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A Bi-Level Control for Energy Efficiency
Improvement of a Hybrid Tracked Vehicle
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Abstract—In this paper, a bi-level control framework is
proposed to improve the energy efficiency for a hybrid
tracked vehicle. The higher-level discusses how to accu-
rately predict power demand based on the Markov Chain.
Specially, fuzzy encoding predictor is used for power de-
mand prediction, and a real-time recursive algorithm is ap-
plied to fuse the future power demand information into tran-
sition probability matrix (TPM) computation. Furthermore,
the Kullback–Leibler (KL) divergence rate is employed to
decide the alteration of control strategy. The lower-level
computes the relevant energy management strategy, based
on the updated TPM and a model-free reinforcement learn-
ing (RL) technique. Simulation results illustrate that the ve-
hicular energy efficiency in the proposed scheme exceeds
the common RL control by tuning the KL divergence value.
Comparative results also show that the developed control
strategy outperforms the common RL one, in terms of en-
ergy efficiency and computational speed.

Index Terms—Energy management, hybrid tracked vehi-
cle (HTV), Kullback–Leibler (KL) divergence rate, power de-
mand prediction, reinforcement learning (RL).

I. INTRODUCTION

DUE to a great importance of improving fuel economy
and reducing pollutant emissions, hybrid electric vehicles

(HEVs) have been being actively investigated over the world
[1], [2]. Energy management strategy is an enabling technology
in HEVs, in order to distribute power among multiple power
sources for improving overall energy efficiency [3], [4]. One
major difficulty to realize this goal lies in future driving con-
dition prediction. Hence, an online, efficient predictive energy
management strategy involving a preview of vehicular power
demand is significant.

In order to attain desirable power split in HEVs, energy
management strategies are often optimization-based techniques.
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These approaches are classified into global optimization and
real-time optimization categories. As the message of driving
cycle is previously given, dynamic programming (DP) could
obtain theoretically global optimal control. For example, a novel
efficient neural network module structure is compared with DP-
based controls to declare its optimality in [5]. However, its on-
line effectiveness cannot be guaranteed. Energy management
strategy for a range extended electric vehicle was investigated
by Chen [6] using DP, in which the driver comfort, battery
life, and limitation of noise are considered in the cost func-
tion. Then a rule-based, multimode switch strategy that requires
lower computation efforts was proposed.

However, the DP-based control strategy is typically inap-
propriate for real-world application because road topography
is ususally unknown in advance [7]. As an alternative, convex
programming (CP) was also adopted to acquire a global opti-
mal solution via convex modeling and rapid solution search.
Hu et al. [8] applied CP to a comparison framework of hybrid
powertrains with three diffrernt energy storage systems, which
allows hybrid powertrain designer to rapidly and optimally per-
form integrated component selection, sizing, and energy man-
agement.

Equivalent consumption minimization strategy (ECMS) [9],
[10] and model predictive control (MPC) [11], [12] are two rep-
resentative techniques in real-time optimization. ECMS focuses
on the local optimization by exploring the accurate co-state
value. Musardo et al. [13] presented an adaptive ECMS strategy
to periodically refresh the co-state according to the current road
load. Thus fuel consumption is minimized, while battery state
of charge (SoC) is maintained within boundaries. Nevertheless,
future driving condition is still not taken into account.

MPC benefits from the future driving information and
could derive an energy management strategy through DP [14],
quadratic programming [15], or nonlinear programming [16].
Markov chain (MC) [17] models and artificial neural networks
(NNs) [18] were often utilized to forecast future driving con-
dition information in MPC. Zeng et al. proposed a stochastic
MPC-based energy management strategy using vehicle location,
traveling direction, and terrain information for HEVs running in
hilly regions with light traffic [19]. However, the performance
of MPC control is highly dependent on the precision of future
driving condition prediction [20].

The above model-based techiniques all require elaborate vehi-
cle models [21]. This causes considerable expenditure of model
parameter calibration [22]. To remedy this deficiency, reinforce-
ment learning (RL) [23], [24] has been recently considered
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Fig. 1. Bi-level control framework for real-time and model-free energy management.

as a model-free method to search optimal control in energy
management problem. Liu et al. [25], [32], [33] proposed a RL-
based energy management strategy using Q-learning algorithm
and MC models. The results indicated that fuel efficiency could
be significantly improved by using the proposed RL-based en-
ergy management strategy. Nevertheless, it should be pointed
out that the fuel economy of HEVs may be even degraded, if
the associated control strategy is unsuitable for future driving
conditions [26]. Hence, future driving information needs to be
carefully considered during derivation of an energy management
strategy for HEVs.

