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Abstract—The heterogeneity of execution platforms and oper-
ating software in manufacturing machines and robots, as well as
various sensors and actuators, creates challenges for integration
into larger systems. Existing approaches make use of different
types of middleware to mitigate the challenges of designing
interoperable systems. However, middleware can significantly
impede modular design and composition of software systems
that are dynamic in nature. This paper elaborates upon those
challenges and proposes using an approach called SOSJ, based
on the system-level programming language System]J enhanced
with service oriented features. This approach allows developers
to design dynamic software systems while adopting and incorpo-
rating legacy solutions. The approach is demonstrated on the
integration of an industrial automation system, incorporating
the use of multiple modular mechatronics stations and service
robotics systems, represented by ROS-enabled Baxter robots. The
proposed approach offers a simple service interface based on
abstract objects for integrating robots and automation machines
in the SOSJ world, without the need to modify the underlying
mechatronics or robotics systems.

Index Terms—Service-oriented Architecture, Dynamic Soft-
ware Systems, Reconfigurable and Interoperable Systems, Au-
tomation Systems, Service Robotics

I. INTRODUCTION

NDUSTRIAL robots have largely been the domain of

large-scale manufacturers, with plants costing millions of
dollars. However, their costs have been falling, and industrial
robots have become accessible for small and medium-sized
businesses that offer customers niche products with relatively
small and short production runs. There is an increasing focus
on intelligent systems [1], [2] that utilize robots and automated
specialized machines, as well as their sensors and actuators
which have the ability to complement and assist humans in
modern manufacturing systems. In particular, there is a need
for versatile equipment (e.g. robots) that can meet the needs
of multiple roles for creating in a variety of different end
products. The desire to do this in a reconfigurable way that also
meets safety-critical, fault-tolerance, and real-time require-
ments presents significant challenges for system designers.
Robots such as the Baxter humanoid robot [3] represent a
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flexible platform for development of software techniques that
can fulfil these disparate requirements.

Baxter is designed for safe and reconfigurable use around
humans and is capable of performing routine tasks with
the support of its own onboard processing. It operates as a
standalone robot with two arms for performing mechanical
operations, as well as a number of sensors such as ultra-
sonic, infrared, and camera sensors. Baxter has built-in safety
mechanisms for detecting people in its vicinity, as well as
compliant actuators that prevent physical harm to humans
or other equipment. However, integrating robots like Baxter
into manufacturing environments that use typical mechatronic
devices can be difficult. In most cases, integration relies on a
human operator to program” the robot, either through writing
code or through non-textual methods such as using joysticks,
learning-from-demonstration, or block-based programming. To
exacerbate the problem, in most cases the robot will then re-
peat the programmed task indefinitely, with limited flexibility
to fulfill new manufacturing needs which initially may not be
present in the manufacturing process. These robots also often
operate independently from other mechatronics systems which
are likely from different vendors, and therefore have limited
or no communication or synchronization at the software level.
Without direct communication or synchronization, additional
means are required to monitor the behavior of the different
systems to detect unwanted behavior or faults and make cor-
rective actions. This is contrary to the fast-moving versatility
required in small-scale manufacturing environments.

Ideally, robots should be capable of performing different
(and possibly new) roles, which could be introduced during
runtime, while also collaborating with other robots, machines,
and humans in a predictable and analyzable way. The Baxter
robot uses the open-source Robot Operating System (ROS)
[4], which is not considered among the mainstream software
approaches for mechatronic systems. There are opportunities
for integration with the types of software systems used in ex-
isting intelligent automation systems, with further extensions
towards true intelligent manufacturing and man/machine/robot
communication. The challenge comes in integrating different
concurrent and distributed automation processes that utilize
heterogeneous computing platforms with different compu-
tational capabilities, connected through communication net-
works using different protocols, and underpinned by varying
run-time support systems and software design frameworks.
The dynamic nature of these systems, where individual soft-
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ware behaviors may participate only temporarily in the system,
increases the complexity of system design. While robotics
software frameworks like ROS exploit concurrency as a major
tenet of developing robotic operations, they are not natively
designed to meet the requirements of dynamic systems and
typically do not match the particular requirements of indus-
trial automation systems. Conversely, software designed using
industry standards such as IEC 61131 and 61499 [5] are not
specifically designed for handling the types of concurrency
found in robotics systems. In order to integrate the two
worlds of robotics and industrial automation while supporting
dynamic changes, clear pathways for interoperability have to
be found.

