Joint Transformation based Detection of False Data
Injection Attacks in Smart Grid

Sandeep Kumar Singh, Student Member, IEEE, Kush Khanna, Student Member, IEEE, Ranjan Bose, Senior
Member, IEEE, Bijaya Ketan Panigrahi, Senior Member, IEEE, and Anupam Joshi, Fellow, IEEE

Abstract—For reliable operation and control of smart grid,
estimating the correct states is of utmost importance to the system
operator. With recent incorporation of information technology
and Advanced Metering Infrastructure (AMI), the futuristic
grid is more prone to cyber-threats. The False Data Injection
(FDI) attack is one of the most thoroughly researched cyber-
attacks. Intelligently crafted, it can cause false estimation of
states, which further seriously affects the entire power system
operation. In this paper, we propose Joint Transformation based
scheme to detect FDI attacks in real time. The proposed method
is built on the dynamics of measurement variations. Kullback-
Leibler Distance (KLD) is used to find out the difference between
probability distributions obtained from measurement variations.
The proposed method is tested using IEEE 14 bus system
considering attack on different state variables. The results shows
that the proposed scheme detects FDI attacks with high detection
probability.

Index Terms—Cyber security, false data injection, Kullback-
Leibler distance, smart grid.

NOMENCLATURE
a Attack vector.
c Error caused in the state vector due to attack vector
a.
e Gaussian meter error vector.
H Measurement Jacobian.
1% V/0.
Tpad State vector after attack.
x System state vector.
Zbad Perturbed measurements after attack.
T Estimated state vector.
o; Standard deviation of measurement z;.
cY Positive constants.

D Degree of damage.

9ij,bi; Conductance and susceptance of line ¢ — j.

gsi, bs; Shunt conductance and shunt susceptance at bus 4.

h(x) Measurement function.

m Number of measurements available.

Npus  Set of all the buses in the network.

P Probability distribution of measurement variation from
current and previous time step.

P Real power injection at bus .
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P;; Real power flow in the line ¢ — j.

q Probability distribution of measurement variation for
historical data.

Qi Reactive power injection at bus 1.

Qij Reactive power flow in the line ¢ — j.

r Set of measurement data before the transformation 7.

s Set of measurement data after the transformation 7.

V.0 System states (Voltage magnitude and Angle).

Y Bus admittance matrix.

z Set of measurement vector.

I. INTRODUCTION

HE smart grid facilitates control of electricity demand

and supply in reliable, sustainable and economic manner
by incorporating information technology and communication
infrastructure. Advanced Metering Infrastructure (AMI) and
Demand Side Management (DSM) enables two-way communi-
cation between the utilities and end customers. This integration
enables customers to monitor their load pattern in real time
and often earn incentives from the utilities for controlling their
usage in peak hours. However, the cyber-physical security of
the grid is now prone to cyber-attacks [1]-[3]. A malicious
actor can now hack into the communication network, accessing
and modifying the confidential grid and user information.

Data integrity attacks can be launched by the attacker by
intruding the physical security of the smart meters/sensors. By
judiciously forming the attack vector, adversary injects false/-
malicious data into the smart meters and misleads the system
operator with incorrect yet feasible system state. Depending
on the motive of adversary, these fraudulent measurements
may lead power system to an uneconomical yet stable or to a
completely unstable state of operation. The possible impacts
of false data injection (FDI) attack on power system have been
reported in [4]-[6]. A co-ordinated attack forcing system to
an insecure or uneconomic state of operation can further lead
to a collapse if not detected in time as presented in [7]. Many
methods have been reported in the literature to alleviate FDI
attacks in the smart grid.