Recent studies reveal that predictive learning (PL) could be a
useful tool for driving condition prediction for HEVs. Based on
this concept, by sufficiently combining the predictive method in
[3] and online updating technique in [25], this work proposes
a novel PL and RL-based predictive, real-time and model-free
control framework to improve energy efficiency for a hybrid
tracked vehicle (HTV). PL makes the energy controls adapt to
mutative future driving conditions, and RL enables the controls
to be real-time implementable.

The main contribution of this paper is to present a bi-level con-
trol framework to formulate a predictive, real-time energy man-
agement strategy, which has not been discussed in our previous
work (see Fig. 1 as an illustration). The higher-level discusses
how to predict the power demand based on the MC. Specially,
fuzzy encoding predictor (FEP) is employed to forecast power
demand, and a real-time recursive algorithm is applied to fuse
the future power demand information into transition probability
matrix (TPM) computation. Furthermore, the Kullback–Leibler

(KL) divergence rate is employed to decide the alteration
of control strategy. The lower-level calculates the relevant
energy management strategy, based on the updated TPM,
using RL.

Through comparing with DP algorithm, the optimality of the
proposed control is evaluated, and the influence of KL diver-
gence rate is demonstrated by a comparison of a common RL
method, in terms of energy efficiency. Simulation results un-
derline that the proposed strategy leads to noticeable improved
fuel economy and computational speed. These merits make it
feasible for online application.

This rest paper is organized as follows: In Section II, the
higher-level power demand prediction and real-time recursive
algorithm are introduced. Section III describes the lower-level
RL control of the HTV powertrain. In Section IV, tests are
designed to evaluate the proposed approach, and simulation
results are analyzed. Finally, conclusions and future work are
described in Section V.

II. HIGHER-LEVEL: POWER DEMAND PREDICTION AND

ONLINE UPDATING

The predicted approach and online updating expression for
power demand are from our previous studies [3] and [25], and
elucidated in this section for mathematical completeness. First,
MC-based FEP for power demand prediction is introduced
[3]. Then, we use a real-time recursive algorithm to fuse the
future power demand information into online calculation of
TPMs [25]. Finally, KL divergence rate is applied to evaluate
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the availability of power demand prediction by comparing
differences of multiple TPMs [31].

A. Fuzzy Encoding Predictor

In this paper, the power demand is modeled as a finite-
state MC [27] and denoted as P = {pjdem |j = 1, . . . ,M} ⊂ X ,
where X ⊂ R is bounded. The maximum likelihood estimator
is used to estimate the transition probability of power demand
by [32]{

pij = P (p+
dem = pjdem

∣∣∣ pdem = pidem) = Ni j

Ni

Ni =
∑M

j=1 Nij

(1)

where pdem and p+
dem are the present and next one step-ahead

power demands, respectively, and pij is the transition probability
from pidem to pjdem . Furthermore, Nij indicates the transition
counts from pidem to pjdem , and Ni is the total transition counts
initiated from pidem .

The TPM Π is filled with elements pij . The one step-ahead
probability vector of power demand taking one of finite values
pjdem is linked as

(p+)T = pT Π (2)

and for n > 1 steps ahead as

(p+n )T = pT Πn . (3)

In the fuzzy encoding technique,X is divided into a finite set
of fuzzy subsets Φj , j = 1, . . .,M and the fuzzy subset Φj is
a pair (X,μj (·)), where μj (·) is a Lebesgue measurable mem-
bership function that satisfies the property

μj : X → [0, 1] s.t. ∀pdem ∈ X,∃j, 1 ≤ j ≤M,μj (pdem) > 0
(4)

where μj (pdem) reflects the degree of membership of pdem ∈ X
in μj . A continuous state pdem ∈ X in the fuzzy encoding may
be associated with several states pjdem of the underlying finite-
state MC model [28].

