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Optimal Decision Making for Big Data Processing at
Edge-Cloud Environment: SDN Perspective

Abstract—With the evolution of Internet and extensive usage
of smart devices for computing and storage, cloud computing
has become popular. It provides seamless services such as; e-
commerce, e-health, e-banking, etc to the end users. These services
are hosted on massive geo-distributed data centers (DCs) which
may be managed by different service providers. For faster response
time, such a data explosion creates the need to expand DCs. So, to
ease the load on DCs, some of the applications may be executed on
the edge devices near to the proximity of the end users. However,
such a multi edge-cloud environment involves huge data migrations
across the underlying network infrastructure which may generate
long migration delay and cost. Hence, in this paper, an efficient
workload slicing scheme is proposed for handling data-intensive
applications in multi edge-cloud environment using software defined
networks (SDN). To handle the inter-DC migrations efficiently, a
SDN-based control scheme is presented which provides energy-
aware network traffic flow scheduling. Finally, a multi-leader multi-
follower Stackelberg game is proposed to provide cost-effective inter-
DC migrations. The efficacy of the proposed scheme is evaluated
on Google workload traces using various parameters. The results
obtained shows the effectiveness of the proposed scheme.

Index Terms—Energy-efficiency, edge computing, cloud data
centers, software-defined networks, Stackelberg game.

I. INTRODUCTION

CLOUD computing (CC) is one of the most powerful tech-
nologies to provide shared pool of resources such as servers,

storage, and networks to the end users. Such resources are hosted
at massive data centers (DCs) located geographically across the
globe [1]. In recent years, data-intensive applications such as e-
health, e-commerce, e-banking have generated a huge volume of
heterogeneous data which varies with time [2]. To handle such
massive data streams generated from these applications, existing
DCs infrastructure has been expanded in recent times. As per
a recent survey [3], nearly 12 million servers are deployed in
almost 3 million DCs in order to handle the on-line activities
across US only. Moreover, with the advent of internet of things
(IoT), the big data generated from different applications has
increased exponentially which creates a need to design new
effective solutions for improvement of the existing network
infrastructure. So, such data explosion has created the demand
for big data processing using large scale geo-distributed DCs.

Recent developments in CC sector has provided a multi-cloud
environment which provides multiple cloud services through
single heterogeneous computing architecture. Such multi-cloud
environment provides low latency, high data rate, and non-
disruptive services with respect to big data processing to the end
users [2]. In this direction, large cloud service providers such as
Google, Microsoft, and Amazon have also stepped into big data
processing using large-scale DCs located at various geographic
locations [4]. To manage this huge amount of data, Google
introduced the MapReduce framework supported by 13 DCs
spread in 8 countries across 4 continents [5]. Similarly, Netflix
utilize Amazons EC2 infrastructure distributed across 11 regions

over the globe to deploy their services [6]. Several architectures
such as Spark, and Storm have also been developed using the
data-flow concept for improving big data processing [4].

For efficient processing of big data, a huge amount of data
needs to be transfered across geo-distributed DCs using the
underlying networks. However, such movement of huge amount
of data across DCs may incur large cost. For example, 706
GB/day inter-DC traffic is generated in BigBench which involves
a large amount of operational cost [7]. With continuous growth
in size of big data generated by various sources, the need of
migrating data sets across DCs for processing also increases.
In this situation, the performance of underlying networks may
become worst due to heavy traffic generated. Moreover, this
may also generate high migration delay, network costs, and SLA
violations to the cloud service providers (CSPs). Several CSPs
have deployed efficient data migration technologies in recent
years. For example, Effingo has been deployed by Google to
handle the large-scale data migration in its DCs [2].

Jayalath et al. [8] highlighted the impact of distributing
computation for big data processing across large set of nodes.
Similarly, Li et al. [6] presented an optimization problem by
considering data movement and task placement to minimize the
inter-DC traffic along with guaranteeing job completion with in
a predefined time. Yu et al. [9] highlighted that the advent of
IoT has leveraged the need of serving the requests of mobile
devices closer the proximity of the users using geo-distributed
DCs. Yassine et al. [10] proposed a multi-rate bandwidth-on-
demand scheme for inter-DC communications in order to offer
reliable multimedia services. After analyzing the above discussed
proposals, it is evident that providing services closer to the end
user can provide low latency-services for end users.

In this context, a latest technology that provides localized
computing, storage, and processing services to end users is
known as edge/fog computing. The ubiquitous nature of edge
computing is critical for handling wide range of IoT-based real-
time and latency-sensitive applications. Deng et al. [11] proposed
a workload allocation scheme for fog-cloud scenario. The authors
put an emphasis on the fact that the cooperation between cloud
and fog may help to achieve desired QoS and energy efficiency.
Jalali et al. [12] presented a comprehensive analysis of CC and
edge computing. Authors stressed on keeping the data closer
to the end-user in order to achieve lower latency. However, in
case of inefficient usage of the network resources, the energy
consumption may increase. To resolve this issue, Borylo et al.
[13] proposed a dynamic resource allocation scheme for energy-
aware cloud-fog interplay. The authors focused that optimal
interplay between fog and cloud DCs using SDN can provide
benefits such as energy efficiency and high QoS.

