer role in CAN XR is distributed among a set of nodes.

C. Multiple and Implicit Initiators

The initiator of a transaction constitutes a single point of

failure for CAN XR. To deal with this issue, the concept

of “multiple initiators” can be exploited. Actually, a number

of nodes can be configured as initiators for any given XR

transaction. This is possible because the non-fixed part in the

transaction header only includes the message identifier and

DLC field. As long as all initiators select the same DLC value

for XR messages with the same identifier, when two such

nodes start transmitting at exactly the same time and their

transmissions collide, the related bit streams will overlap and

no error occurs. Of course, the cooperation of several nodes

for triggering transactions improves communication reliability.

This approach resembles, in some way, backup time masters

in TTCAN [16]. As in that case, initiators can be possibly

configured so that the relevant identifiers differ in the least

DLC CRC
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(active)
0 1 1 1 0 0 0 0
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Fig. 2. Sample interaction among responders and supervisor.

significant bits. If so, suitable reception masks have to be set

for message filtering on both responders and consumers.

Since the initiator can also act as a responder or a consumer

in the same transaction it starts, the group of multiple initiators

can be chosen as the set (or a subset) of the involved

responders and consumers. In this case, they are referred to

as “implicit initiators”. As soon as any of such nodes starts a

transaction (because, e.g., the value of its data has changed,

an explicit request has been issued by an application program,

or a timer has expired) the whole group of involved nodes is

triggered and takes part to the exchange.

The set of data exchanged in this way is seen as a single

entity on the network. Besides robustness, this improves data

coherence across nodes. Moreover, there is no need to desig-

nate specific nodes to act as initiators only, so that costs can

be reduced. When coupled with TTCAN, the overall behavior

resembles FlexRay: XR transactions can be carried out inside

exclusive windows, while non-XR frames are sent—possibly

at higher bit rates in the FD case—in arbitrating windows.

III. DATA SLOTTING

The data field in XR frames is given by a superposition of

responses (sent by different nodes), which may possibly over-

lap. While disjoint replies are typically useful for gathering a

number of (small-sized) data at once from responders, the aim

of overlapping replies is to carry out special-purpose functions

(such as distributed key generation). The latter feature can be

suitably exploited by the upper protocol layers as a way to

support extensibility. In theory, partially overlapping replies

are also possible, but they are rather peculiar and their use

will be investigated in future work.

Generally speaking, each response fits into a specific slot

of the frame, and the data field can be seen as a sequence of

slots. Several variants of the above approach can be devised,

mainly depending on the amount of knowledge required by

the initiator, responders, and consumers to carry out data

exchanges. In CAN, the identifier field is enough to describe

the payload format and meaning at both ends (producer and

consumers) of any data transfer—besides the DLC field, which

is required by the receiver MAC to determine the end of the

frame. A similar approach can be adopted in CAN XR, but

additional information is needed to identify specific slots in

the frame.

To provide higher flexibility, two schemes are introduced in

the following to deal with slotting, namely static and dynamic.

In both cases, nodes not involved in a specific transaction

do not need to be aware of slotting. They simply ignore the

XR frame, but nevertheless take part in error detection and

globalization, as in CAN.

A. Static Slotting

In this case, positions of responses are defined statically.

Each responder must be configured separately, by specifying

offset and size of its slot(s) in the data field of the relevant

XR frame(s). The same holds for consumers. Importantly,

responders and consumers are not required to know anything

about slots they are not involved/interested in. No protocol

control information is added at transmission time, as shown
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in Fig. 3a. This means that the slot payload takes the whole

slot and there is no additional communication overhead. With

this approach, other nodes can not determine whether or not

any given responder is running and actually replying to the

initiator, unless the slot pattern consisting of all recessive bits

(not counting stuff bits) is reserved to this purpose to denote

the lack of a response and not a proper value.

B. Dynamic Slotting

With dynamic slotting, responders and consumers are not

required to be configured in advance with the starting position

of their slots. Conversely, the slot index is used—together

with the message identifier—to tag each slot uniquely and

characterize the related information. Consumers are not even

required (in theory) to know the slot size in advance. Instead,

a Slot Length Code (SLC) field, encoded on 4 bits in a similar

way as for DLC, is added to each reply by its sender in front

of the payload, so that its boundaries can be discovered at

transmission time by the other XR nodes (see Fig. 3b). SLC

specifies the size (in bytes) of the slot payload. As for CAN,

there is little point in having a bit granularity level for dynamic

slots. This is not the case of static slots, where the slot size is

only stored locally and not encoded in the frame.