SystemJ [6] and Service-Oriented System] (SOSJ) [7]
have demonstrated the ability to address the interaction and
integration of software behaviours, controlling industrial ma-
chines and monitoring their external environment with the
ability to deal with dynamic scenarios. However, limited
attention has been given towards addressing interoperation
with and integration of software behaviours developed by
other tools and legacy systems, which increasingly appear
in the context of the industrial Internet of Things (IoT) and
Industrie 4.0 [2]. This paper introduces an approach for
a novel use of the SOSJ framework for the integration of
heterogeneous and existing software components for achieving
dynamic interoperable dynamic software systems, regardless
of their original development tools and underlying execution
platform(s). The integration is achieved through the use of
the SOSJ service interface mechanisms and encapsulation of
the services developed in the non-SOSJ world into the SOSJ
world. With this solution, the low-level implementation de-
tails of the communication and interaction between industrial
machines and mechatronic devices, robots, sensors/actuators,
and even those associated with human interactions can bwe
abstracted away, thus system designers can focus on designing
systems without intervening at the low level implementation
and configuration of specific software and platforms. In this
paper, the approach is demonstrated on a real world case study
of integration and interoperation of an industrial automation
platform and service robotics system that uses Baxter robots
in a new dynamic collaborative system. This example clearly
indicates the pathway for (1) achieving integration of almost
any type of cyber-physical system (CPS) into a SOSJ-designed
software system, and (2) encapsulation of existing systems
into SOSJ software behaviours, their integration, and use in
new application contexts. The main contributions and novelties
presented in this paper are:

1) The approach for integration of the existing ROS
robotics framework into the dynamic software system
paradigm through properly defined interfaces and inte-
gration into SOSJ abstractions.

2) Encapsulation of physical services of the Baxter robot,
provided through ROS, into the service paradigm of
SOSJ with minimal programming effort. These services
are available to use within the SOSJ framework to
achieve an almost unlimited number of new application
scenarios. The new application scenarios that use Baxter

services within SOSJ abstractions are underpinned with
and inherit all benefits of a formal GALS model of
computation.

3) A clear pathway for the applicability of the approach for
the integration and interoperability of existing software
systems when creating wider and complex functionality,
while also supporting dynamicity at the same time.

The paper is organized as follows. Section II presents
a motivating scenario that helps contextualize the features
of dynamic software systems, and the SOSJ framework is
briefly introduced in Section III. Section IV focuses on the
integration of the ROS-based Baxter robot and an industrial
automation system set-up, and Section V discusses how SOSJ
achieves interoperability between the various software plat-
forms at different levels of abstraction, thus serving as a
capable software approach that encapsulates existing software
products and imports them into the SOSJ world. In Section VI,
results of experiments that demonstrate successful integration
quantitatively, based on the achieved performance levels of
SOSJ in a real-world application, are presented, followed by
qualitative comparisons of SOSJ with other related approaches
in Section VII, before concluding in Section VIII.

II. MOTIVATING SCENARIO

The SOSJ programming paradigm is demonstrated through
a real-world manufacturing scenario called the Automated
Bottling System (ABS), shown in Figure 1A. The primary
purpose of this system is to take empty bottles at the input,
fill them with a liquid, and affix a screw cap onto the bottle.
Additional functionalities can be added, such as filling and
mixing different types of liquids, but they are outside the
scope of this paper. A central rotary table, shown in Figure
1B, allows for multiple bottles to pass through the various
stages in a pipeline fashion, improving throughput while also
discretizing the flow of the bottles into separate steps (rather
than moving them on a continuous conveyor belt), which
simplifies system configuration and reduces timing concerns.
There are five active positions in the rotary table as shown
in Figure 1A - the bottle enters at position 1, the bottle is
filled with the liquid at position 2 (filler), a cap is placed
on top of the bottle at position 3, a twisting arm screws the
cap on at position 4 (capper), and the bottle is removed at
position 5. Photoelectric sensors are used at each position to
detect the presence of a bottle. Importantly, the rotary table
requires a number of interactions with external systems -
loading of bottles at position 1, loading of caps at position
3, and removing the bottle at position 5. Normally, these jobs
would be done by human operators, primarily to provide the
requisite manual dexterity to manipulate bottles and caps, as
well as to recognize faults and adjust behaviors.

In this example the humans are replaced with two Baxter
robots, one of which is shown in Figure 1C. Each robot has
two arms; each arm has 7 degrees of freedom, with an arm
span similar to that of a human worker, along with an embed-
ded camera built into the arm which allows us to use computer
vision to verify that tasks have been completed correctly. The
robot has its own Intel i7-powered Linux PC running ROS.
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Fig. 1. The overall system diagram for the Automated Bottling Station (ABS) is shown in A), with photos of the components B) the central rotary table, C)

the Baxter robot, and D) the cap-loader station.

The robot collects bottles from a box and places them on
a conveyor belt that leads to position 1 of the rotary table.
The caps are provided in magazines (packs), so a separate
cap loading machine is utilized, shown in Figure 1D, which
places individual caps on a conveyor belt. This machine uses
a Beaglebone Black embedded computer to provide sensing
and control capabilities. Baxter picks individual caps up and
places them on bottles in position 3 of the rotary table. Lastly,
a second Baxter robot picks up the filled bottles and places
them in another box. To control the bottling station (including
the rotary table, input/output conveyor, filler, and capper),
four Altera Cyclone V System-on-Chip devices that have a
dual-core ARM Cortex-A9 processor and FPGA fabric, one
associated with each mechatronic device, are used to provide
computational resources for actuation and synchronization.
Therefore, the example is considered heterogeneous with FP-
GAs, embedded computers, and desktop PCs that need to be
integrated together and orchestrated through IP-based network
communication. All computing resources are connected to a
LAN through a combination of Ethernet and Wi-Fi.