The defence techniques can be broadly classified into two
categories: 1) Protection-based defence, and 2) Detection-
based defence. As power grid covers a vast geographical area
with hundreds and thousands of smart meters/sensors, the cost
of protecting all smart meters can be very high. It is, therefore,
realistic for the system operator to only protect a set of critical
sensors and corresponding measurements [8]. In [9], Bobba
et al. proposed the detection of FDI attacks by protecting



a strategically selected set of sensor measurements. A light-
weight watermarking technique is proposed to defend against
false data injection attacks [10]. Talebi et al. [11] presented
a strategy for detection of FDI attacks by reconfiguring the
micro-grids dynamically and makes it impossible to organize
a synchronized injection. Necessary and sufficient conditions
to select the protection measurements and find the optimal
solution which protects the state estimates with least number
of measurements were proposed in [12]. The smart meters
can be protected by continuously monitoring the measurement
data or by encrypting the measurement data. Shortcomings of
the protection based defence are twofold; firstly, securing the
critical set of measurements leads to decrease in redundant
trustworthy measurements; secondly, the assumption of mak-
ing a completely hack-proof smart sensor is unrealistic.

The detection based methods on the other hand are based
on analysis of meter data. Kosut et al. [13] introduced a
Bayesian formulation of the bad data problem, which captures
the prior information that a control center has about the likely
state of the power system. Similarly in [14], a Bayesian
framework for the characterization of fundamental tradeoffs
at the control center and for the adversary is presented.
Bayesian framework is used to detect any unusual data which
does not have the same measurement distribution as historical
measurement distribution. However, in the case of malicious
data having same distribution pattern as historical data or if
an adversary replaces the current meter readings with previous
readings having same distribution, the Bayesian approach fails
to detect the attack. Liu et al. [15] proposed a novel false
data detection mechanism based on the separation of nominal
power grid states and anomalies. In [16], a sequential detector
based on the generalized likelihood ratio is proposed for
quickest detection of FDI attack in smart grid. The authors also
proposed a distributed sequential detector using level-triggered
sampling for wide-area monitoring in smart grid. Rawat et
al. [17] proposed Chi-square detector and cosine similarity
matching scheme for detecting malicious data injection. A
real-time detection scheme against FDI attack in smart grid is
proposed in [18] using Markov chain based analytical model.
Liu et al. [19] proposed a collaborative intrusion detection
mechanism against FDI attack.

Gu et al. [20] came up with a method to detect FDI attack
in smart grid by considering the measurement variations,
however, the proposed technique fails to detect the attacks
on certain state variables on some of the buses. Due to the
quasi-static nature of the power system, the variation in the
measurements are minimal. This lowers the detection proba-
bility if the attacker injects the small errors in measurements
for targeting certain state variables. We propose, an image
processing based technique to detect the attacks by transform-
ing the measurement variation which enhances the resolution
(scaling) of the probability distribution function, thereby, in-
creasing the detection probability. In image processing, trans-
formation based approach maps input pixel value to output
pixel using predefined transformation function. Log trans-
formation and power-law (gamma) transformation [21] are
widely used methods for image enhancement. In our proposed
work, probability distribution of measurement variations are

obtained from the histogram plot of measurement variations.
The chosen transformation techniques are computationally
efficient and detects the FDI attacks without burdening the
state estimation process. Although, Absolute Distance (AD)
and Jensen Shannon Distance (JSD) [22] can also compare
the two probability distributions, as applied in this work,
we chose Kullback Leibler Distance (KLD) [23] to calculate
the difference between historical true measurement variations
and false measurement variations due to comparatively higher
detection efficiency. If the run time KLD is smaller than the
threshold value (pre-defined set-point obtained from historical
measurement variation), then there is no FDI attack. If the
distance is larger than threshold, the received measurement
sample is compromised. The proposed transformation based
approach detects the FDI attacks with high probability of
detection as compared to previously reported results. Table I
summarizes various defence techniques reported in literature.