Values of SLC in the range from 00002 to 11012 (0...13)—

the upper bound is lowered to 01112 (7) for classical CAN

frames—mean that the related responder is operating and

actively taking part in the transaction. If so, the interested

consumers read the slot into a local buffer, while responders

and consumers involved in subsequent slots of the same

transaction simply skip it. Thanks to SLC all of them can

correctly advance to the beginning of the next slot.

Conversely, if SLC equals 11112 (15)—that is, the bus

remains recessive for 4 bit times, excluding dominant stuff

bits inserted by the supervisor (at most one, possibly at the

end of SLC)—the responder is unavailable. This particular

SLC pattern, which should not be used directly by responders,

corresponds to a minislot. Its presence denotes that the slot

is absent, and the next slot is expected to begin at the bit

following SLC. Conceptually, a minislot is not the same as

an empty slot, for which SLC is explicitly set to 00002 by

the responder. Empty slots can be used when a responder

purposely decides not to include anything in its reply (e.g.,

because no fresh data are available). Finally, the reserved value

11102 (14), termed deferral notice, is used to defer the actual

response to the next relevant XR frame. As explained below,

it is used when a responder is unable to include its reply in

the current frame. As for minislots and empty slots, deferral

notices do not have any associated payload.

Whether a regular/empty slot, a minislot, or a deferral notice

is read (or written) on the bus, a suitable slot counter is

increased by one in each CAN XR controller involved in

the transaction. This counter identifies unambiguously the slot

currently being received/sent in the XR frame, and is checked

against the slot index assigned to the data to be exchanged. In

the case they match, the related action (either transmission for

responders or reception for consumers) is carried out. Such

an approach resembles the Flexible Time Division Multiple

Access (FTDMA) technique [17] (linear arbitration), adopted,

SLC Slot payloadSlot payload

a) Static slot b) Dynamic slot

Fig. 3. Slot format (static and dynamic).

e.g., in the dynamic segment of FlexRay. Although dynamic

slotting achieves higher flexibility, it is fairly more complex

than static slotting. For this reason, its implementation should

not be mandatory in CAN XR controllers.

Unlike static slots, where everything is decided at config-

uration time, a variable number of dynamic slots can fit in

the data field of any given XR frame, mostly depending on

how many responders are active and actually reply. Since the

nominal size of each frame in CAN (as per the DLC value) is

configured in advance, a responder is only allowed to reply if

the room available in the remaining part of the data field (i.e.,

not used by the preceding slots) is large enough to contain

its slot completely (both SLC and the whole payload)—it is

worth noting that stuff bits have no effect on this check, as

they are added after the frame has been assembled. On the

contrary, a deferral notice is sent (when space permits) in its

place. So that deferral notices can be included in the frame

for all the dynamic slots envisaged by the transaction, their

overall size (concerning the slots still to be sent) has to be

accounted for when evaluating the remaining space.

Similarly to CAN, the lower the slot index, the higher is the

chance that the slot will not be delayed. However, if a slot is

too large to fit in the current frame, it may be overtaken by a

(smaller) following one. By checking the presence of deferral

notices, every other node (and, in particular, the initiator) can

determine if there are responders that have data ready to send

but have not been able to include them in the current frame.

As for remote frames in CAN, it is completely up to initiators

to decide if and when a further transaction has to be started

for an XR frame that includes deferral notices.

Unlike static slotting, dynamic slotting does introduce

communication overhead. In particular, 4 additional bits are

required for every slot included in the frame (either regular

ones, minislots, or deferral notices).

C. Hybrid Slotting

Mixing static and dynamic slotting in the same XR frame

is possible, by configuring nodes so that they start decoding

dynamic slots at a specific position of the data field. Concep-

tually, this means that the data field is thought of as split into a

static and a dynamic segment, as in FlexRay. However, either

segment is allowed to be empty in CAN XR.

In theory, multiple dynamic segments could be included in

the same frame—possibly interleaved with static segments—

but likely in this case the benefits would not outweigh the cost

since this would make controller implementation fairly more

complex.