Certain types of failures in this system can be detected and
responded to. For example, there is unused actuation capacity
since there are two Baxter robots with two arms each but
only three parallel independent tasks to complete with those
arms (loading bottles, loading caps, and removing bottles).
In our system, the spare arm can be used as a back-up in
a fault-tolerant system, specifically for loading the cap onto
the bottle, which generally requires good manual dexterity
because there can be significant variation in the position and
orientation of the caps. If one Baxter arm fails to complete the
job successfully, then the spare arm should be used to attempt

the task instead. If both arms fail, then human intervention may
be required in particularly tricky cases. Other environmental
sensors are also added to detect the presence of humans, and
if they are too close to the robots or rotary table equipment,
the machines should suspend their motion in order to ensure
human safety.

In this system, the various machines are abstracted as the
software services provided by their software behaviors that
offer sensing, actuation, and processing capacity. The SOSJ-
based approach allows the integration of these services in the
SOSJ world, controlling and orchestrating the system. This has
important implications for introducing robots into industrial
automation environments because robots (particularly those
at the lower cost end of the market) often use different
software platforms than those in other industrial machines
(such as ROS, in comparison to Programmable Logic Con-
trollers (PLCs) and embedded microcontrollers). Being able
to abstract the various data sources and actuation tasks as
services minimizes the complexities of integrating multiple
disparate computer systems and software while maintaining
broad system functionality and control.

III. THE SOSJ FRAMEWORK

SOSJ [7] is a programming framework that leverages
both the power of the Service-Oriented Architecture (SOA)
paradigm and the system-level language SystemJ [6]. SystemJ
is suitable for designing concurrent reactive software systems
based on the Globally Asynchronous Locally Synchronous
(GALS) Model of Computation (MoC) with a fixed (static)
number of software behaviors specified at the design time.
It also allows the use of an almost complete set of Java
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TABLE I |511 i
SYSTEMJ KERNEL STATEMENTS (From emvironment) (To environment) System) (GALS) System
Statement \ Description ss1
pl;p2 pl and p2 in sequence
Consumes a logical instant of ‘/Cm m
pause =

time (a tick boundary)

[input] [output] [type] signal S

Declaring a pure or valued signal

emit S [(exp)]

Emitting a signal with a
possible value

while(true) p

Temporal loop

present(S){p1 }else{p2}

If signal S is present do pl
else do p2

[weak] abort ([immediate] S) {p}

Pre-empt if S is present

[weak] suspend ([immediate] S) {p}

Suspend for 1 tick if S is present

wap (T) {p}

Software exception

exit T

Throw a software exception

pl || p2

Run pl and p2 in
lock-step parallel

[input] [output] [type] channel C

Declaring input or output channel

send C[(exp)]

Sending data over the channel

receive C

Receiving data over the channel

#C

Retrieving data from a value

signal or channel

statements by interleaving them with Systeml] statements. A
list of System] kernel statements is presented in Table I. Figure
2 shows a graphical representation of an example SystemJ
program where mutually synchronous behaviors called reac-
tions (indicated by R) are grouped into mutually asynchronous
behaviors called clock domains (CDs), thus making a GALS
system.

Interactions between CDs and the environment (i.e. the
sensors and actuators of mechatronic stations and robots in
our example) are facilitated by abstract objects called signals,
while the interaction between CDs are facilitated by abstract
objects called channels, without the need to deal with the low-
level details of the physical interfaces (e.g. sensor/actuator
interfaces and network protocols). The signals and channels
are mapped onto various physical interfaces, specified in a
configuration file, while the actual implementation of the
physical communication is handled by the SystemJ Runtime
System (RTS) implemented in Java. One or more CDs man-
aged by the same RTS and Java Virtual Machine (JVM)
are considered to be one SystemJ subsystem (SS). One or
more subsystems form a SystemJ program (system), which
may reside on one computing machine or be deployed and
distributed across multiple machines. CDs communicate via
channels implemented through different physical interfaces,
referred to as links (e.g. implemented in TCP/IP, USB, CAN,
shared memory etc.). The example of a SystemJ system shown
in Figure 2 comprises three subsystems (SS1-SS3), deployed
and distributed across two different machines/computers (M1
and M2), with a link (L1) abstracting away the physical
connection between the machines on which subsystems run.
For example, L1 could be a TCP/IP connection over Ethernet,
while L2 could allow communication between two JVMs using
shared memory on machine M2. The actual communication
method is not important from a modelling (system specifi-
cation) perspective because it is abstracted away. A System]
system always contains a fixed number of CDs specified at

Fig. 2. Graphical illustration of a SystemJ GALS system comprising multiple
subsystems.

the design time.

The lack of support for dynamic systems in SystemJ has
been addressed by SOSJ, primarily by the introduction of
clock domain states and transitions between those states, as
shown in Figure 3. This allows a CD to be dynamically
created, made active and inactive, migrated, terminated, and
updated, without stopping the operation of the rest of the
system. This addition to the concept of clock domains was
fundamental for the subsequent extension of SystemJ with the
SOA paradigm and associated features to allow full dynamic-
ity.