TABLE I
ADVANTAGES AND LIMITATIONS OF DEFENCE TECHNIQUES AGAINST FDI
ATTACKS.
Defence Advantages Limitations
Techniques
Protection Only protect a set | Only the protected mea-
based defence | of critical meters surements are trusted,
[8]-[12] and corresponding | decrease of redundancy,
measurements. protection may not be
secure all of the time.
Detection Analyse the raw mea- | Do not detect false data

based defence
[13]-[19]

surements, able to de-
tect ones that do not fit
the distribution of histor-
ical measurements. Spa-
tial and Temporal based
detection methods are

that fits the distribution
of historical measure-
ments. Captures the at-
tacks that leads to ex-
treme abnormal system
states.

used.
Kullback Track the dynamics | Fails to detect FDI at-
Leibler of the measurements | tacks on some state vari-
Distance by calculating distance | ables.
[20], [23] indices (KLD) between
adjacent steps.
Proposed Use transformation | Although the proposed
methodology based schemes [21] | scheme detects the
to detect FDI, able | attack more efficiently
to detect attacks on | than [20], still attack on
most of state variables | fg remains undetected
with  high detection | for some samples.
efficiency.

The rest of the paper is organised as follows. In section
II, traditional bad data detection scheme, false data injection
attack and formulation of attack are presented. Section III
presents proposed method for detecting false data injection
attacks. Test set-up is explained in section IV. Section V
presents the numerical results and performance evaluation.
Section VI concludes this paper.

II. BACKGROUND
A. State Estimation

The idea of state estimation in power system was proposed
in [24]. State estimation facilitates identification of accurate
operating condition of power system by continuously monitor-
ing the bus voltages and transmission line loading in real time.
In order to obtain the accurate voltage phasors at all the buses,



state estimation uses set of redundant measurements in order to
filter out the errors in the measurements arising due to faulty
meters or due to telemetry failure [25]. The measurements
used can be a set of real power injection, reactive power
injection, real and reactive power flow measurements. For a
Nypys power system, the number of states defining the power
system completely are 2Np,; — 1 when polar co-ordinates
are considered. The state vector ‘x’ contains Np,s voltage
magnitude and N, s — 1 phase angles with one angle is given
an arbitrary value O for a reference. Thus the state vector is
given as,

Tr = [027037"'79Nbu57V17‘/v27"'7VNbus] (l)

For a set of measurements ‘z’, the Weighted Least Square
(WLS) state estimator minimizes the following objective func-

tion,
m

J(@) =3 (2 = hi(=))/o} @)
i=1
The measurement function h(z) can be formulated as,
Nbus
Pi=R{Vy} > ViYa} Vi€ N 3)
k=1,k#i

Nyus
k=1,k+#i

Py =V (g4 + 9ij)—
ViVi(gij cos 0;5 + bijsin i) Vi, j € Npus  (5)
Qij = — V2 (bsi + bij)—

V;V}(gw sin Hij — bij CcOS 9”) VZ,] € Npus (6)

The iterative procedure for estimating the system state
vector x is explained in appendix. To accurately monitor the
power system operation, the state estimation must be able to
detect, identify and remove the measurement errors if present.
Bad data is detected by performing the Chi-Square test [25]
as follows,

J(&) =) (2 = hi(&))/of <7 @)
i=1
If J(&) is greater than 7 then bad data is present. Here 7
is defined for given degree of freedom and confidence level.
The meters which are the source of bad data are eliminated
by performing normalised residue test [25].

B. False Data Injection Attacks

Attacker can inject malicious data to the measurement
sensors by forming the attack vector which bypasses the bad
data detection of the state estimation as shown in [5]. If
|z — Hz|| < 7, an attack vector a, which is the linear

combination of column vector of H (i.e. a = Hc), can bypass
the bad data detection test as shown below,
l(z+a)-H(@+c)|=z—-H&+a-Hc|
=lz-Hz| <7 ®)

Depending on the type of measurements (F;, P;;, @; and
Q:;) available for the estimating the states, for each measure-
ment type of measurement function, H can be expressed as,

Ohy(x) Oh1(x) Oh1(x) Ohy(x)

00, 90Ny, oy VN s
. . . e ©)
Ohp, (x) Ohp, (x) Ohyy, () Ohpm (@)

00 90Ny, oVy T VN,

here, hq(x)...h,(x) are measurement functions for m
number of measurements, and are defined based on the type
of measurements as given in (3)-(6).