IV. SERVICE DEFINITION

The internal architecture of CAN XR controllers, in terms of

blocks devoted to response management, resembles TTCAN

[16]. However, unlike TTCAN, where the elapsed time is used

to determine transmission and reception windows inside basic
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cycles, CAN XR exchanges are driven by the detection of slots

inside transactions. The frame filtering function—customarily

implemented in hardware in the vast majority of CAN con-

trollers to reduce the interrupt rate to the microcontroller—is

mandatory in CAN XR, in order to quickly detect those frames

which give rise to transactions. In fact, replies must occur in-

frame, without disrupting the CAN frame format in any way.

A. Trigger-based Operations

As soon as a relevant XR message is detected by the frame

filtering function of a CAN XR controller, data exchange is

seamlessly started, which is controlled by specific triggers. In

particular, production triggers (Prod Trigger) and consump-

tion triggers (Cons Trigger) have to be defined on responders

and consumers, respectively. Each trigger is characterized by

the message identifier on which frame filtering is carried

out (message filter). Only triggers whose filter matches the

message currently being exchanged are enabled. As in conven-

tional CAN controllers, a group of identifiers can be possibly

specified by configuring a suitable register (reception mask).

This could be useful in the case of multiple initiators, so as to

provide receivers with an indication of the node who actually

initiated the transaction.

The trigger is also linked to a message object, which

provides the data structure for storing one slot (similar to what

is required to hold a CAN frame). Message objects linked to

production triggers contain data to be transmitted, whereas

those used by consumption triggers are needed to get the

content of the relevant slots.

More than one trigger (and hence, object) may exist in a

CAN XR controller for the same message identifier, each one

concerning a distinct slot in the frame. For this reason, besides

the identifier of the related XR frame, each trigger is also

characterized by either the absolute position of the slot in the

frame (for static slots) or the slot index (for dynamic slots). To

ease implementation, slots configured in the same controller

are not allowed to overlap.

It is important to remark that only production triggers

have to be implemented in hardware. Conversely, consumption

triggers can be implemented in software on conventional

CAN controllers. In this case, the entire data field (encoding

the whole XR transaction) is read in, and it is up to the

microcontroller singling out slots (both static and dynamic)

and providing them separately to the application processes.

B. Triggers for Static Slots

Production and consumption triggers for static slots are

defined by the following parameters:

• Slot Offset (SO): offset (in bits), from the beginning of the

data field, where the slot is located. Each XR controller

maintains a counter, known as Bit Count (BC), which is

set to 0 at the beginning of the data field and is increased

by one at every bit time (except for stuff bits). BC is

checked against SO of every enabled trigger to determine

the point in time when either a responder has to start

sending the reply or a consumer has to start reading it.

We refer to this condition by saying that the trigger has

been activated. It is worth pointing out that several slots,

belonging to distinct responders, are allowed to share the

same starting position. This is required, e.g., by the key

generation algorithm described in [7]. When XR frames

are used to gather distinct data from different nodes,

slots are not allowed to overlap and should be preferably

placed one after the other, with no gaps in between.

• Slot Size (SS): nominal duration (in bits) of the slot

payload. This enables a very fine granularity in allocating

the space available in the data field—even smaller than

one byte—and improves communication efficiency.

• Slot Length Code (SLC): payload size in the related

message object, encoded according to the same rules used

for DLC in CAN (FD). When stored in the controller’s

memory, the payload is aligned to byte boundaries.

• Data Transmission Mode (DTM): defines the way the slot

payload is sent on the bus (either exclusive, shared, or

arbitrating). For exclusive and shared slots, all payload

bits have to be sent over the bus. Transmission in ex-

clusive slots takes place according to the conventional

rules used in CAN when dealing with the data field.

They shall not overlap, otherwise bit monitoring errors

may occur. Conversely, a dominant level sensed on the

bus while a recessive bit is being sent in the payload

of shared slots does not cause a bit monitoring error. In

this way, a bit-wise AND function is carried out among

overlapping responses. The third transmission mode is

not dissimilar from shared slots, but resembles arbitration,

i.e., a responder stops transmitting as soon as it senses a

dominant level while sending a recessive bit. Arbitrating

slots are useful to determine, within one transaction, the

minimum among a set of values sent by different nodes.