The SOSJ framework incorporates several SOA run-time
processes including Service Discovery, Service Advertisement,
and Request for Advertisement, which are based on the
existing Simple Service Discovery Protocol (SSDP) [9]. The
SOA part of SOSJ is implemented as a run-time library that
allows the use of functions through the API calls presented in
Table II. In order to handle dynamicity, the SOSJ Run-time
System (RTS) extends the original SystemJ RTS. In the SOSJ
framework, CDs that encapsulate reactions corresponding to
physical sensing and actuation devices are considered as
physical service providers. Physical services should advertise
themselves when becoming available so that they can be dis-
covered by the rest of the system. CDs that provide processing
and computation are referred to as logical service providers
in SOSJ. Logical services can interact with physical services
and other logical services. Every CD has a standard service
interface that ensures interactions follow the SOA paradigm,
while still complying with the GALS MoC, which allows all
services to be correct by construction and formally verifiable.

Service invocation in SOSJ is based on the System] com-
munication semantics i.e. reactions invoke services provided
by other reactions in the same CD via signals, while reactions
invoke services provided by other reactions in different CDs
via channels. SOSJ also provides built-in mechanisms and
programming constructs [7] that allow programmers to deal
with dynamic creation, suspension, resumption, termination,
and migration of a CD and its associated services. In these
cases, channel reconfiguration may be required, where an
output channel will be dynamically bound to an input channel.

IV. INTEGRATION OF ROS-BASED SYSTEMS INTO SOSJ

System]J and SOSJ are system-level design tools that enable
composition of complex systems, either newly specified or
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Migrating

Fig. 3. Valid Clock Domain (CD) states and their transitions.

TABLE 1T
SUBSET OF THE SOSJ API

Function Call Description

Make a request for channel
reconfiguration to the RTS for
service invocation via channel
Obtains the status of the channel
reconfiguration process

(successful or not) from the RTS
Generate service invocation message
for service invocation via channel
Generate service invocation message
for service invocation via signal

SOSJ.ConfigureInvocChannel()

SOSJ.GetInvocChannelReconfigStat()

SOSJ.CreateChanlnvReqMsg()

SOSJ.CreateSiglnvReqMsg()

Generate a response to service
invocation message via signal
Stores service description into the
internal service registry in the RTS
Generate a response to service
invocation message via channel
Gets the action name included in

SOSJ.CreateSigInvRespMsg()

SOSJ.StoreService()

SOSJ.CreateChanInvRespMsg()

SOSJ.GetAction() L .

service invocation message
SOSJ.GetData() Gets. a.n}l data/\./alue included in

service invocation message

To include/exclude service
SOSJ.SetCDServVisib() description of services

of a CD for Advertisement

developed using other tools and languages that are subse-
quently wrapped up into SystemJ abstractions. The design
and system composition approach is based on unifying the
underlying physical and behavioral (software) worlds through
the concepts of clock domains and the services they offer,
while abstracting communication using signals and channels.
In this section, we will explain the approach for wrapping
and integrating Baxters physical services as parts of the ABS
example described in Section II.

Robot Operating System (ROS) [4] is an open-source
middleware framework that allows for collaborative robotics
software development, saving time for developers with a set
of ready-made libraries and tools. In the context of industrial
automation, one of the challenges of ROS is its loosely coupled
nature; ROS nodes broadcast over communication channels
with no guarantee that there are any nodes listening, or that any
nodes will confirm that messages have been received. This also
makes timing guarantees very difficult to enforce. In addition,
ROS is primarily available for use with C++, Python, and Lisp
only; it is claimed that ROS has language independence, but

TABLE III
SUBSET OF THE SOCKET SERVER API

API Function [ Description

Get the current value of an

analog sensor or actuator

Sets the value of an

analog actuator (e.g. the PC fan)
Get the current value of a

digital sensor or actuator

Sets the value of a

digital actuator (e.g. LED lights)
Move an arm to a specified endpoint
in terms of {x,y,zroll,pitch,yaw}.
Calls a built-in script that performs
the inverse kinematics calculations
Get the current endpoint position of
an arm as {x.y.z,roll,pitch,yaw}

Get the current sonar array values

analog_state(object_name)

analog_setoutput(object_name,
value, timeout (optional))

digital_state(object_name)

digital_setoutput(object_name,
value, timeout (optional))

limb_moveto(object_name,
PX, PY. Pz, P, pp, pya)

limb_getpose(object_name)

sonar_getdata(object_name)

based on the authors observation, only experimental libraries
with limited capabilities are maintained in Java.