False data injection attacks can be modelled for targeting
single or multiple state variables. FDI attacks can be classified
into two categories: 1) Load change attack, and 2) Load
redistribution attack [26]. Furthermore, FDI attacks can also be
launched without complete network information as presented
in [27]. Attacks to gain momentary economic benefits are also
proposed in [28]. The ultimate objective of an attacker is to
launch a stealthy attack, which can deceive the system operator
and bypasses the bad data detection. In this paper, our focus
is on the real time detection of the FDI attacks. The approach
is therefore to model the most generalised attack and thereby
coming up with the most robust detection technique which can
be applied for all possible data injection attacks.

C. Formulation of Attack

Although the attack can be formulated differently depending
on the motives of the attacker, but the final impact of these
malicious data on power system is always falsified system
states. Depending on the attack model, there may be single
affected state variable or multiple. If the detection method-
ology is able to detect the attack which affects only single
state, it will also perform accurately for the attacks affecting
multiple state variables because as the affected state variables
increases, the false measurements increases which in turn
results in higher Kullback Leibler Distance (KLD) value which
will be explained in detail in the subsequent section. Therefore,
the target of the attack considered in the paper is single state
variable.

To launch the attack, adversary changes all the measure-
ments for real and reactive power injections; and real and
reactive power flows by injecting the error in the meters
to project the desired changed state variable to the system
operator. For example, if the attacker targets 0, state variable
by injecting an error of —10%, the attack vector can be
formulated by considering,

C:[*0192,O,,O, 0770]’ (10)
011 X (Npys —1)] VIix Ny )

The perturbed measurements are calculated by using state
vector, Tp,q = @ + ¢ and solving (3)-(6). For successfully



launching the attack, it is assumed that the attacker has
knowledge of the network adjoining the bus corresponding to
the target state vector. The perturbed measurements are given
by,

(11

Zbad = h(Tpaa) + €

III. PROPOSED DETECTION METHODOLOGY
A. Transformation Schemes

When any individual meter is compromised by an adversary,
it causes erroneous estimation of system states. The proposed
method detects FDI attacks using dynamics of measurement
data. The probability distribution of historical measurement
variation is denoted by ¢ and p is the probability distribution
of measurement variation for current and previous time step.
One probability distribution is transformed to other probability
distribution by transformation based method.

Transformation based schemes are used in image processing
to enhance the quality of image. Image enhancement is a
process of reshaping an image to make it more suitable for any
specific application. Power-law (Gamma) transformation and
log transformation are some of the widely used image trans-
formation techniques [21]. We have applied above mentioned
transformations to power system measurements for detecting
the FDI attacks in real-time.

Distance metrics are calculated using above mentioned
transformed probability distributions of measurement varia-
tions. Considering the measurement variation, before and after
transformation, denoted by ‘r’ and ‘s’, respectively. r (untrans-
formed measurement variation) is defined as |z(k) — z(k —1)|.
‘r’ and ‘s’ are related by an expression s = T'(r), where T is
a transformation that maps a measurement variation r into s.

In joint transformation, power and log transformations are
jointly used. Power transformation is used in threshold se-
lection and log transformation is used to calculate runtime
distance KLD. Power and log transformation are explained
below:

1) Power-Law (Gamma) Transformation: The basic expres-
sion for the transformation is given as,

(12)

s=cr?”

where ¢ and vy are positive constants. A family of
transformation is obtained simply by varying v [21].
This transformation with fractional values of + map
small range of input measurement values into wide range
of values, with the opposite being true for higher values
of input measurements. Power transformation reduces
to identity transformation when v = ¢ = 1. Power-law
transformation is useful for contrast manipulation.
2) Log Transformation: The expression for the log trans-
formation is given as,

s=clog(l+7) (13)

where c is constant. This transformation maps narrow
range of measurement values into a wider range of
values [21]. The opposite is true of higher values of
measurements.