C. Triggers for Dynamic Slots

To support dynamic slotting, one (or more) dynamic segment

triggers (Dyn Seg Trigger) are required, which define where

the dynamic segment is located in XR frames. Their operation

is straightforward: a dynamic segment trigger is enabled when

it matches the identifier of the frame being exchanged on

the bus. To ensure correct operation, at most one of such

triggers is allowed to be enabled in each node within the same

transaction. Besides the message identifier, dynamic segment

triggers are characterized by the following parameters:

• Dynamic Segment Offset (DSO): offset (in bits), from the

beginning of the data field, of the first dynamic slot. It

shall be set to the same value for all the dynamic segment

triggers in the network associated to the same message

identifier (or group of identifiers). The DSO parameter

of an enabled trigger is checked against the bit count

value BC to determine the beginning of the dynamic

segment. When a match occurs, the trigger is activated

and the controller starts scanning the incoming bit stream

to single out dynamic slots.

• Dynamic Segment Size (DSS): nominal duration (in bits)

of the dynamic segment. It shall not be larger than the

part of data field located after DSO.

Production and consumption triggers for dynamic slots are

not put into correspondence with message identifiers directly.

Conversely, each of them is linked to a dynamic segment
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trigger and becomes enabled when the latter is activated. So

that more than one dynamic slot in a given XR frame can be

used by the same controller, several dynamic production or

consumption triggers may refer to the same dynamic segment

trigger. Such production/consumption triggers are defined by

the following parameters:

• Slot Index (SI): relative position of the slot in the dynamic

segment (1st, 2nd, 3rd, etc.). Each CAN XR controller

maintains a counter, known as Slot Count (SC). Whenever

a dynamic segment trigger is activated, SC is initialized

to 0, and it is increased by one every time the beginning

of a dynamic slot (either a regular one, a minislot, or a

deferral notice) is subsequently discovered. Upon update,

SC is checked against the SI entry in all the production

and consumption triggers linked to the (unique) active

dynamic segment trigger. If a match is found, the relevant

operation (either write for responders or read for con-

sumers) is carried out. Each controller must be configured

in such a way that, at any time, no more than one of its

dynamic production/consumption triggers can be active.

• Slot Length Code (SLC): size of the slot payload, encoded

according to the CAN (FD) rules for DLC. Unlike

static slots, patterns 11112 and 11102 are reserved for

(received) minislots and deferral notices, respectively.

Hence, the maximum payload size shrinks to 32 bytes.

This is not a limiting choice, as dynamic slotting is

mainly envisaged to collect small data packages.

D. Initiator and Supervisor Operations

In principle, no specific trigger has to be defined explicitly to

support initiators’ operation, unless they also perform roles of

responders/consumers. However, some suitable way is needed

for instructing the controller to start the transmission of an XR

frame in place of a conventional CAN one, by either purposely

specifying a new service primitive or extending an existing

one. Upon invocation of the request primitive, the initiator

controller starts sending the header and CAN arbitration is

carried out. Since the initiator always acts as the supervisor,

a confirmation primitive is issued on transaction completion.

In all other involved nodes (responders and consumers), indi-

cation primitives are delivered to the upper layers.

To deal with XR frames that include a dynamic segment,

initiators can optionally define specific objects that are linked

to dynamic segment triggers: their aim is to detect dynamic

slots and store the related transmission status. Information

about every response type (regular slot, empty slot, minislot,

or deferral notice) is captured and made available to the

upper layers through a suitable data structure, organized as

an array of status data. The presence of minislots denotes the

unavailability of associated responders, whereas empty slots

simply denote data unavailability. Instead, deferral notices

mean that data are still stored in responders, and were not

included in the dynamic segment due to lack of room. This

condition can be possibly used to start a new transaction again.

V. PROTOCOL IMPLEMENTATION AND ASSESSMENT

In order to verify the practical feasibility of CAN XR and

estimate its additional complexity with respect to a standard

Hardware
CAN receiver

(H)

Software-defined
CAN XR initiator

(I)

Software-defined
CAN XR responder

(R)

CAN bus

Header

CAN XR frame

Completion 

trailer

Data field

(bytes 0…3)

Data field

(bytes 4…7)

— By I —

— By R —Stuff bit insertion

SUTs

Fig. 4. Experimental setup for CAN XR implementation.

CAN controller, a proof-of-concept implementation was car-

ried out and deployed as shown in the upper part of Fig. 4. The

experimental setup consists of three embedded nodes based

on an NXP LPC1768 [18], a popular low-cost microcontroller

running at a core clock frequency of 100 MHz. Namely:

• Two nodes are the Systems Under Test (SUTs). They

contain a software-defined CAN XR controller and play

the role of initiator (I) and responder (R).

• A third node implements an ordinary hardware-based

CAN receiver (H), based on one of the built-in CAN

controllers available on the LPC1768.