One of the major challenges for the underlying network is
the inter-DC migration overhead due to high velocity of data
movements across different DCs. In this direction, Lu et al. [2]
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proposed a dynamic anycast model using elastic optical inter-
DC networks for data migration and backup. Gharbaoni et al.
[1] presented an anycast-based approach to select a destination
server for migrating VMs by considering the actual load on inter-
DC connections and VM data transfer requirements. Wang et al.
[14] discussed the impact of inter-DC migration on performance
of underlying DC networks. Gu et al. [4] highlighted that inter-
DC traffic in big data processing constitutes large portion of DC
traffic and thereby incurs a huge amount of operational cost. Chen
et al. [7] presented a workflow allocation graph which considers
the price diversity across geo-distributed DCs to achieve cost
minimization for big data processing. From the above proposals,
it is evident that the performance of the underlying networks is an
important parameter to achieve low latency inter-DC migrations.
So, to handle large data movements across different DCs, SDN
can be an attractive choice to manage the underlying networks
resources. In this direction, Blenk et al. [15] presented SDN
architecture for cost-effective and flexible control of commu-
nication networks. Xu et al. [16] proposed a bandwidth-aware
energy efficient routing algorithm using SDN to improve network
performance. Wang et al. [17] utilized SDN to define the QoS
and energy-aware flow-path for network management.

A. Contribution

Based upon the above discussion, the major contributions of
this work are as given below.
• A workload slicing scheme for handling data-intensive jobs

in multi edge-cloud environment is presented.
• A SDN-based controller is designed to provide an energy-

aware flow scheduling scheme with access of virtualized
network resources.

• A multi-leader multi-follower Stackelberg game is formu-
lated for providing optimal inter-DC migrations.
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Fig. 1: System model

II. SYSTEM MODEL

Fig. 1 shows the system model comprising of a multi edge-
cloud environment having n cloud and m edge geo-distributed
DCs located in a region. The cloud DCs are large-scale infras-
tructure that consists of huge computing, storage, and network
resources. However, the edge DCs consist of nano-DCs and
edge devices (EDs). The proposed system model comprises
of two controllers- (1) global controller (GC), and (2) local
controller (LC). The global controller is responsible for handling
the workload classification and scheduling in multi edge-cloud
environment. The local controller handle the inter-DC migrations.

NOMENCLATURE
n,m, f Number of cloud DCs, edge DCs, job type
W,Wdt,Wds Incoming, delay-tolerant, delay-sensitive workloads
F Job with requirements: atype, breq, creq
atype Type of application
breq, creq Communication and Computational requirement
α(t) Arrival rate at time slot t
Qf

i (t+ 1) Size of queue for type f jobs at ith DC at time (t+1)
Qf

i (t) Size of queue for type f jobs at ith DC at time (t)
Qpr

i (t) Present size of queue at ith DC at time (t)
λf
i (t) Number of type f jobs routed at ith DC
Si Total number of servers allocated incoming workload
µi Processing speed of each server
SLAv

p SLA violations of pth server
tthr
p Time for which threshold utilization level is experienced
tact
p Total active time of server
Dmig

p Performance degradation due to migration
tresi Response time
tresmax Maximum achievable response time
Di Overall delay
Dcomm

i Communication delay
Dmig

i Migration delay
Dproc

i Processing delay
dnet Delay incurred due to underlying networks
Dedge

i Delay incurred for handling jobs at edge devices
vi, ai Service and arrival rate at ith edge device
Ep

i Energy consumption of pth server of ith DC
Ei Energy consumption of ith DC
Ec

i , Eo
i Energy consumed for cooling & other activities of ith DC

Enet
i Energy consumption of network resource of ith DC

Enet
sw Energy consumption of switches

Enet
port Energy consumption of ports

Ep
idl Energy consumption of idle pth server

Ep
max Maximum energy consumption of pth server

Up
i Utilization of pth server of ith DC

Rp(t) Amount of resources consumed at time t at kth server
Rp

max Amount of resources consumed at time t at kth server
xedge
i Job requests handled by edge devices
Eedge

i Energy consumed by ith edge device
ai, bi, ci Pre-defined parameters for edge devices
Cf

i Cost incurred for handling type f job at ith DC
Ctot

i Cost for handling type f job at ith DC after migration
Ccomp

i Cost related to computing resources at ith DC
Ccomm

i Cost related to communication at ith DC
Ceng

i Cost related to energy consumption at ith DC
Cpen

i Cost related to SLA violations at ith DC
Cmig

i→k Cost related to migration from ith DC to kth DC
Pi,Mi, Si Processor, memory, storage required
ρ, ρe Price coefficient for different resources and energy
CL

i , C
IDC
i Local and Inter-DC communication cost

Cband
i Communication cost related to bandwidth requirements

bnet Bandwidth cost coefficient
bcomm
i Bandwidth requirement for communication
Ef

i Energy required to handle type f job at ith DC
Y f
i (t) Number of migrating jobs at time t
Cslav

p Cost of SLA violation per unit time for pth processor
T slav
p Duration of SLA violation for pth processor
Ui, Uk Utility function of ith and kth DC
Rf Revenue received for handling type f job
Rmig Revenue received for hosting f job migrated
f̂map

ijk Utility map of ijk pair
Uijk Utility function of ijk pair
ηavi Anticipated delay of the network after including new load
τav
i Anticipated throughput after including new load
d i→k

j
Distance from ith DC to kth DC through flow path j

zijk Decision variable

A. Workload model

Consider a workload (W) comprising of F type of jobs to be
processed in multi edge-cloud environment. A job is described
as F : (atype, breq, creq) where atype, breq, and creq denotes ap-
plication type, communication and computational requirements,
respectively. At time t, type f jobs are modeled using poisson
distribution with an arrival rate of (α(t)). The type f jobs
scheduled at ith DC follow the queues dynamics [18] as below.