B. Kullback Leibler Distance

In order to detect the attack, transformed measurement
variation is obtained. The divergence of measurement variation
for the current time sample with the historical measurement
variation is given by Kullback Liebler Distance (KLD) [23].
The KLD is also known as relative entropy or information
gain. The expression for KLD is as follows:

Diplg) = Y () 22 (14)

- q(s)

It is the expectation of logarithmic difference between prob-
ability distributions p and q. KLD is always non-negative
D(pl|lg) > 0 [23]. It is additive for independent distributions
and due to unsymmetrical property, D(p|q) is not equal to
D(q||p). As KLD is not an absolute distance metric, it does
not follow triangle inequality.

Once the KLD is obtained, it is compared with the threshold
value, which is obtained without considering FDI attack. If the
value of the distance metric is greater than the threshold, FDI
attack is detected for the considered time step.

C. Threshold Selection

Selection of proper threshold value is very crucial and it
affects the accuracy of detection. The historical measurements
are assumed to be accurate throughout the paper. The mea-
surement samples of one month prior to attack are compared
with the historical data set to obtain the threshold value [20].
KLD for each sample is calculated as given in (14) and
histogram is plotted. The selected threshold is that KLD value
in the sample set which is greater than 99% of all the KLDs
obtained for complete one month. If higher threshold value
is selected (maximum KLD obtained from all the samples
for the month), the proposed scheme will not able to detect
certain FDI attacks. Furthermore, if a lower threshold value is
selected, some true measurements may get labeled as false.
The obtained threshold is dependent on network topology.
While considering topology changes, the historical measure-
ment data set is updated in accordance with the considered
topology change. Hence the threshold value will be different
for different network topology.

IV. TEST SETUP
A. System Details

IEEE 14 bus system, as shown in Fig. 1, is used to validate
the effectiveness of the proposed detection scheme. The load
buses in IEEE 14 bus system is linked with each load zone of
NYISO as given in [20].

All the measurement data are calculated by considering
NYISO load data from Jan 1, 2012 to Dec 31, 2012 which is
obtained from [29]. The hourly load data is converted to 5 min
data. Although the steps for obtaining historical measurements
are already mentioned in [20], steps with some modifications
are briefly explained below;

1) Hourly load data (real power demand) obtained from
NYISO is mapped with IEEE 14 bus test system and
converted to 5 minutes data.



2) IEEE 14 bus system test data is used to calculate the
reactive power demand for each bus at 5 minutes interval
by keeping constant power factor for respective bus in
accordance with test system data.

3) Real and Reactive generation for each 5 min interval is
obtained by proportionally changing the real and reactive
power generation of the IEEE 14 bus system based on
the net load for the considered time interval.

4) Voltages and angles at each bus is obtained by running
the load flow program for each time interval. Gaussian
noise! of 1% standard deviation is added in the mea-
surements obtained using (3)-(6).

We have considered a fully measured power system, there-
fore we have, 14 real and reactive power injection measure-
ments for each bus and 40 real and reactive to and fro power
flow measurements. Therefore, a total of 108 measurements
are considered at each 5 minutes time interval.

THREE  WINDING
TRANSFORMER EgUIVALENT

(6) cenerators

© sricrroNous
CONDENSERS

Fig. 1. IEEE 14 bus system.

To obtain the probability distribution p and ¢, all the
measurements coming from 108 measurement sensors are
considered for each 5 minutes time interval. ¢ is obtained
by transforming the probability distribution of measurement
variation |z(k) — z(k — 1)| for all the measurement from Jan
1, 2012 to Oct 31, 2012. The measurement data for the month
of November is considered to be without attack and therefore
it is used to calculate the threshold value. We have considered
FDI attack at each time interval for the December month. p
is obtained for the month of December by transforming the
measurement variation |zpqq(k) — z(k — 1)|.

