Loading [a11y]/accessibility-menu.js
Design and Analysis of FTZNN Applied to the Real-Time Solution of a Nonstationary Lyapunov Equation and Tracking Control of a Wheeled Mobile Manipulator | IEEE Journals & Magazine | IEEE Xplore

Design and Analysis of FTZNN Applied to the Real-Time Solution of a Nonstationary Lyapunov Equation and Tracking Control of a Wheeled Mobile Manipulator


Abstract:

The Lyapunov equation is widely employed in the engineering field to analyze stability of dynamic systems. In this paper, based on a new evolution formula, a novel finite...Show More

Abstract:

The Lyapunov equation is widely employed in the engineering field to analyze stability of dynamic systems. In this paper, based on a new evolution formula, a novel finite-time recurrent neural network (termed finite-time Zhang neural network, FTZNN) is proposed and studied for solving a nonstationary Lyapunov equation. In comparison with the original Zhang neural network (ZNN) model for a nonstationary Lyapunov equation, the convergence performance has a remarkable improvement for the proposed FTZNN model and can be accelerated to finite time. Besides, by solving the differential inequality, the time upper bound of the FTZNN model is computed theoretically and analytically. Simulations are conducted and compared to validate the superiority of the FTZNN model to the original ZNN model for solving the nonstationary Lyapunov equation. At last, the FTZNN model is successfully applied to online tracking control of a wheeled mobile manipulator.
Published in: IEEE Transactions on Industrial Informatics ( Volume: 14, Issue: 1, January 2018)
Page(s): 98 - 105
Date of Publication: 20 June 2017

ISSN Information:

Funding Agency:


References

References is not available for this document.