The FEP involves two transformations based on the theory of
approximate reasoning [29]. The first transformation allocates
an M -dimensional possibility (not probability) vector for each
pdem ∈ X as follows:

ÕT(pdem)=μT(pdem)=[μ1(pdem), μ2(pdem), . . . , μM (pdem)].
(5)

Notice that the sum of the elements in the possibility vector
∼ |!O(pdem) is unnecessary to equal 1. This transformation is
named fuzzification and maps power demand in the space X to
vector in M -dimensional possibility vector space X̃ .

The second transformation is called the proportional
possibility-to-probability transformation that converts the pos-
sibility vector ∼O(pdem) to a probability vector O(pdem) by
normalization

O(pdem) = Õ(pdem)

/
M∑
j=1

Õj (pdem) (6)

where this transformation maps X̃ to an M-dimensional proba-
bility vector space, X̄ . The probability distribution of the next

state in X̄ is computed by

(O+(pdem))T = (O(pdem))T Π (7)

where the element pij in the TPM Π is interpreted as a transition
probability between Φi and Φj . To decode vectors in X̄ back to
X , the probability distributionO+(pdem) is utilized to aggregate
the membership function μ(pdem) to encode the probability
vector of the next state in X [27]

w+(pdem)=(O+(pdem))Tμ(pdem)=(O(pdem))T Πμ(pdem).
(8)

The expected value over the possibility vector leads to the
next one-step ahead power demand using FEP⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p+
dem =

∫
X

w+(y)ydy/
∫
X

w+(y)dy∫
X

w+(y)ydy =
∑M

i=1
Oi(pdem)

∑M

j=1
pij

∫
X

yμj (y)dy∫
X

w+(y)dy =
∑M

i=1
Oi(pdem)

∑M

j=1
pij

∫
X

μj (y)dy.

(9)
Note that the centroid and volume of the membership function

μj (pdem) is expressed as⎧⎪⎪⎨
⎪⎪⎩
c̄i =

∫
X

yμj (y)dy

Vj =
∫
X

μj (y)dy.
(10)

Thus, the next one-step ahead power demand in expression
(9) is rewritten as{

p+
dem =

∑M
i=1 Oi(pdem)

∑M
j=1 pijVj c̄j∑M

i=1 Oi(pdem)
∑M

j=1 pijVj
. (11)

Assuming that the membership functions have the same vol-
ume and using the fact

∑M
j=1 pij = 1 and

∑M
i=1 Oi(pdem) = 1,

(11) is further simplified as [3]{
p+

dem =

∑M
i=1 Oi(pdem)

∑M
j=1 pij cj∑M

i=1 Oi(pdem)
∑M

j=1 pij
= (O(pdem))T Πc̄

(12)
where (12) is the next one-step ahead power demand using
FEP. As can be seen, the probability distribution and centroid in
(12) are related to the membership functions. In this paper, these
functions are taken as Gaussian membership functions [30] with
a standard deviation σ = 1 as follows:

qi = e
−(x−2. 5i+ 1. 25) 2

2·σ 2 , i = 1, . . .M. (13)

B. TPM Online Updating

After predicting the future power demand, an online recur-
sive algorithm is applied to integrate this information into TPM
computation [25]. Assuming the length of the predicted power
demand is K, it is convenient to modify expression (1) for on-
board application as below:

pij =
Nij (K)
Ni(K)

=
Nij (K)/K
Ni(K)/K

=
Fij (K)
Fi(K)

(14)
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where Fi(K) is the total frequency rate of the transition events
fi(K) initiated from pidem , and Fij (K) is the frequency rate of
transition events fij (K) from pidem to pjdem within a specific
window with K measurements [25]⎧⎨
⎩
Fij (K) = Nij (K)/K = 1

K

∑K
t=1 fij (t)

Fi(K) = Ni(K)/K = 1
K

∑K
t=1 fi(t) = 1

K

∑K
t=1

∑M
j=1 fij (t).