V. RESULTS AND DISCUSSION

All the simulation have been done on DELL PC with 3.20
GHz Intel Core i7 processor and 8 GB RAM on Windows 8
Enterprise. Programming has been done on MATLAB R2014b.
The proposed scheme is tested when adversary targeted single
state variable, and that state variable is increased or decreased
by some percentage of its true value. Due to this attack, all
measurements associated with that state variable are changed

'Gaussian error is assumed for meters which is in line with [25].

TABLE II
COMPARISON OF PROPOSED TRANSFORMATION BASED SCHEME WITH
[20]
State KLD [20] UD(%) for 1As(%) Joint Transformation UD(%) for I1As(%)
90 95 105 110 90 95 105 110
62 0 1 2 0 0 0 0 0
63 22 55 56 32 0.14 0.16 0.03 .02
64 0 0 0 0 0 0 0 0
253 0 0 0 0 0 0 0 0
b6 0 0 0 0 0 0 0 0
67 58 70 70 61 0 0 0 0
Os 96 96 95 95 0 46.6 46.6 0
69 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0
012 0 1 2 0 0 0 0 0
013 0 0 0 0 0 0 0 0
014 0 5 7 0 0 0 0 0
Vi 0 0 0 0 0 0 0 0
Vs 0 0 0 0 0 0 0 0
Vs 0 2 2 0 0 0 0 0
Vi 0 0 0 0 0 0 0 0
Vs 0 0 0 0 0 0 0 0
Ve 0 0 0 0 0 0 0 0
Vz 0 20 20 0 0 0 0 0
Vs 96 96 96 96 0 0 0 0
Vo 0 0 0 0 0 0 0 0
Vio 0 0 0 0 0 0 0 0
Vi1 0 0 0 0 0 0 0 0
Via 0 0 0 0 0 0 0 0
Vis 0 0 0 0 0 0 0 0
Vig 0 0 0 0 0 0 0 0

with false data. For simulating this attack, we introduce a
concept of degree of damage, denoted as D. It is defined as
the difference between true value and false value; and created
by different injection amounts (IA). The proposed scheme is
simulated for four different injection amounts, which are 90%,
95%, 105% and 110% and observe the effect of D in detection
rate. 90% injection amount means that state variable is 10%
less than true value. If the difference between true data and
false data is more, probability of detection of false data will
also be high. Results are shown in the form of UD%. UD%
stands for percentage of undetected (UD) samples, which is
equal to undetected samples divided by total samples. In the
test setup, there are 8892 samples for each attacking case.

To justify the accuracy of the proposed method in detecting
the FDI attack, the results are compared with previously
reported method [20]. The earlier method used the probability
distribution of measurement variations directly, whereas we,
by applying transformation schemes on probability distribu-
tion of measurement variation, have obtained better detection
efficiency. By efficiency here we mean, the undetected samples
are less as compared to previously reported results.

Histogram of the KLDs obtained using the transformed
measurement variations are plotted for the month of Novem-
ber, where all the measurement values are assumed to be
accurate (no FDI attack) and for December, where attack on
different state variables is simulated. The overlapping region
between the two histogram plot denotes the undetected sam-
ples”. In the proposed methodology, we have chosen constant
c and v equal to 2 and 1.3 respectively®.

2The exact number of undetected samples can be obtained after setting an
appropriate threshold. However, the overlapped region reflects the detection
efficiency of the method. Large overlapped region means poor detection
efficiency.

3The detailed explanation on selecting parameters is given in Appendix



A. Without considering topology changes
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Kullback Leibler Distance

(a) November (No Attack).
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Kullback Leibler Distance

(b) December (02 with IA = 90%).

Fig. 2. Histogram of KLD values using Joint Transformation.