Qfi (t+ 1) = max[Qfi (t)−Qpri (t)] + λfi (t) (1)

where, λfi (t) is the number of type f jobs routed to ith DC.
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B. QoS Model

SLA is the most important requirement during handling incom-
ing workload in multi edge-cloud environment. If the resources
required to process the workload exceeds the available capacity
of resources with a DC, then a violation of SLA occurs. The SLA
violations are computed on the basis of the time for which pth

server is experiencing threshold level of utilization (tthrp ), total
active time (tactp ), and performance degradation (Dmig

p ) due to
migration. The SLA violations (SLAvp) of pth server of ith DC
is given as below. [19].

SLAvp =
1

p

P∑
p=1

tthrp
tactp

Dmig
p (2)

Now, the performance degradation (Dmig
p ) due to migration is

defined similar to [19] as given below.

Dmig
p =

1

W

W∑
w=1

%dgw
%cpw

(3)

where, %dgw and %cpw denotes estimate of performance degradation
due to migration and resources requested for migration.

Moreover, low delay and high response time are the most
desired requirements of end users. In this context, the response
time (tresi ) for handling an incoming job is illustrated as below.

tresi =
1

µi × Si −Qpri (t)
+

1

µi
+Dcomm

i (4)

where, Si is the total number of servers allocated, µi is the
processing speed of each server, and Dcomm

i denotes the delay
incurred for communication from source to the allocated DC.

The delay incurred for communication (Dcomm
i ) from source

to the allocated DC is given as below.

Dcomm
i = dnetλ

f
i (t) (5)

where, dnet is delay incurred due to underlying network.
The overall delay incurred in processing an incoming job

request comprise of response time, migration (Dmig
i ), and pro-

cessing (Dproc
i ) delays. So, the delay (Di) is given as below.

Di = Dmig
i +Dproc

i + tresi (6)

In order to meet the SLA requirements, sometimes workload is
migrated from one DC to another that may incur additional delay.
The delay incurred during inter-DC migration (Dmig

i→k) from ith

DC to kth DC is given as below.

Dmig
i→k = dnetα(t) (7)

Now, in case an edge DC or devices is handling the job,
then the delay incurred (Dedge

i ) is defined using M/M/1 queuing
model [?] and is given as below.

Dedge
i =

1

vi − ai
(8)

where, vi and ai denotes service rate and arrival rate of jobs.

C. Energy model

The energy consumption of a DCs comprise of energy con-
sumed by processors (Epi ), network resources (Eneti ), cooling
(Eci ), and other infrastructure (Eoi ). So, the energy consumption
of ith DC is given as below.

Ei =
∑
p

Epi + Eneti + Eci + Eoi (9)

Now, the energy consumption of a processor depends directly
on the amount of utilization (Upi ) and is given as below.

Epi = Epidl + (Epmax − E
p
idl) U

p
i (10)

where, Epidl is the energy consumed by idle pth server, Epmax is
the maximum energy that pth server can consume.

The level of utilization of pth server of ith DC depend on the
amount of resources consumed (Rp(t)) at time t and maximum
capacity of processor (Rpmax) and is given as below.

Upi =

(
Rp(t)

Rpmax

)
× 100 (11)

A major chunk of energy consumption of DCs depend on
network infrastructure. The network devices consume energy on
the basis of fixed energy consumption (Enetsw ) and dynamic energy
consumption (Enetport). So, the energy consumption of network
devices in ith DC is given as below.

Eneti = Enetsw + Enetport (12)

The energy consumed by the network infrastructure in a DC
depends upon the working time of the network devices.

Endc =
∑
q∈S

Eq × Tq +
∑
r∈Pq

Eqr × T qr (13)

where, S and Pq are set of switches and ports in switch q; Eq ,
Tq , Eqr , and T qr are the fixed power consumed by qth switch,
working time of qth switch, dynamic power consumed by rth

port of qth switch, and working time of rth port of qth switch.
Now, expanding Eq. 13 as per anticipated traffic, it becomes

Endc =
∑
q∈S

Eq ×
τq

bcΘq|Pq|
+
∑
r∈Pq

Eqr ×
τ qr
bcΘ

q
r

(14)

where, τq is the aggregate traffic traversing through switch q,
τ qr is the aggregate traffic traversing through port r of switch q,
Θq is average occupancy ratio of switch q, and Θq

r is average
occupancy ratio of port r of switch q for the working time.

Now, if the EDs are handling the job requests (xedgei ), then
the energy consumed by ith edge device is given as below.

Eedgei =

(
ai(x

edge
i )2 + bix

edge
i + ci

)
× t (15)

where, am > 0 and bm, cm ≥ 0 are the pre-defined parameters.

D. Cost model

The operational cost (Cfi ) for handling type f job at ith DC
comprise of different sub-costs and is given as below.

Cfi = Ccompi + Ccommi + Cengi + Cpeni (16)

where, Ccompi , Ccommi , Cengi , and Cpeni are the costs incurred
on computing resources, communication infrastructure, energy,
and SLA violations.

In some cases, migration of job from ith DC to kth DC
occurs. Hence, a migration cost (Cmigi→k) is also incurred. After
considering this fact, the total cost (Ctoti ) incurred by a DC while
handling f type of jobs is given as below.

Ctoti = Cfi + Cmigi→k (17)

The cost on computing resources allocated to handle a job de-
pend on processor (Pi), storage (Si), and memory (Mi) required
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for a specific time (ti). The cost for allocating various computing
resources to the allocated job is given as below.

Ccompi = (ρPi + ρMi + ρSi)× ti (18)

where, ρ is variable price coefficient for different resources.
The cost incurred for communication of data involves two

types; (1) local communication (CLi ) and (2) inter-DC commu-
nication (CIDCi ) and is shown as below.