The proposed approach to bridging the gap between SOSJ
and ROS is to utilize the SOSJ link interface that uses
TCP/IP to expose an API, translating between SOSJ service
invocations and ROS commands. This abstracts away the
operation of ROS into a set of APIs and allows communication
from any language as long as that language has support for
a network protocol stack and sockets. This removes any need
for the system designer to be familiar with ROS. Importantly,
it also means that any computer that tries to communicate
with the ROS-supported device, e.g. the Baxter robot, does not
need to have ROS installed on it either, which is an advantage
since ROS (in its installed form) can be quite bulky due to
a number of additional libraries/tools that accompany it. As
such, the approach can be extended to a much wider variety
of devices and systems, with their functionality made available
through service interfaces accessible via network sockets. In
the case of Baxter and ROS, a simple Python-based socket
server was developed and deployed on the Baxter PC itself,
which automatically registers with the ROS master as a node,
and includes a number of simple scripts that also abstract away
complicated tasks like access to the sonar data and inverse
kinematics for arm movement. Table III shows some of the
commands available in our APL

The socket server catches errors and returns error codes
when necessary, or simply returns the data as a string. Inte-
grating the socket server with SOSJ framework can be easily
done by mapping the available API through abstracted SOSJ
signals. The code for the socket server is available online at
https://github.com/AndrewChenUoA/baxter_socket_server.

In this approach, ROS is considered to be part of the physi-
cal environment to SOSJ. ROS-based sensors and actuators are
encapsulated as SOSJ services (i.e. CDs) and exchange data
via signals. As such, our approach offers a unified method
to integrate physical and logical services implemented in any
language, network, or platform. Since our framework encapsu-
lates ROS functions, the developer does not need to understand
the underlying communication mechanisms of ROS, reducing
the development and system setup time. The socket server
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Fig. 4. SOSJ-ROS communication via the socket server.
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Fig. 5. The SOSJ RTS software stack.

that runs on the Baxter PC expects a string command in the
format API_Function_Name followed by a list of arguments
delimited by a whitespace character. In the case where a CD
emits a signal with a command, it is transmitted to the socket
server via a TCP/IP socket. An example process of how signals
are exchanged between a SOSJ CD and the socket server is
demonstrated in Figure 4.

In this example, the CD can run on anywhere, e.g. on any
networked machine or on the Baxter PC. Referring to Figure 4,
the CD first emits an output signal A with a value analog_state
arg to request for the current value of an analog sensor (as
described in Table III). The SOSJ Runtime System (RTS)
will then transform the signal into a TCP stream which gets
transmitted over a network to the socket server. After receiving
this message, the socket server invokes the requested function
in ROS, which will return a sensor value as a result. Then,
the value is transmitted back to the RTS via the network and
forwarded to the CD on input signal Afb. Once the signals can
be exchanged between ROS and SOSJ, it becomes possible to
develop higher level behaviors that are using those signals
and offer them as services in SOSJ. This way, the complex
behaviors (controllers) of Baxter can be developed using either
SOSJ or System] and integrated into larger applications.

It should be noted that it becomes the responsibility of the

___________ BaxterAl| BaxterB'
To/From I To/From

Baxter A\ROS || Baxter B\ROS :

mmiES%ﬁ

Tol/From
Environment

(R g

| $55BxA b
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55 A1 S5 A2 SSA3| ! SS Ad|
Capper Convey) | Photo E
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{_____H__ P _‘I__ﬂ___ _":':1'15"':":‘ —t

To/From
Environment

Fig. 6. Graphical illustration of the controller CDs in the ABS example.

CD to check if an operation initiated by signal emission has
been completed. For example, a signal can be emitted to tell
the socket server to issue a command to ROS to move the
Baxter left arm to a particular position. This will take some
amount of time to complete the physical movement. Once the
command is completed a notification will be returned via an
input signal into the CD. This approach allows encapsulation
of complex physical services offered by Baxter into SOSJ.
The SOSJ RTS software stack is shown in Figure 5. SOSJ
programs can be executed on any JVM-enabled platforms with
or without an operating system. Since SOSJ is an extension
of Systeml], it is built on top of the original SystemJ RTS.
The SystemJ RTS implements all of the features supporting
System] program execution; for example, the TCP Server/-
Client block handles the TCP/IP communication links. The
RTS allows the designers to opt how CDs are scheduled,
whether in round-robin (indicated by the Cyclic block) or
in parallel (indicated by the Parallel block) schedulers for
the CDs. The Signals and Channels blocks indicate the part
of the RTS which provide and handle the implementation
of signal and channel communication respectively. The Sub-
systems block provides the subsystem encapsulation which
permits the execution of groups of CDs on different JVM
instances. The Links block provides the implementation of the
physical communication interfaces which form SystemJ/SOSJ
links. The SOSJ SOA RTS enables design of GALS systems
using SOA based approaches by introducing the common
SOA facilities such as service discovery/advertisement, the
notion of service consumers and producers, and CD lifecycles.
Furthermore, the dynamic reconfiguration features of the SOSJ
RTS allow creation, suspension, resumption, termination, and
migration of CDs and channel reconfigurations during runtime.