The attack is simulated at each time interval for the month
of December. The network topology is assumed to be fixed
for all measurement samples. Fig. 2(a) and Fig. 2(b) show the
histograms for November (no attack) and December (for attack
on 0y with TA = 90%) respectively. In joint transformation,
power transformed KLDs are used to calculate the threshold
value, and log transformed KLDs are used to detect the
attack for the month of December. The range of KLDs for
the month of November (No Attack) is 0.0211 to 2.0474.
The threshold considering 99% confidence level is 0.9381.
Considering attack on #; with D = 10%, the range of KLD
values for the month of December is 3.013 to 6.264. It is
clear from the Fig. 2(b) that KLDs for all the samples for
the month of December is greater than the threshold 0.9381.
The overlapping region is reduced to minimum level after
joint transformation which also reflects in higher detection
efficiency. Percentage undetected samples are close to 0% for
nearly all state variables, however, for g joint transform also
fails to detect the attack for IAs 95% and 105%. The reason
is that the bus 8 is only connected to bus 7 and hence few
measurements are affected if fg is manipulated. As the state
variable increases, number of meters in which the attack is in-
jected increases which results in higher KLD value and hence
the attack is detected, which is shown in Table III, therefore the
proposed method can be considered as a generalised method
to detect false data injection attacks. With the assumption
that the historical data is already transformed previously, the
time taken for calculating runtime KLD is 0.808 ms for one
sample. Similarly if historical data is to be transformed (=
87K samples are transformed), then the complete process takes
250 ms, which is still far less as SE is generally performed
in every 2 minutes [30]. Furthermore, the proposed method

does not label undetected faults (high impedance faults) as
FDI attack, as for such faults the measurement variation is
similar to that of slight perturbation of load and hence remain
undetected. During our investigation, run-time KLD for the
high impedance fault case was always less than the threshold.

TABLE III
VARIATION OF KLD CONSIDERING ATTACK ON MULTIPLE STATE
VARIABLES
Attack on states | IA (%) | Kullback Leibler Distance
No-attack - 0.7830
02 110 3.8760
02, 04 110 6.7222

B. Considering network topology changes

Any change in the network topology will cause false de-
tection if the threshold is not appropriately selected for the
topology change in consideration. In order to avoid false de-
tection, different thresholds are obtained for different network
topology changes in the system. The data set of historical
measurements for each line outage is created and the attack is
simulated for each topology change. The joint transformation
scheme successfully detects the attacks for majority of state
variables, however for some cases as tabulated in Table IV,
the proposed transformation scheme fails to detect the attack.
Undetected system states for the corresponding line outages
are shown in first and second column respectively of Table IV.
It is noteworthy that the max/min undetected samples shown
in third and fourth column are for the cases when the UD(%)
is greater than 0%.

TABLE IV
UNDETECTED PERCENTAGE CONSIDERING TOPOLOGY CHANGES?.

Undetec‘ted Line Outage LmeUD %’ . L
States Maz(%) i Min(%) 45
03 2-13, 15-20 9.16(51, o.o1§j2)5)
07 3-5, 8-13, 15-20 23005 0.01(;50)
0 120 5610 105y | 0-02050110)
810 35, 16, 18 23.50100) 7640505
011 35,9, 10, 11, 12, 16-19 31.69%;;; 0.01, 50
012 12,19 40.76{g0) o.34§;§§
013 13 2.68(50) 2.68(;3;
014 10, 17, 20 123950110, 0.01(50)
Vs 3 17'90525,110) 179052?),110)
Vs 1,3,4,5,813,18,20 | 67.7400) 10 | 00920

4UD % shown in the table is only for the cases where undetected samples
are greater than zero. Moreover, it is worth mentioning that for certain IA, the
proposed method also detects all the samples for line outage given in second
column.