Ccommi = CLi + CIDCi (19)

Moreover, the above communication cost depends on the
bandwidth requirements of the end user and is given as below.

Cbandi =
∑
j,k

bnetλ
f
i (t)breq (20)

where, bnet is the bandwidth cost coefficient.
The cost of energy (Efi ) required to execute type f jobs at ith

DC is given as below.
Cengi = ρeE

f
i (21)

where, ρe is the price coefficient charged for per unit energy.
In order to meet QoS requirements, DCs have to migrate jobs

to other DCs which involves a migration cost. The cost for
migrating type f jobs from ith DC to kth DC over flow path
j is given as below.

Cmigi→k =
∑
j,k

bnetY
f
i (t)breq (22)

where, Y fi is the number of migrating type f jobs.
Some times SLA violations may occur. Hence, the service

provider has to bear a penalty (Cpeni ) as given below [19].

Cpeni =
∑
p

[Cslavp T slavp ] (23)

where, Cslavp is the cost of SLA violation per unit time and T slavp

is the duration of violation for pth processor of ith DC.

III. PROBLEM FORMULATION

In order to select an appropriate DC for migration in multi
edge-cloud environment, the entities that play a vital role are;
source DC (i), flow path (j), and destination DC (k). Now,
multiple choices exists for migrating data from ith DC to kth

DC on the basis of j flow paths. The mapping (f̂mapi,j,k) of these
entities is shown as below.

f̂mapi,j,k =

n∑
i=1


1, 1, 1 1, 2, 1 . . 1, j, 1
1, 1, 2 1, 2, 2 . . 1, j, 2
. . . . .
. . . . .

1, 1, k 1, 2, k . . 1, j, k

 . (24)

For this purpose a combined utility is defined as below.

Uijk =
breq × ηavi

(n+ 1)× τavi
× 1

d i→k
j

(25)

where, ηavi and τavi denotes the average anticipated throughput
and delay of the network after including the new load. d i→k

j
is

the distance from ith to kth DC through flow path j.
In order to select the optimal mapping from the above dis-

cussed matrix, a decision variable (zijk, ∀t) is defined as below.

zijk =

{
1 for Uijk > U∗ijk
0 for otherwise

(26)

where, ijk∗ is the set of pairs other than ijk.
Hence, the objective function is formulated using integer linear

programming and is given as below.

max

 jn∑
j=1

(f1j11)z1j11 + f1j22z1j22 + ....+ f1jnkz1jnk


(27)

subject to following constraints

zijk ∈ [0, 1] (28)
Ui(k) > Ui(k

∗) (29)
Uk(t) > Uk(t− 1) (30)

0 <
∑
f

Qpri (t)creq ≤ Si (31)

tresi ≤ tresmax (32)

Cmigi→k < Cpeni (33)
d( i→k

j ) < d( i→k
j )∗ (34)

where, Ui(k) is the utility of ith DC with respect to kth DC,
Ui(k

∗) is the utility of ith DC with respect to DCs other than
k, Uk(t) and Uk(t + 1) are utilities of kth DC at time t and
t+1 respectively, tresmax is maximum desirable response time, and
d( i→k

j )∗ denotes distance between all pairs other than ith to kth

DC through flow path j.

IV. PROPOSED SCHEME

The proposed scheme is divided into three phases. The algo-
rithms for these phases are described as below.

A. Workload slicing scheme for multi edge-cloud environment

In this scheme, input workload (W ) is sliced into two cat-
egories; delay-sensitive (X) and delay-tolerant (Y ) workloads.
Now, X is based on real-time applications that require maximum
response. Moreover, Y is a workload with maximum completion
time and requires high computing resources. But, it have to
be completed before a pre-defined deadline. Now, X is high
priority workload and it is scheduled before Y . The workload
(Y ) requires high computing resources and is routed directly to

Algorithm 1 Workload slicing and scheduling algorithm
Input: Workload W
Output: Cloud DC or ED
1: Slice workload W into X and Y
2: if W = Y then
3: Check for type of jobs
4: Compute F : (atype, breq, creq)
5: if F : (atype, breq, creq) are available with DCi then
6: Add workload → QN : (Q1, Q2, ...., Qn)
7: Select flow path using Algorithm II
8: Schedule job F→ DCi → PPRR
9: else

10: Schedule job → DCi∗ → PPRR . i /∈ i∗
11: end if
12: else
13: Check for available EDs
14: Map X with available EDs
15: if Required resources are available with EDi then
16: Add workload → QM : (Q1, Q2, ...., Qm)
17: Select flow path using Algorithm II
18: Schedule job → EDi → PPRR
19: else
20: Add workload → QN : (Q1, Q2, ...., Qn)
21: Schedule job → cloud DCs
22: end if
23: end if
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Fig. 2: Workload slicing scheme

geo-distributed cloud DCs. But, the real-time workload (X) is
sub-divided into two parts as shown below. One part of workload
(Xe) is scheduled to available edge DCs. However, there may
be some workload (Xc) which require high computing resources
that may not be available at edge DCs. Such workload slice is
routed to cloud DCs. The architecture of workload slicing scheme
is shown in Fig. 2. Algorithm 1 shows the working of proposed
slicing scheme using prioritized preemptive round robin (PPRR)
similar to [20] to schedule the jobs at DCs or edge devices.

B. SDN-based controller

In the proposed SDN framework, the underlying network
infrastructure is decoupled from the controller. Contrary to the
traditional networks, all the forwarding devices (FDs) such as-
routers, gateways, and switches in SDN can flexibly adapt to
new functionalities and network policies. The communication
infrastructure in SDN follows open flow protocol [21], [22].
Fig. 3 shows the SDN architecture consisting of three decoupled
planes: data, control, and application that are described as below.