V. THE AUTOMATED BOTTLING STATION IN SOSJ

In this section, the SOSJ approach to designing the ABS
from Section II is presented. Figure 6 shows the graphical
illustration of the CDs which correspond to the mechatronic
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devices and Baxter robots. There are six CDs which corre-
spond to mechatronic devices. The BLoad CD controls the
cap loader station and runs on a Beaglebone Black platform.
The Filler, Capper, and Rotary CDs govern the filler, capper,
and rotary table and run on the SoC1, SoC2, and SoC4 Altera
Cyclone V platforms respectively. The SoC3 Altera Cyclone
V platform executes the Conveyor and Photo E Sensors CD,
which correspond to the conveyor and photoelectric sensor
devices. Four additional CDs act as the wrappers that expose
Baxter arm physical services to other SOSJ CDs. These CDs,
namely LArm1, RArml, LArm2, and RArm2, correspond to
each Baxter arm of Baxter A (1) and Baxter B (2) respectively.
The Baxter CDs can be executed on any networked computing
machine that executes SOSJ. For example, as illustrated in
Figure 6, the Baxter CDs can run on a separate machine M1,
or even run on separate Baxter onboard PCs (indicated in
red colour). Finally, the CCont CD runs on the machine MC
and acts as an orchestrator which controls all mechatronic
device and Baxter services. The ABS model in SOSJ can
be deployed on any Java-enabled platform, centralized or dis-
tributed, without any changes of the source code specification
since all physical I/O and communication links are abstracted
away in SOSJ. Using SOS]J, it is possible to establish channel
communication between CDs during execution time to sup-
port dynamic reconfiguration. For example, the ABS can be
formed by using a central coordinator that dynamically invokes
individual machines and Baxter services. A code example
that demonstrates the invocation of the Baxter arm service
through channel reconfiguration is presented in Listing 1. The
invoked arm services are dynamically selected according to
their priority and availability.

Listing 1. Code snippet showing the invocation of Baxter arm service (SOSJ)

1 CCont (
2 output signal SOSJDisc;
3 input String signal SOSJDiscReply;
4 output String channel InvReql;
5 input String channel InvRespl;
6 )—>{
7 {
8 urther cc
9 emit SOSJDisc;
10 await (SOSJDiscReply);
11 String serv = (String)#S0OSJDiscReply;
12 Hashtable mRes = DoMatching(serv,Pos,Pos2);
13 ...further service matching code...
14 boolean reconfstatl = SOSJ.ConfigureInvocChannel ("
CCont", "InvReqgl", InvdCD, InvdChan);
15 if (reconfstatl) {
16 pause;
17 boolean reconfstat2 = S0SJ.
GetInvocChannelReconfigStat ("CCont", "InvReql
")
18 if (reconfstat?2) {
19 String mSend = SOSJ.CreateChanInvRegMsg ("SS1","
CCont", "InvRespl", actionName, ArmPos);
20 send InvRegl (mSend);
21 receive InvRespl;
22 ...further code
23 }
24 }
25 }
26 ...further ¢
27 }
28 1}
29  LArml (
30 input String channel RecInvl;
31 output String channel RespInvl;
32 output String signal ToLArml;
33 input String signal ToLArmlfb;
34 ) —>{

35 {

36 while (true) {

37 receive RecInvl;

38 String msg = (String)#RecInvl;
39 String ActName = SOSJ.GetAction (msg);
40 String data = SOSJ.GetData (msg);
41 if (ActName.equals ("MoveLArm")) {
42 emit ToLArml ("limb_moveto left_limb "+data));
43 await (ToLArmlfb);

44 }

45 ...further code...

46 send RespInvl (ack);

47 pause;

48 }

49 }

50 1}

51 RATrm2 (

52 input String channel RecInv2;

53 output String channel RespInv2;
54 output String channel ActRArm2;
55 input String signal ActRArm2fb;
56 ) —>{

57

58 )

The snippet presents 3 CDs. The CCont CD (line 1-28) is
the orchestrator which invokes the service offered by other
CDs, such as the Baxters arm services (i.e. LArml and
RArml). The LArm1 CD (line 29-50) encapsulates the left
arm service of Baxter A through signal interfaces with the
socket server. Similarly, the RArm2 CD (line 51-58) is a CD
which encapsulates the right arm service of Baxter B. Initially,
the CCont CD performs service discovery by transmitting a
discovery message via signal SOSJDisc, a dedicated SOSJ
signal for transmitting the discovery message (line 9), and then
waiting to receive the discovery reply containing the service
description of available services via signal SOSJDiscReply,
a dedicated SOSJ signal for receiving the discovery reply
(line 10). Then, CCont performs service matching to find
the Baxter arm service to invoke, by executing the service
matching method (line 12, represented as a Java method
called DoMatching() that takes into account the Baxter robot
physical location in the ABS). The service matching may
return the Baxter A left arm service. If the Baxter A left
arm is unavailable due to failure, the service matching returns
the Baxter B right arm service, which is also capable of
performing a similar task (to move a cap from the cap loader
on to the bottle in a rotary table). Based on the service interface
information obtained from discovery and service matching,
CCont can trigger channel reconfiguration for service invo-
cation (line 14) to reconfigure channel InvReql to couple
with the receiving channel. If the channel reconfiguration is
performed successfully (line 15-18), the CCont generates and
sends the service invocation message via channel InvReql
(line 19-20), and then waits to receive a reply via channel
InvRespl (line 21).