From the test results, it is clear that joint transformation
based approach can successfully detect false data injection
attacks with higher detection efficiency. However, when net-
work topology changes are considered, the results slightly
deteriorates as compared to that when topology change is
not considered. Moreover, joint transformation fails to detects
attack on 6g. It is thus advised that the meters connected
directly to the bus 8 must be secured by the system operator
in order to alleviate all the possibilities of cyber-threats.



VI. CONCLUSION AND FUTURE SCOPE

False data injection attack is an emerging threat to the
security and integrity of smart grid operation. From gaining
economic profit to line overloading, line tripping to cascaded
failure, the impacts of the FDI attacks are manifold. There-
fore in order to protect the smart grid from these serious
repercussions, the detection of such attacks are of utmost
importance. In this paper, we presented a new transformation
based detection schemes for detecting FDI attack. As presented
in the paper, the proposed joint transformation scheme detects
FDI attacks with high detection probability. It is shown with
the help of results that the proposed scheme in general, can
detect all false data injection attacks. However, if adversary
injects false data in small magnitudes, the proposed scheme
is able to detect the attacks with high detection efficiency for
the cumulative false data injection greater than +1%, but if
the attack magnitude is less, the detection efficiency decreases.
Moreover, in the quest of the higher detection efficiency, the
false positive rate is also slightly increased. Our research on
bringing down the false positive rate is ongoing. Furthermore,
in future this work can be extended for identifying targeted
compromised meters.

APPENDIX
A. Iterative steps for estimating system states.

Errors are assumed to have a Normal distribution with zero
mean and known covariance matrix R.

o2 0 0
0 o3 0
0 O o2,
The function to be minimized (2) can be rewritten as,
J(x)=[z— h(a:)}TRfl[z — h(x)] (16)
oJ (x _
glx) = a; ) = —HT(:Jc)R 1[z — h(x)] a7

here H (x) is defined as in (9).

Expanding g(x) using Taylor series we get,

CBk
o(@) = g(@*) + 2145 (5

k _
5 ) + ...

(18)

(19)
From (18) and (19) we get,
ML _ gk = G(2*) ' HT (") Rz — h(z)]

xr

(20
after rearranging,
[G(zM))Azrt = HT ()R [z — h(z)] 1)

here Ax**! = z*+1 — x¥ Considering flat start and setting
k = 0, ! is calculated iteratively until the maximum
Axhtl <

B. Parameter Selection

For power transformation as given in (12), there are two
parameters ¢ and . As ~y tends to increase beyond 1, the mea-
surement variations between adjacent time intervals decreases
and vice versa. Similarly, if ¢ > 1, measurement variations
will increase and if ¢ < 1, the same will be decreased. It is
also observed that for the values of v > 1.5, the measurement
variation tends to zero.

As mentioned in (13), the log transformed measurement
variation s is directly proportional to constant c. To find the
appropriate values of ¢ and ~y, we varied ~ for set of pre-
specified values of c. Detection rate and false positive for
variation in +y is calculated.
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Fig. 3. Detection rate and false positive rate for different values of Gamma

-

The study reveals that + should be more than 1 for high
detection rate. Fig. 3(a) shows detection rate for different
values of parameter v when adversary launched an attack on
state variable 0; with 95% injection amount. As shown in
results, detection rate is very less when v < 1 and a steep rise
in the detection rate is achieved for the values of v > 1. False
positive rate on the other hand increases sharply as y increases
beyond 1.3. As shown in Fig. 3(b), for ¢ = 2, false positive
rate is increased from 11.09% to 37.55% when parameter ~y
changed from 1.3 to 1.4.

To analyse the effect of constant ¢ on performance of
proposed method, c is varied for set of values of ~. Fig. 4(a)
shows detection rate for different values of ¢ when adversary
launched an attack on state variable 6; with 95% injection
amount. Detection rate is high for ¢ < 0.5, it is decreasing
between 0.5 and 1.2, and after 1.2, it is increasing. Further-
more, as shown in Fig. 4(b), false positive rate is in low range
when c has a value greater than 1.
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