1) Data plane: The data plane consist of FDs which act
according to the forwarding decisions taken by SDN controller.
Such decisions are configured into FDs using data-control plane
interface. FDs contains a set of flow tables and group tables that
are linked to each other by a pipeline [21]. The flow table follows
the instruction set provided by SDN controller. The instruction
set consist of matching rule, priority, action, and statistics. The
working of data plane in various steps as described below.
• Step 1: The source DCs that need to migrate the job to

another DC sends a request. The request of DC is received
by scheduler and queued for further processing.

• Step 2: The scheduler matches the input requirements with
rules prescribed by SDN controller through instruction set.
The matching rule consist of flow id, source IP address,
source MAC address, virtual LAN address, port number,
and transport protocols [21]. On the basis of matching rules,
appropriate action is decided. The possible actions by FDs
consists; forwarding, modifying, discarding, replicating, etc.

• Step 3: Once the appropriate action is decided, the request
is forwarded to flow manager. This is followed by selection
of appropriate flow table to complete the action.

• Step 4: Once the appropriate flow table is selected, the
packets are migrated to destination DC using it.

• Step 5: This step involves feedback to verify the reliability
of the flow path. This is done by using statistics that contains
a counter for reporting to the controller.

Fig. 3: Architecture of SDN-based control scheme
2) Control Plane: The control plane is the decision making

plane which works on the basis of control logic. As the brain
of the SDN architecture, all the forwarding decisions are taken
by SDN controller. Using the control logic, the SDN controller
forwards the programming and logic instructions into an instruc-
tion set. SDN Controller is a centralized entity that handles the
network traffic dynamically. But, with an increase in the network
traffic, the physical controller gets overloaded. So, the efficiency
of the physical controller is degraded with respect to latency,
bandwidth, and resilience. One of the major issues that occur in
a large scale network is the resilience, i.e. in case, the primary
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physical controller gets fail then the entire network fails.
Hence, in order to resolve these issues, the concept of virtual

SDN (vSDN) network is used. The vSDN network allows the
network slicing of large physical network into multiple virtual
network. In this concept, the controller creates a virtual network
infrastructure which can be utilized to schedule the flow when
physical resources are exhausted. However, the virtual network
resources are a slice of physical resources only. Using the
network hypervisor, the instances of the physical network are
created as multiple virtual networks. The network hypervisor is
installed at the network operating system (NOS) which act as an
intermediate layer between the vSDN network and the underlying
physical SDN network. Hence, allowing to exploit parallelism by
running multiple NOS on the vSDN network. The vSDN provides
flexibility to the software programmer to easily program and run
their vSDN network via openflow protocols and interfaces. The
vSDN network consists of a set of multiple virtual controllers
and virtual switches of a single physical SDN network connected
via a hypervisors. So, by extending the physical network into
multiple vSDN networks manifold benefits such as- high resource
utilization, load balancing, remote programming, cost saving, and
low overhead are achieved. In order to handle multiple jobs, the
controller adjusts the load of the incoming jobs as per available
resources using a load balancing rate (Υ) as given below [21].

Υ =
1/j ×

∑i
0 Li

Lmax
(35)

where, Lmax is the maximum load a controller/switch can bear.
The load balancing rate lies between 0 and 1. If the value

of Υ is close to 1, then it means the load is evenly distributed.
However, if the value of Υ is low, then it means the load is not
evenly distributed and the controller needs to migrate the load
using offload manager.

The incoming traffic flow (f ) is categorized with respect to its
status; (1) active (fa), (2) queued (fq), and (3) suspended (fs)
flows. Now, f is queued in the appropriate queue. The status of
flow is active only if a valid flow path (j) exists. The traffic flow
which is to be scheduled is added to a specific queue. A flow
is said to be active only if a valid path without any other flows
exists for it. As soon as the flow reaches the top of the queue,
it becomes active. However, a flow is said to be suspended if no
valid path exists for it. In this case, the controller reconfigures
the flow tables in order to provide a valid flow path for the
suspended flow. Once a valid flow path is available, then it is
added to appropriate queue for scheduling.

An energy-aware flow scheduling algorithm is presented to
provide control logic to the SDN controller for taking decisions
related to flow scheduling. In order to make the flow scheduling
process energy-efficient, ports on an inactive link are put into
sleep mode. Moreover, when all ports of a specific switch
are in sleep mode, then the concerned switch is also put into
sleep mode. This action is performed to minimize the energy
consumption of unused ports and switches [16]. In order to
synchronize the shifting of switch into sleep mode, a decision
variable (Ψsyn, ∀t) is defined as below.

Ψsyn =

{
1 for active
0 for idle

(36)

If (Ψsyn = 0), then the switch shifts to sleep mode. For this
purpose, a threshold time (tthr) is considered. The value of Ψsyn

become 0 only if the switch is idle for threshold time (tthr). The
switch shifts back to active mode if the value of Ψsyn is 1.

A job (f ) having size (sf ) with a deadline time (trf ), release
time (trf ), and guaranteed flow rate (rf ) is to routed from DCi
to DCk. The guaranteed flow rate (rf ) is given as below.

rf =
sp

T dp − T rp
(37)

The flow path (j) on which the incoming flow (f ) would be
routed should be selected in such a way that the utilization of
network resources are maintained in an optimal manner. The
proposed algorithm must adhere to minimal energy consumption
and guaranteed data rate while selecting a flow path (j) for flow
(f ). The proposed flow scheduling algorithm 2 is as below.