All nodes are interconnected by means of a CAN bus that

operates at 31.25 kb/s, the maximum speed software-defined

controllers can operate at, due to processing power limitations

better described in Section V-C.

In order to leverage readily-available hardware controllers

for backward compatibility assessment, the implementation

is based on classical CAN. However, this approach is more

than adequate to prove the practical feasibility of the proposed

method, especially for what concerns its most critical part, that

is, the ability of supporting in-frame replies at the bus level.

In fact, differences between CAN and CAN FD only concern

the payload size, the format of the control and CRC fields,

and CRC computation, none of which affects XR operations.

A manifest exception is that bit-rate switching and over-

clocking cannot be explored by means of classical CAN.

However, this does not bring any limitations, as this feature

is not compatible with XR. In principle, extending the imple-

mentation to CAN FD would not pose significant obstacles,

as long as overclocking is not used, because frame timings

are analogous. On the other hand, a proper support for

overclocking must contemplate possible synchronization and

timing tolerance issues during the data phase. A thorough

investigation of these aspects, at both the protocol definition

and implementation levels, has been foreseen as a future work.

A. Software-Defined CAN XR Controller

The software-defined CAN controller (SDCC) consists of

several layered modules, organized as depicted in the upper

right part of Fig. 5. Their structure and relationship are derived

from the CAN specification [3] and closely reproduce it.

Unlike its hardware-based counterpart, which implements

the CAN protocol as a whole in hardware and interfaces
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Fig. 5. Architecture of a software-defined CAN XR controller.

directly with application-layer software, the only hardware

components needed by SDCC are a General-Purpose Input-

Output (GPIO) port and a transceiver. The first transforms the

numeric information generated by SDCC into electrical signals

that are then brought off chip and vice versa, while the second

takes care of the low-level electrical interface to the CAN bus.

Integrating SDCC within a typical CAN-enabled microcon-

troller is generally easy, provided it makes use of an external

transceiver. This is because (as shown in the lower part of

Fig. 5) most microcontrollers are capable of routing different

sets of internal signals to the same physical chip input and

output pins. In this way the default connections to the on-chip,

hardware-based CAN controller can conveniently be replaced

by connections to one of the GPIO ports. On the LPC1768, this

function is performed by the Pin Connect Block (PINSEL).

The SDCC layer closest to the hardware is the Physical

Medium Attachment (PMA). Its two main purposes are to

interface the software with the GPIO port registers—to allow it

to interact with the transceiver—and generate a free-running

node clock, which is used to retrieve the CAN bus level at

every quantum and provide a timing reference to SDCC as

a whole. This information is conveyed to the upper layer by

means of a PMA NodeClock indication. On the transmitting

side, the PMA Data request allows the upper layer to set the

CAN bus to the level specified as argument.

Proceeding further up, we find the Physical Coding Sublayer

(PCS). Its main responsibilities are to implement CAN bus

synchronization through edge detection, sample the bus ac-

cordingly, and convey the sampled bit stream to the upper layer

by means of PCS Data indications. For what concerns the

transmitting side, the PCS handles bit transmission requests

coming from the upper layer through the PCS Data request

and ensures that bit transmission is properly aligned with

respect to bus bit boundaries.

The layers presented up to this point are the same as

in classical CAN. The CAN XR extension mainly affects

the Medium Access Control (MAC) layer, to be discussed

next. The software-defined implementation of the MAC layer

revolves around two Finite State Machines (FSM) or automata.

The receive FSM is driven by PCS Data indications and

is divided into two nested sub-automata. The first one im-

plements bus integration, SOF detection, and bit de-stuffing.

Moreover, it performs bus monitoring (while the controller

is transmitting), besides detecting stuff, bit, and ACK errors.

The second sub-automaton operates on the de-stuffed data

stream coming from the first. It implements de-serialization

and recompiles the frame structure, while checking CRC

and form errors. In addition, it transmits an ACK bit when

appropriate. Provided a complete frame has been received

successfully, it also generates a MA Data indication.

The transmit FSM has the same internal structure as the

receive FSM and is clocked by PCS Data indications, too.