(15)
where fij (t) = 1, if a transition from pidem to pjdem occurs at
time instant t; fi(t) = 1 if a transition initiated from the state
pidem at time instant t; otherwise, they take values to be zeros.
The frequency rate can be iteratively deduced as

Fij (K) =
1
K

K∑
t=1

fij (t) =
1
K

[(K − 1)Fij (K − 1) + fij (K)]

= Fij (K − 1) +
1
K

[fij (K)− Fij (K − 1)]

= Fij (K − 1) + ϕ[fij (K)− Fij (K − 1)] (16)

Fi(K) =
1
K

K∑
t=1

fi(t) =
1
K

[(K − 1)Fi(K − 1) + fi(K)]

= Fi(K − 1) +
1
K

[fi(K)− Fi(K − 1)]

= Fi(K − 1) + ϕ[fi(K)− Fi(K − 1)] (17)

where ϕ∈ (0, 1) is called forgetting factor, which is used
for weighting the old power demand data with exponentially
decreasing weights for online application. Finally, a recursive
expression of the transition probability of power demand is
formulated by integrating (14)–(17) as follows [25]:

pij =
Fij (K)
Fi(K)

=
Fij (K − 1) + ϕ[fik,j (K)− Fij (K − 1)]
Fi(K − 1) + ϕ[fi(L)− Fi(K − 1)]

.

(18)

C. KL Divergence Rate

To avoid the excessive updating of the TPM and improve the
computational efficiency of the online recursive algorithm, a
quantified parameter named KL divergence rate is proposed to
measure the differences of multiple TPMs. The KL divergence
rate is defined as [31]

DKL(P1‖P2) =
∑
x

∑
x+

[P1(x+ |x)P ∗(x)] log
[
P1(x+ |x)
P2(x+ |x)

]
(19)

where P1 and P2 are two M ×M TPMs of power demand,
x and x+∈ [1,M ] are the current and next indices of transi-
tion probability, respectively. P ∗ is the steady-state probability
distribution of P , which can be represented by

P ∗P1 = P ∗. (20)

Obviously, P ∗ is an eigenvector of P1 whose eigenvalue cor-
responds to 1. The logarithm operator in (19) requires the ele-
ments in P1 and P2 to be greater than zero and thus these two

Fig. 2. Configuration of the series HTV powertrain [25].

TABLE I
ELEMENTARY PARAMETERS OF THE HTV POWERTRAIN [33]

Name Value Unit

Vehicle mass Mv 2500 kg
Generator inertia Jg 0.1 kg·m2

Engine inertia Je 0.2 kg·m2

Gear ratio parameter ie−g 1 /
Electromotive force parameter Ke 0.8092 Vsrad−2

Electromotive force parameter Kx 0.0005295 NmA−2

Minimum State of Charge SoCm in 0.5 /
Maximum Sate of Charge SoCmax 0.9 /
Battery capacity Cbat 37.5 Ah

matrices are replaced by two equivalent one [31]{
P reg

1 = (1− δ)P1 + δ I
M

P reg
2 = (1− δ)P2 + δ I

M

(21)

where δ is a small constant ranging from 0 to 1, and I is the
identity matrix with the same dimensions as the matrix P1.
Three characteristics are illuminated for the KL divergence rate:
first, it is always nonnegative, DKL(P1||P2) = 0, if and only if
P1 = P2; second, in general, it is a nonsymmetric measure,
DKL(P1||P2) �= DKL(P2||P1); third, the closer it is to zero, the
more similar P1 is to P2 [31].

III. LOWER-LEVEL: HTV POWERTRAIN AND RL

To improve the energy efficiency of a series HTV, an optimal
control problem is formulated in this section. The powertrain
configuration of the HTV is shown in Fig. 2 [25]. The vehicle
powertrain mainly includes an engine generator set (EGS), a
battery pack and two driving motors. The modeling of the EGS,
battery pack and cost function are first introduced. Furthermore,
the RL technique framework is constructed [32], and the Q-
learning algorithm is harnessed to rapidly search the optimal
control based on the online TPM of predicted power demand.
The elementary parameters of the HTV powertrain are listed in
Table I [33].

A. Vehicle Powertrain Model

In EGS, the engine rated power is 52 kW at the speed of
6200 r/min. The rated output power of the generator is 40 kW
within the speed range from 3000 to 3500 r/min. The generator
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speed is selected as the first state variable and can be calculated
according to the torque equilibrium constraint

{
dng
dt =

(
Te
ie−g
− Tg

)
/0.1047

(
Je
i2
e−g

+ Jg

)
ne = ng/ie−g

(22)

where ng and ne are the rotational speeds, Tg and Te are the
torques of the generator and engine, respectively, and Te is the
sole control action in this work. Je and Jg are the rotational
moment of inertias of the engine and generator, respectively.
ie−g is the gear ratio between the engine and generator, and
0.1047 is the transformation factor that denotes 1 r/min = 0.1047
rad/s. The torque and output voltage of the generator can be
derived as follows [33]:{

Tg = KeIg −KxI
2
g

Ug = Keng −KxngIg
(23)

where Ke is the electromotive force coefficient, Ug and Ig are
the generator voltage and current, respectively. Furthermore,
Kxng is the electromotive force, and Kx = 3PLg/π, in which
Lg is the armature synchronous inductance, and P is the poles
number.