Algorithm 2 Energy-aware flow scheduling algorithm
Input: f , sf , tdf , trf , G, fa, fq , and fs
Output: path p, rf
1: Calculate guaranteed flow rate (rf ) using Eq. (37)
2: j ← FindPath(G, fa, fq , fs, f , gf )
3: if valid path exists then
4: if physical path j exists then
5: Schedule fp over p
6: for Each flow path J do
7: Divide J into flow sets fset with no shared links
8: for fset ∈ J do
9: Calculate tact = activetime(fset)

10: Compute energy consumption using Eq. 14
11: if (tact is minimum) then
12: fq ← fq + f
13: Schedule f
14: end if
15: end for
16: end for
17: else
18: Check for virtual path jv

19: if (jv exists) then
20: Schedule f
21: end if
22: end if
23: else
24: Suspend fp till a valid path is available
25: fs ← fs + f
26: Report to controller
27: Controller rebuilds flow table to provision valid flow path
28: Repeat steps 1-16
29: end if
30: if flow f finishes then
31: Update fa ← fa - f
32: Move next flow in queue to the top
33: else
34: Repeat steps 1-16
35: end if

In the proposed algorithm, the guaranteed flow rate (gp) is
computed for the flow (f ) (line 1). Now, valid paths are searched
in the flow table with respect to network topology (G), fa, fq ,
fs, f ), and gf (line 2). If a valid physical paths exists, then a link
that consumes minimal energy is scheduled for f. To achieve this,
each available flow path J is divided into a set of flows (fset).
After this, the active time (tact) is computed for each element of
fset. In next step, the energy consumed by each element of flow
set is calculated. Now, the incoming flow is scheduled to flow
element with least active time and energy consumption. At this
instant, the flow is on the top of queue and its status is active
(line 3-15). However, if no physical flow path exists, then virtual
flow path (jv) is checked. If jv exists, then the f is scheduled
over it (line 16-20). But, there may be a case when no valid flow
path exists, then in such a case, the incoming flow is suspended
and the added to appropriate queue. The issue is reported to the
controller, which then rebuilds a valid flow path and then the
incoming flow is scheduled again (line 21-26). After scheduling
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the flow, it is removed from the queue of active flows and next
flow in the queue is shifted to active status (line 27-33).

3) Application plane: The purpose of application plane is to
interact with various end user applications and provide feed-
back to controller through application-control plane interface.
Various end user applications such as; e-commerce, e-banking,
multimedia-on-demand, etc reside in this plane.

C. Stackelberg game for inter-DC migration
In the proposed scheme, inter-DC migration is valid for three

cases in edge-cloud environment such as; (1) cloud to cloud, (2)
edge to cloud, and (3) edge to edge. In order to participate in
the migration the conditions shown in Table I may exist.

TABLE I: Conditions for inter-DC migration
Case
No.

Decision Bandwidth Computing
resources

Case 1 True X X
Case 2 True (*) x X
Case 3 False X x
Case 4 False x x
(*) True only if virtual network resources are available

1) Stackelberg Game: The Stackelberg game is a strategic
game in economics and is popular as a special case of non-
cooperative games. It is two-period hierarchical game in which
the players are classified as leader and follower [20]. Both the
players in the game compete for the quantity and the leader is
sometimes called as market leader. This is said because leader
avails the benefit of initiating the game. By doing so leader can
enforce is moves on followers. Bu, the leader must be aware ex
ante that the follower observe its actions. Generally, the leader
has the power of commitment to its actions. On the other hand,
the leader must know that the Stackelberg follower has no means
of commitment to any of its actions. So, the leaders best response
is to play followers action [20]. Hence, in this way, both leaders
and followers reach to an equilibrium state in order to maximize
their payoffs. Stackelberg game has manifold advantages such
as-(1) optimal choice in a distributed environment, (2) handles
the economical aspects, (3) sequential movement of player, and
(4) competitive behavior.

2) Why Stackelberg game?: In this work, the Stackelberg is is
most suitable choice for handling various aspects related to inter-
DC migration. A lot of similarities exist between the addressed
problem and the Stackelberg game. In inter-DC migration, two
players (source and destination DC/edge devices) play their
moves to reach an optimal solution. The source DC/edge devices
act as leaders and announce their resource requirements to
destination DCs/edge devices who act as followers. The game
proceeds in a distributed edge-cloud environment where DCs or
edge devices are geo-located. Moreover, the equilibrium between
both the players is dependent on the economical factors (price
and cost). Both leader and follower act in a sequential manner
to compete with other DCs/edge devices. Hence, with so many
similarities, the Stackelberg game is most suitable for handling
the issue of inter-DC migrations.

3) Game model: In order to handle inter-DC migrations, a
multi-leader multi-follower Stackelberg game is presented. For
this purpose, the game model comprises of following entities.
• Players: i source DCs/edge device (multiple leaders) and k

destination DCs/edge device (multiple followers).
• Strategy/action: For leader, the strategy for selecting appro-

priate host for handling workload F : (atype, breq, creq) is

Sl = (f1, f2..., Fi), where i ∈ I . For followers, the strategy
to finalize the price (Pmigk ) for hosting the migrating jobs
is is Sf = (p1, p2..., pk), where k ∈ K.

• Payoff: The players finalize their decisions with respect to
the payoffs they receive. For this purpose, different utility
functions of leaders and followers are defined. In these
utility functions, the terms price, cost, and revenue are
used. Price, cost, revenue represents the amount charged to
sell a product, the amount incurred to manufacture of that
product, and the amount that a producer receives on selling
its product respectively.
The utility function for ith DC that require to migrate data
or job to kth DC is given as below.