If CCont invokes the LArml service, LArml will re-
ceive the service invocation message from CCont via channel
RecInvl (line 37). Once the service invocation message is
obtained (line 38) from the input channel, the CD can invoke
the service that the CCont wishes to access (line 39) (in this
example, MoveLArm, as shown in line 41, which corresponds
with the actuation of the Baxter left arm). If such is the case,
the CD emits a signal (ToLArm1) which will be translated
into a command and sent to the socket server to call the
API (limb_moveto left_limb) that actuates the Baxter left arm
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(line 42), and then waits for a response via signal ToLArm1fb
(line 43). Finally, the CD notifies the CCont CD via channel
Resplnvl indicating the completion of the operation (line 46).
Note that before reaching the send statement in line 46, in this
scenario channel RespInv1 is reconfigured in the same manner
with the approach shown in line 14-17 to bind the Resplnvl
with InvRespl, hence these details are omitted in the listing
(line 45).

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

A set of benchmarks were run to demonstrate the perfor-
mance of SOSJ communicating with the developed socket
server. The performance of SOSJ in communicating with the
socket server is compared against the Multi-Agent System
(MAS) framework JADE [10]. A brief qualitative compari-
son between SOSJ and JADE in terms of major features is
summarised in Table IV. For the quantitative comparison the
benchmarks consider two scenarios: the first is to run the
Baxter arm CD (in SOSJ) or Baxter arm agent (in JADE)
on a separate machine, Raspberry Pi 2 B (900 MHz ARM
processor, 1 GB RAM), and the second is to run the CD
or the agent on the Baxter PC (Intel i7-3370 3.4 GHz, 4
GB RAM), with both execution platforms running Linux. The
benchmarks measure the round trip communication time to
invoke two APIs, limb_getpose (to obtain the arm endpoint
position) and limb_moveto (to actuate the arm to a particular
endpoint position), through the socket server. This essentially
distinguishes between a sensor service and an actuation service
(where the time to complete the actuation is included). In
the experiments, the total round trip time of 500 and 1000
limb_getpose and of 50 and 100 limb_moveto API invocations
is measured using the Java system timer and averaged. These
results are presented in Figure 7.

The results show that SOSJ has comparable performance
in communicating with the socket server to perform (Baxter)
physical service invocation in comparison to JADE. These
results also show that the communication time (a few millisec-
onds) is essentially negligible in comparison to the actuation
time for actuation services (in the order of seconds). The dif-
ference in average round trip time between SOSJ and JADE in
invoking limb_moveto is negligible. The difference in average
round trip time between SOSJ and JADE in communicating
with the socket server for invoking limb_getpose is slightly
in favour of JADE, which can be attributed to the SOSJ RTS
handling SOSJ signals and transforming them to and from
physical TCP/IP signals in order to interact with the socket
server. However, this small tradeoff in performance is justi-
fied, considering the fact that unlike JADE, SOSJ completely
abstracts away the communication with the environment, in
this case the Baxter robot arms. A code snippet presented
in Listing 2 shows how a JADE agent interacts with the
environment. After the agent receives a message (from the
environment) via UDP/IP by invoking RecvViaUDP() method
(line 1), it sets a physical output pin, e.g. pin number 15 of
a Raspberry Pi 2 B platform, to high (line 4) by invoking
the SetGPIO() method, and transmits data via TCP/IP by
executing the SendViaTCP() method to communicate with the

'limb_getpose' Invocation
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Fig. 7. Average round trip (service provision) time for limb_getpose and
limb_moveto

TABLE IV
COMPARISONS BETWEEN SOSJ AND JADE
Feature [ sosJ [ JADE
Functional Supported by formal No underlying formal

semantics and GALS MoC
Abstracted via signals and
channels, handled by SOSJ RTS
787 kB

correctness semantics and MoC

Communication Manually implemented or

interface handled by extra middleware

2712 kB

Framework size

Dynamic Creation, suspension,

. . L. Same, except weak
behaviour resumption, termination, A L.

. Lo migration is not supported.
handling migration (strong and weak)

socket server to access Baxter physical services (line 6). Since
they are not natively provided by JADE, these methods need
to be implemented manually by the programmers or call other
functions provided by a third party library or middleware
which deals with the implementation details of the physical
digital interfaces, TCP/IP, and UDP/IP communication links,
which would be abstracted away in SOSJ. Additionally, SOSJ
guarantees the compliance of the designed system with the
GALS MoC, and satisfies a wider range of features and system
requirements than JADE, as shown in Table IV.