The first sub-automaton coordinates with the receive FSM

to honor MA Data requests coming from the upper layer

and start transmission on the bus when it is idle, besides

performing bit stuffing on the data stream provided by the

second sub-automaton. The second sub-automaton performs

frame serialization and, in concert with the receive FSM,

detects arbitration losses. At the end of a frame, it relies on

the receive FSM to calculate the CRC to be transmitted and

subsequently confirm that an ACK has been received, flagging

an ACK error if this is not the case. Finally, it generates a

MA Data confirmation after any frame transmission.

For the sake of completeness, we must also mention that a

full-fledged SDCC shall also include a Logical Link Control

(LLC) layer, which implements programmable frame accep-

tance filtering, bus overload notification, and error recovery

by means of automatic frame retransmission. However, these

functions were not deemed necessary for the proof-of-concept

implementation being described, and have been omitted.

B. Frame Exchange Configuration

Referring back to Fig. 4, SUTs I and R have been configured

for a static slotting frame exchange pattern, as described in

Section III-A. More specifically, I has been programmed to

periodically initiate a CAN XR frame with a data field of 8

bytes. It is also responsible for sending the last four bytes

of payload, as well as transmitting the frame header and

completion trailer.

On the other hand, R responds to the frame sent by I with

an in-frame reply that fills the first four bytes of payload and

acknowledges it upon successful reception. Node I also plays

the role of supervisor and inserts stuff bits where required

within the whole frame. As shown in the lower part of Fig. 4,

R inserts stuff bits only while it is transmitting on the bus.

Node H only receives frames, checks their correctness by

means of the rules built in the hardware-based CAN controller,

and acknowledges them as required by the CAN specification.

Its purpose is to verify that CAN XR frames are completely

backward compatible with CAN and that connecting CAN and

CAN XR nodes to the same bus is not a cause of concern.
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C. Experimental Results

Experiments performed on about 10000 frame exchanges

with random payloads showed that all nodes (including H)

are able to receive CAN XR frames correctly, thus confirming

CAN XR’s backward compatibility. In addition, disconnecting

either H or R from the bus (but not both) does not hinder

frame exchanges, thus showing that both CAN and CAN XR

nodes are able to acknowledge a CAN XR frame correctly, and

independently from each other. On the other hand, the discon-

nection of both H and R leads I to report acknowledgment

errors, as expected.

Additional tests showed that stuff bit insertion operates

correctly even when a stuff bit is required at the boundary

between parts of frame I and R are responsible of, for instance,

between the header and the first data byte, or between the

fourth and fifth data bytes. Further insights on the correct

behavior of CAN XR were gained by disconnecting R from

the bus. In this case, the first four data bytes received by I and

H consist of all recessive bits, because R no longer drives the

bus within that portion of the frame. However, frames are still

correct because I inserts stuff bits within them, as required,

and H acknowledges them upon successful reception.

From the SDCC performance point of view, the current

software version is able to reliably process up to 780,000

quanta per second, even though the CAN bus bit rate has

been conservatively limited to 31.25 kb/s in the experiments

just described. This is a remarkable result, considering that

SDCC consists of about 2100 lines of C code and, at a core

clock frequency of 100 MHz, this figure corresponds to about

128 clock cycles to process a quantum.

Another interesting information that can be derived from

analyzing the code is that only about 150 out of 2100 lines of

code were needed to extend SDCC and implement CAN XR.

Even though additional effort is needed to support dynamic

slotting, this confirms that existing CAN (and CAN FD)

controllers can be extended to implement XR functionality

without disrupting their structure significantly.

VI. APPLICATIONS OF CAN XR

CAN XR provides additional, very generic communication

primitives to CAN, which can be exploited by the upper

protocol layers to define new distributed services. For example:

• Combined message: XR transactions can be used to

deal with master-slave distributed systems, and achieve

increased communication efficiency when small-sized

data packets (even less than one byte) are exchanged

among devices. The initiator acts as the master, whereas

responders and consumers carry out the roles of input

and output slave devices, respectively. Non-overlapping

exclusive static slots resemble logical addressing in Ether-

CAT (or the static segment in FlexRay). Dynamic slots,

instead, mimic the dynamic segment of FlexRay.

• Distributed key generation: By using overlapping shared

static slots, the distributed mechanism for generating

symmetric keys in [7] can easily be implemented. The

main advantage is that no custom solution has to be pur-

posely defined in order to have the two nodes transmitting

on the bus at the same time.

• Min-Max discovery: By using overlapping arbitrating

static slots, the minimum among a set of values provided

by responders can be quickly found. By logically comple-

menting the involved values, the maximum can be found.