Ui = [

F∑
f=1

Rf ]−
F∑
f=1

[Ctoti ] (38)

The utility function of kth DC that can be selected to handle
the migrated data from ith DC is given as below.

Uk = [
∑
i

Rmig]−
J∑
j=1

[Cfi ] (39)

Centralized cloud (cDC n)

Centralized cloud (cDC 1)

Edge DC (nDC1)
Edge DC (nDCn)

Edge DC (nDC1) Edge DC (nDCn)

Leaders

Followers

F p(F) F* p*(F*)

Fig. 4: Stackelberg game model

4) Proposed Stackelberg game-based algorithm: The working
of Stackelberg game model is shown in Fig. 4. Using this model,
a multi-leader multi-follower Stackelberg game is formulated for
selecting optimal destination DC for migration. In this regard,
Algorithm 3 is designed to show the working of the proposed
Stackelberg game. In this algorithm, multi leaders (i DCs) initi-
ates the game by requesting all the available DCs for migration
of job (line 1). Now, for all available followers (n DCs or m
EDs), check for computing resources required. If the computing
resources are available, then compute utility (Uk). If Uk at time
t is more than the Uk at previous time slot, then accept the
migration request and announce the price. Otherwise, the request
is rejected by follower DCs (line 2-15). In next move, the leader
(DCi) computes its utility (Ui) for each of the k DCs that have
accepted the migration request (line 16-17). If the utility (Ui(k))
of DCi with respect to kth is more than (Ui(k∗) of each of the
DC other than kth DC, then add DCk in queue above DCk+1

(line 18-20). Now, select flow path j for k DCs using algorithm
2 (line 21). Now map all ijk pairs. Compute utility (Uijk) for
all ijk pairs (line 22-23). If (Uijk > U∗ijk)), then set decision
variable (zijk) to 1. Otherwise, set the value of decision variable
next available pair to 1 (line 24-25). Now, select the ijk pair and
send consent to kth DC. Once kth DC confirms the deal, then
migrate workload. Otherwise, select the next pair (line 26-34).
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Algorithm 3 Stackelberg game for inter-DC migration
Input: DCi, breq , creq
Output: flowpath j, ijk pair, DCk
1: for (i=1; i ≤ n; i++) do
2: F : (atype, breq, creq) → DCi . Leader move
3: for (k=1; k ≤ n; k++) do
4: Check (creq) . Follower move
5: if Creq is available then
6: Compute utility Uk

7: if Uk(t) > Uk(t− 1) then
8: Accept migration and announce price
9: else

10: Reject migration
11: end if
12: else
13: Reject migration
14: end if
15: end for
16: for (k=1; k ≤ n; k++) do . Leader move
17: Compute Ui(k)
18: if Ui(k) > Ui(k

∗) then
19: Add DCk in queue above DCk+1

20: end if
21: Select flow path j using Algorithm II
22: Map all available ijk pairs
23: Compute Uijk

24: if Uijk > U∗ijk) then
25: Set decision variable zijk == 1
26: Select ijk pair and send consent to kth DC
27: if kth DC conforms then . Follower move
28: Migrate workload
29: else
30: Select next pair and repeat step
31: end if
32: end if
33: end for
34: end for

V. RESULTS AND DISCUSSION

The proposed scheme is evaluated using a workload trace of
1000 jobs released by Google [23] and simulated using three
scenarios, (1) only cloud DCs, (2) EDs, and (3) proposed edge-
cloud interplay. The incoming workload requires some amount
of resources such as CPU, memory, and storage. The resources
required to serve the incoming job requests are shown in Fig.
5(a). Initially, the workload is classified into two categories (1)
delay-sensitive and (2) delay tolerant jobs. The level of priority
for various jobs on the basis of delay sensitivity is shown in
Fig. 5(b). Now, the workload is scheduled to cloud DCs and
EDs on the basis of the classification. The delay-sensitive jobs
are provisioned using EDs and delay-tolerant jobs are handled
by cloud DCs. However, some of the delay-sensitive jobs may
also require high computing resources that are not available with
EDs. Such jobs are provisioned using cloud DCs. The slicing of
jobs between cloud DCs and EDs is shown in Fig. 5(c).

Some amount of energy is utilized to handle the jobs allocated
to edge-cloud environment. The energy consumed by cloud DCs
and EDs to serve the sliced jobs is shown in Fig. 5(d). The multi
edge-cloud environment plays an important impact on the energy
consumption of DCs. Fig. 5(e) shows the comparison of energy
consumed by proposed multi edge-cloud environment with other
two scenarios. The energy consumed by multi edge-cloud DCs
is lower as compared to scenario when only cloud DC or EDs
are used. Moreover, the proposed multi edge-cloud environment
proves to be better platform in terms of SLA violations also. Fig.
5(f) shows the SLA violations incurred for serving the incoming
jobs. The SLA violations witnessed for the proposed environment
are negligible as compared to other scenarios. The major reason
for better performance of edge-cloud environment is that the

workload is sliced and scheduled to the host that is best suited to
provide the required resources and QoS. In case of only DCs or
EDs scenarios, there is not other option available to schedule the
workload. There is either cloud DCs or EDs to handle incoming
workload. But, in the edge-cloud environment, the workload is
classified among cloud DCs and EDs, thereby reducing the load
on resources. So, the energy consumption reduces as the loads
on the resources is reduced. Moreover, with multiple options
available for handling workloads, the SLA are easily met.