Listing 2. Code snippet showing the invocation of Baxter arm service (JADE)

1 String mesg = RecvViaUDP (8766) ;

2 if (mesg!=null) {

3 //...process message..//

4 SetGPIO ("Raspberry Pi 2 B", "output",15,"
high");

5 //...further computation..//

6 SendvViaTCP ("192.168.1.7",8456, datal);

7 }

As an alternative to the proposed approach, in order to
achieve the integration of manufacturing devices and robots,
system designers may opt to utilize the ROS framework
only. This requires deployment of ROS behaviors to control
manufacturing devices and robot (Baxter), and instantiation of
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ROS slave nodes that allow interaction between Baxter and
manufacturing devices. In that case, there is no need to use
the socket server or other solutions which enable interoper-
ability between different software approaches. However, this
approach would require system designers to understand and
manipulate ROS low-level functions, especially for the other
manufacturing devices. Also, unlike SOSJ and JADE, ROS
offers only limited support for handling dynamicity and that
would impede the design of dynamic/reconfigurable manufac-
turing and robot systems. Furthermore, compared to SOSJ
and JADE, ROS is the largest in terms of framework size,
requiring at least 407 MB (up to 572 MB if complementary
ROS libraries are added).

VII. RELATED WORK

The use of service robots in industrial applications is often
very challenging because of various practical issues such
as precision and reconfiguration. Interestingly, most existing
research focuses on intuitive and human-friendly methods
for programming robot actions [11], while integrating service
robots with other automation machines is barely investigated
[12]. One fundamental reason is due to the fact that most
existing industrial robot control software is vendor specific.
However, the trend is moving towards using open-source robot
platforms such as ROS [4]. As such, researchers have started
developing common communication interfaces to bridge ROS
and other peripherals. For example, ROS-Industrial [13] is an
extension of ROS which introduces standardised interfaces for
common external sensors, actuators, and industrial devices to
communicate through ROS messages in a hardware-agnostic
way, including code generation and automatic testing of func-
tionality. Robot Raconteur [14] is a communication framework
which enables software developed in different languages to
communicate through a TCP/IP network. ROSBridge [18] is a
middleware that provides an additional abstraction layer on top
of ROS which allows non-ROS software to utilize or interact
with ROS-based programs. These approaches offer similar
features as the socket server solution implemented in our ap-
proach, but typically have a larger memory footprint and may
still require the programmers to have in-depth knowledge of
how ROS works in order to be used effectively. Additionally,
they lack the ability to support higher level system composition
which is critical for industrial automation applications [12].

The work presented in [15] uses a service interface function
block (SIFB) of IEC 61499, which is customised to allow in-
teroperability between IEC 61499 function blocks (that control
industrial devices) and ROS (that handles industrial robots).
The work presented in [16] introduces an approach and library
which allows communication between IEC 61131 and ROS.
The work presented in [17] proposes a communication layer
to integrate ROS processes (or ROS Nodes) into IEC 61499
applications. The first two approaches offer a way to interface
with ROS without looking into the dynamic nature of robotics
and system reconfiguration. The last approach, while enabling
systems to be dynamic by incorporating the SOA paradigm,
is not based on a formal semantics or MoC. This leads to
challenges in ensuring safe and functionally correct controls

and interactions with robots, which become more difficult
in the case of dealing with complex and distributed robot
services.

Other software technologies amenable for designing sys-
tems like the ABS with industrial robots and manufacturing
machines include Multi-Agent Systems (MAS) and Service
Oriented Architectures (SOA). MAS frameworks such as JTAC
[19] and JADE [10] possess the capabilities to handle dynamic
behaviors. SOA-based technologies like WS4D [20] allow
dynamic composition of software services and handling of
dynamic behaviors to a limited extent. However, these tools
are typically not based on any formal semantics or MoC and
generally require heavy run-time environments to be in place,
which is not always possible for embedded sensor and actuator
peripherals. The heavy runtime environment can be observed
in Table IV where the JADE memory footprint is almost four
times the SOSJ memory footprint. Being based on a formal
MoC with formal semantics, SOSJ allows design properties to
be checked before they are deployed. The formal nature of the
approach is also used at compilation time to produce code that
preserves the properties of the designed system in the object
code.

VIII. CONCLUSION

The SOSJ approach presented in this paper demonstrates
the ability to integrate existing software products into the
SOSJ world through services that can be used in a dynamic
context. This allows system designers to create new dynamic
software systems even if their constituent behaviors are not
dynamic in nature. The services are produced and consumed
by concurrent behaviors called clock domains. Wrapper clock
domains can be easily written to encapsulate functionalities of
other software products, like software developed for Baxter in
the ROS world, and use them in new application scenarios.
The main advantage of this is that the new behaviours are
underpinned by a formal GALS model of computation. The
same methodology can be applied to other software products
that govern the operation of different types of sensors and
actuators, typically used in CPS. The proposed approach
allows dynamic composition of software behaviors, without
rebooting the system, and can be utilized in the applications
and scenarios that require dynamic reconfiguration or fault-
tolerance. We have demonstrated this on an example of
integration with ROS-based service robots. In future work, we
plan to investigate how the approach can be utilized to achieve
interoperability with other types of existing approaches and
legacy systems, and how higher level behaviors like fault-
tolerance can be more comprehensively supported. We also
plan to extend our comparison of SOSJ against other frame-
works like JADE and ROS qualitatively and quantitatively,
in terms of setup and configuration time, level of automatic
code generation, and operational overheads. Finally, we plan to
investigate how the approach can be used to design dynamic
interoperable systems that include parts with hard real-time
requirements.
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