It is worth reminding that what consumers see on the bus

is a conventional CAN frame whose data field (or part of

it) carries the minimum value, and no awareness of the

XR Min-Max operation is needed for them.

• Event notification: By using static slots, mapped on single

bits on responders, a multitude of devices are allowed

to efficiently notify events. The wired-AND behavior of

CAN could be possibly exploited to deal with events pro-

duced by multiple sources. The presence of a dominant

value in any of these bits means that the related node (or

at least one of them, in case of shared slots) has raised

the corresponding event. To enable asynchronous event

notifications, devices can be set as implicit initiators. Stuff

bit insertion is carried out correctly, irrespective of the

values enforced by devices, since it is based on bus levels

and, besides responders, is backed by the supervisor.

• Distributed consensus: By using non-overlapping exclu-

sive static slots and specifically exploiting atomicity of

XR transactions, distributed consensus (e.g., majority vot-

ing) can be easily achieved among processes running on

separate networked nodes. Each such node is configured

as a responder for a specific slot and as a consumer for all

the other slots. Because of the robust CAN error detection

and globalization mechanisms, processes are ensured that

they are agreeing and taking decisions on the same pattern

of values.

By suitably combining the different options foreseen by

CAN XR, other distributed services may be conceived as well.

A. Performance Comparison

A very interesting use of the CAN XR data slotting is

collecting a number of process data, produced by distinct

devices, into the same frame. In some circumstances this

approach can achieve higher throughput than simply enabling

bit-rate switching in CAN FD transmission. In Fig. 6, the

overall time T (in bit times) taken to exchange a set of process

data is shown for classical CAN, CAN FD, TTCAN, and CAN

XR, by varying the number N of involved devices.

Each device is assumed to produce a single process datum,

whose size D is set equal to 1, 2, and 4 bytes in the upper,

middle, and lower plot, respectively. In the case of CAN FD,

four sub-cases are taken into account, where the overclocking

factor α (ratio between the bit rates in the data and arbitration

phases) is set to ×1, ×2, ×4, and ×8, respectively. For

TTCAN, all process data are assumed to fit exactly in the

basic cycle and, for simplicity’s sake, no safety margins are

included in time windows. Thus, the duration of a reference

message (Level 1, including only one data byte) was simply

added to T . For CAN XR, a single combined message with

static slotting is considered and the frame format (classical

vs. FD) is chosen so as to minimize the wasted space. Not

all sizes are allowed for the data field when DLC exceeds 8,

which explains piecewise linear plots.

When process data are small (D ≤ 2 bytes), CAN XR is

always advantageous, provided that at least 3 producers are
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Fig. 6. Minimum transmission time T taken for exchanging all process data
vs. number N of producing nodes and size of data D = 1, 2, and 4 bytes.

involved in data exchanges. In the case of larger process data

(D ≥ 4 bytes), CAN FD overtakes CAN XR, but only when

the bit rate in the data phase is increased tangibly (α > 4).

As TTCAN is meant to improve determinism, its perfor-

mance in our sample system is always slightly below CAN.

Consequently, its throughput is not as good as CAN XR, unless

overclocking is exploited and process data are large enough.

VII. CONCLUSION

In this paper an extension of CAN has been presented, called

CAN XR, which augments the original protocol with in-frame

replies in such a way that multiple nodes can include their data

in the same frame. By exploiting the physical layer of CAN,

which grants every node to observe the same level on the bus

at any given time, complete backward compatibility is retained

with existing CAN devices.

CAN XR can be used by applications and upper protocol

layers to define a variety of new distributed services. There-

fore, it has to be regarded as an extensible mechanism, and

provides users with noticeably higher flexibility with respect

to basic CAN transmission services. Several use cases have

been described in the paper, which show how CAN XR can

be profitably exploited in some practical situations.

This paper mainly focuses on the CAN XR protocol defi-

nition and provides some guidelines on the implementation of

its services in real devices. Protocol feasibility and coexistence

with existing CAN controllers have also been assessed, by

using a purposely-developed experimental setup consisting

of three nodes, two of which equipped with an XR-enabled

software-defined CAN controller.

A thorough performance analysis, when data slotting is

used to carry out efficient data transfers, as well as additional

details on its use in real-world distributed applications, is

planned for future works. Moreover, the option of bringing in

some way overclocking in XR—overcoming the lack of the

in-bit-time detection property during the data phase and the

consequent synchronization and timing tolerance issues—will

also be carefully investigated.
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