For the HTV, the SoC of the battery is chosen as another state
variable, which is computed by

dSoC

dt
= −Ibat(t)

Cbat
(24)

where Ibat and Cbat denote the current and rated capacity of
battery, respectively. According to the internal resistance model
[34], the derivative of SoC and battery output voltage can be
computed by

⎧⎪⎪⎨
⎪⎪⎩

dSoC
dt = (Vo c−

√
V 2
o c−4rc h (rd i s )Pb a t (t))

2Cb a t rc h (rd i s )

Ubat =

{
Voc − Ibatrch(SoC)(Ibat > 0)
Voc − Ibatrdis(SoC)(Ibat < 0)

(25)

where Voc is the open circuit voltage and Pbat is the battery
power. Furthermore, Ubat is the battery output voltage and
rdis(SoC) and rch(SoC) depict the internal resistances during
discharging and charging, respectively.

The optimal control objective to be minimized is expressed as
a tradeoff between the fuel consumption and charge sustenance
as follows:⎧⎪⎪⎨
⎪⎪⎩
J =

∫ tf

t0

[ṁf (t) + α(ΔSoC )2]dt

ΔSoC =
{
SoC(t)− SoCref SoC(t) < SoCref

0 SoC(t) ≥ SoCref

(26)

where [t0, tf ] is the specific time interval, ṁf is the fuel con-
sumption rate, andα is a positive weight coefficient. In addition,
SoCref is a preallocated constant to maintain charge-sustaining
constraints [35]. To obtain the real-time energy management
strategy using the future power demand information and RL,

Fig. 3. RL interaction between environment and agent [25].

the following inequality constraints should be observed:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

SoCmin ≤ SoC(t) ≤ SoCmax

ng,min ≤ ng (t) ≤ ng,max

Te,min ≤ Te(t) ≤ Te,max

ne,min ≤ ne(t) ≤ ne,max

Ibat,min ≤ Ibat ≤ Ibat,max

0 ≤ Ig ≤ Ig,max .

(27)

Since the core of this article focuses on discussing the control
performance of the proposed real-time control strategy, both
traction motors, as power conversion devices, are assumed to
have an identical efficiency, and the battery aging is neglected
in this study [32], [33].

B. RL Based Powertrain Control

The RL interaction between the environment and the agent is
shown in Fig. 3 [25]. This interaction is modeled as a discrete
discounted Markov decision process (MDP) that is a quintuple
(S,A,Π,R, β), where S and A are the sets of state variables
and control actions, Π is the TPM, R is the reward function,
and β ∈ (0, 1) is a discount factor.

Specially, the optimal control problem in this paper incorpo-
rates a set of state variables s ∈ S = {(ng (t), SoC(t))|1200 ≤
ng(t) ≤ 3100, 0.5 ≤ SoC(t) ≤ 0.9}, a set of actions a ∈
A = {Te(t)|0 ≤Te (t) ≤ 92}, and a reward function r ∈ R =
{ṁf (s, a)}.

The control policy ψ is the distribution over the control ac-
tions a, given the current state s. The optimal value function
is represented as the finite expected discounted sum of the
rewards [36]

V ∗(s) = min
ψ
E

( tf∑
t=t0

βtr(s, a)

)
. (28)

Due to the uniqueness, (28) can be reformulated as a recursion
expression

V ∗(s) = min
a

(
r(s, a) + β

∑
s ′∈S

πs ′a,sV
∗(s′)

)
∀s ∈ S

(29)
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TABLE II
PSEUDOCODE OF THE Q-LEARNING ALGORITHM [3]

Algorithm: Q-Learning Algorithm.