The proposed scheme uses SDN as underlying DC networks.
The use of proposed energy-aware flow scheduling scheme for
SDN reduces the energy consumption with respect to underlying
networks. Fig. 5(g) shows that the energy consumed by proposed
flow scheduling scheme for SDN consumed lesser energy as com-
pared to traditional networks. Now, when the required computing
resources are not available with the hosting DC or EDs, then the
jobs are migrated to another DC or edge device so as to meet
SLA. In that case, additional delay and cost are involved due
to migration. However, appropriate selection of destination DC
or ED that can serve the migrated job is an important task. The
proposed multi-leader multi-follower Stackelberg game selects
the appropriate DC or ED where the job could be migrated with
profit to both source and destination DCs or EDs. Apart from
this, the underlying networks and the flow path that serves the
backbone of such a migration. The effective underlying networks
and dynamic flow path can not only avoid additional delay but it
can reduce migration cost also. In this context, Fig. 5(h) shows
the migration delay incurred while migrating the jobs from source
DC or ED to destination DC or edge device. The results depict
a lower delay for SDN as compared to traditional networks.
Moreover, the use of SDN has a strong impact in reduction of
migration cost due to its dynamic and flexible nature. Fig. 5(i)
shows that the migration cost for SDN is much less than the cost
involved when traditional networks are used.

A. Case Study

For inter-DC migrations, a Stackelberg game is formulated to
select the destination host. The DCs/EDs are selected on the
basis of a combined utility (Uijk). But, the individual utilities
of leaders and followers must show an increase with respect to
previous instant. For deep analysis, a game with one leader and
nine followers (4 cloud DCs and 5 EDs) is formulated. The value
of decision variable (zijk) i shown in Table II.

TABLE II: Selection of destination host for job migration
Host DC1 DC2 DC3 DC4 ED1 ED2 ED3 ED4 ED5

DCl1 1 0 0 0 0 0 0 0 0
DCl2 0 0 0 0 0 0 1 0 0
DCl3 0 1 0 0 0 0 0 0 0
DCl4 0 0 0 1 0 0 0 0 0

Note- Each cell shows value of decision variable (zijk)

The destination DC or ED is selected if the value of zijk is
equal to 1. The value of zijk is equal to 1 only if the combined
utility (Uijk) is maximum and the utilities of leader and follower
increases with respect to previous instance. Now, for first leader
(DCl1), the value of zijk is equal to 1 for follower (DC1) as it
required high computing resources which were not available with
any other follower. Now, let us consider a case when resources
required are small but low latency is required. In this case for
leader (DCl2), the value of zijk is equal to 1 for follower (ED3)
as it serves the resource as well as latency requirements of the
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Fig. 5: Results obtained for single time-slot

leader. Similarly, DCl3 and DCl3 selects different destination
DCs/EDs as per their resource and SLA requirements. So, the
proposed game act as a optimal decision maker for destination
host and flow path selection for inter-DC migrations.

B. Evaluation for 12-hour scenario
After analyzing the proposed scheme for single time-slot,

it is evaluated for a longer time period (12-hrs). The results
obtained clearly shows that the edge-cloud environment has clear
lead over other two cases. Fig. 6(a) shows that the average
SLA violations for the proposed environment are lower than
the other two cases. Moreover, the proposed scheme consumes
lesser energy as compared to other cases as shown in Fig. 6(b).
Finally, in Fig. 6(c), the migration rate for the three cases is
compared. The results show that the migration rate in EDs is
more than the other two cases due to limitation of resources
in EDs. The cloud DCs show lowest migration rate but, the
proposed environment is almost equal to it. Finally, Fig. 6(d)
shows the average overhead for all three cases. The result shows
that the edge-cloud environment end up in lowest overhead.
Hence, the results obtained indicate that the proposed edge-
cloud environment is better than other cases in terms of energy
consumption, SLA violations, migration rate, and overhead.

C. Complexity analysis
Now, the complexity analysis of the proposed ILP problem is

performed. Generally, the ILP problems are NP-hard but this is

not true for every problem. The present problem is a simpler case
and can be easily solved with respect to present set of constraints.
Fig. 6(e) shows the complexity and solvability variation of the
proposed problem with respect to number of constraints. It clearly
shows that the proposed problem is solvable till 10 number
constraints but after that its complexity increases.

D. Evaluation of edge to edge migration

Finally, an analysis of edge-to-edge migrations is performed.
Fig. 6(c) shows that the EDs being resource-limited show high
migration rate. Also, the edge-to-edge migrations are analyzed
with respect to migrations and delay. Fig. 6(f) shows the compar-
ison of delay and migrations in edge-to-edge environment. It is
evident that the edge devices act as a best compliment to cloud
DCs. But, if considered individually, they incur higher energy
consumption, migration rate, and SLA violations. However, the
delay is lower for edge devices as compared to cloud DCs.

VI. CONCLUSION

In this paper, a workload slicing scheme has been designed for
handling big data applications in a multi edge-cloud environment.
In this environment, the incoming job requests are sliced on
the basis of priority and scheduled among EDs and cloud DCs.
Moreover, an SDN-controller is proposed for an energy-aware
flow scheduling scheme using virtualized networks. Finally, a
multi-leader multi-follower Stackelberg game is formulated to
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Fig. 6: Results obtained for 12-hr scenario

select an optimal DC or ED to host the migrated jobs. The
proposed scheme has been evaluated on the basis of various
parameters such as energy, delay, SLA violations, migration rate,
and cost. The results obtained show that the proposed scheme
minimizes the energy consumption of overall multi edge-cloud
environment and underlying networks. Moreover, a reduced delay
and cost for inter-DC migration is also achieved.
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