1. Initialize Q(s, a), s, and number of iteration Nk

2. Repeat each step k = 1, 2, 3 . . .
3. Choose a, based on Q(s, .) (ε-greedy policy)
4. Taking action a, observe r, s′
5. Define a∗ = arg maxa Q(s′, a)
6. Q(s, a) ← Q(s, a) + η(r(s, a) + βmaxa ′Q(s′, a′) −Q(s, a))
7. s← s′
8. until s is terminal

where πs ′a,s denotes the transition probability from state s to
state s´ using action a. Given the optimal value function, the
optimal control policy is determined as follows:

ψ∗(s) = arg min
a

(
r(s, a) + β

∑
s ′∈S

πs ′a,sV
∗(s′)

)
. (30)

In addition, the action value function Q(s, a) and its optimal
value Q∗(s, a) are expressed as the following formula [32]:

⎧⎨
⎩
Q(s, a) = r(s, a) + β

∑
s ′∈S πs ′a,sQ(s′, a′)

Q∗(s, a) = r(s, a) + β
∑

s ′∈S πs ′a,s min
a ′

Q(s′, a′).
(31)

The variable V ∗(s) is the value of s, assuming that an op-
timal action is taken initially; therefore, V ∗(s) = Q∗(s, a) and
ψ∗(s) = arg mina Q∗(s, a). The updated rule of action-value
function in Q-learning algorithm is expressed as [36]

Q(s, a)← Q(s, a) + η(r(s, a) + βmin
a ′

Q(s′, a′)−Q(s, a))
(32)

where η ∈ [0, 1] is a decaying factor in the Q-learning algorithm.
The pseudocode of the Q-learning algorithm is described in
Table II [3].

Fig. 1 shows the calculated flowchart of the proposed predic-
tive real-time energy management strategy based on the updated
TPM using RL approach. FEP is used to first forecast the future
power demand. The TPM online updating algorithm integrates
the future power demand information into online TPM compu-
tation. Then the KL divergence rate is applied to measure the
differences between the current and future TPMs. As the KL di-
vergence rate is larger than the pre-assigned threshold value, the
control action computation is triggered, and the relevant energy
management strategy is updated online. Otherwise, the current
strategy maintains.

The state variables and control action are discretized
as ng ∈ [1200 : 95 : 3100], SoC ∈ [0.5 : 0.02 : 0.9], Te
∈ [0 :4.6: 92]. The RL course is carried out in MATLAB using
the MDP toolbox described in [37]. The decaying factor η is
correlated with the time step k and taken as 1/

√
k + 2, the

discount factor β is taken as 0.95, the number of iteration
Nk is 10 000, and the sample time is 1 s. The optimality and
adaptability will be discussed in Section IV.

Fig. 4. Two driving cycles for power demand prediction [25].

IV. RESULTS AND DISCUSSION

The proposed PL and RL-enabled predictive real-time energy
management strategy is evaluated in this section. The influences
of KL divergence rate on fuel consumption are examined by
comparing the control performance in different threshold value
cases. Then, numerical tests illuminate that the energy efficiency
improvement in our control strategy can exceeds the common
RL method by tuning the KL divergence rate value.

A. Influence of KL Divergence Rate

In order to evaluate the performance of the FEP for power
demand prediction, the proposed control strategy is compared
with the common RL control strategy, in which the one-step
ahead predicted power demands under the two representative
driving cycles are considered (see Fig. 4 as an illustration) [25].

Fig. 5 illustrates the one-step ahead and 10-steps ahead power
demand prediction trajectories for these two driving cycles. In
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Fig. 5. One-step and 10-steps ahead power demand prediction for two driving cycles.

the proposed real-time control strategy, the online recursive al-
gorithm and the KL divergence rate are implemented to integrate
the predicted power demand information into the TPM compu-
tation. The KL divergence rate threshold values are defined as
0.3 and 0.5, and the forgetting factor ϕ = 0.01.

The SoC evolutions in different control cases for the two
driving cycles are shown in Fig. 6. It can be discerned that
the SoC trajectories in the three control cases are completely
different for driving cycle A. However, for driving cycle B,
the SoC trajectories in the proposed real-time predictive RL
control are essentially the same and clearly differ from that of
the common RL control. We attribute these differences to the

alternation of the TPM of power demand, as shown in Fig. 7, in
which the KL divergence rate values are calculated between two
TPMs in every 100 s at different speeds. This alternation of TPM
results in the updating of control strategy and the improvement
of energy efficiency.

Since the KL divergence rate threshold values are defined as
0.3 and 0.5, the updating times of the TPM and control strat-
egy are determined. Table III depicts the updating times and
fuel consumption after SoC-correction [38] for different control
strategies in the two driving cycles. The updating times for dif-
ferent KL divergence rate values are uniform in driving cycle B,
which leads to the same SoC trajectories and fuel consumption
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Fig. 6. SoC trajectories with different control strategies.

in the proposed predictive real-time control. Oppositely, they
are diverse in driving cycle A. The proposed predictive real-
time control strategy thus has better control performance than
the common RL control strategy. Finally, 0.4 is chosen as the
KL divergence rate threshold value when considering the per-
formance and computation efficiency for comparing different
control strategies in the next section.

B. Comparison of Different Control Strategies

To verify the optimality of the proposed predictive real-time
control strategy, the common RL-based and DP-based strategies
act as benchmark strategies for comparison purposes in this
section. The simulation driving cycle is shown in Fig. 8, and the
parameters setting for the proposed control strategy is depicted
in Table IV.

Fig. 9 illustrates the SoC trajectories and power split results
between the engine and the battery under the simulation cycle.
As can be seen, the SoC trajectory in the proposed control
straetgy is much closer to that of DP-based control strategy
than the common RL control. An analogous result appears in
the power split curves. This improvement can be ascribed to
the online updating of control straetgy, as the predicted power
demand is injected into the calculation of TPM.

Fig. 7. KL divergence rate values for different driving cycles: (a) Driving
cycle A and (b) driving cycle B.

TABLE III
UPDATING TIMES AND FUEL CONSUMPTION FOR DIFFERENT

CONTROL STRATEGIES

Control strategies Updated
timesA

(count)

Fuel (g)A Updated
timesB

(count)

Fuel (g)B

Common control 0 476.3 0 361.0
Predictive real-time RL: KL = 0.3 5 429.2 4 317.4
Predictive real-time RL: KL = 0.5 2 453.9 4 317.4

denotes driving cycle A; B denotes driving cycle B.

Fig. 8. Simulation drive cycle for control strategies comparison.
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TABLE IV
PARAMETERS SETTING FOR THE PREDICTIVE REAL-TIME CONTROL

Parameters Prediction step
length

KL threshold
value

Forgetting
factor ϕ

Sample time

Value 5-step 0.4 0.01 1 s

Fig. 9. SoC trajectories and power split with different control strategies
under the simulation cycle.

Fig. 10. KL divergence rate values with the simulation cycle.

Since the KL value surpasses the threshold value 0.4, the
proposed control strategy is triggered to update at 200 and 300 s,
as described in Fig. 10. The simulation results demonstrate that
the MC-based predicted power demand is renovated effectively
to make the predictive real-time and model-free control strategy
similar to the DP-based control strategy.

Table V illustrates the fuel consumption results after SoC-
correction for the three control strategies. It can be recognized
that the fuel consumption of the proposed predictive real-time
control strategy is lower than that of the common RL control by

TABLE V
FUEL CONSUMPTION COMPARISONAFTER SOC-CORRECTION

Control strategies Fuel consumption (g) Relative increase (%)

DP 260.3 –
Predictive real-time RL 266.8 2.5
Common RL 277.5 6.61

TABLE VI
COMPUTATION TIME IN DIFFERENT CONTROL STRATEGIES

Control strategies Computational timea (h) Relative increase (%)

Predictive real-time RL 1.42 –
DP 2.58 81.69
Common RL 4.65 227.46

aA 2.4 GHz microprocessor with 12 GB RAM was used.

4.11%, and is close to that of DP-based control. This demon-
strates its optimality. The computational times of these control
strategies are contrasted in Table VI. Note that the proposed
solution is fastest among the three types of control strategies,
which makes it online application easier.

V. CONCLUSION

In this paper, we seek energy efficiency improvement of a hy-
brid vehicle by synergizing PL with RL. Based on the study of
FEP and realization of TPM online updating, the future power
demand can be predicted and fused into real-time control strat-
egy computation. With the acquaintance of predicted driving
conditions, Q-learning algorithm is picked to derive rapidly the
model-free energy management strategy.

Tests prove the optimality and availability of the proposed
predictive real-time energy management strategy. In addition,
the advantages in energy efficiency improvement and computa-
tional speed imply that the proposed real-time and model-free
control can be applied in real-time situations.

To the best of our knowledge, this is the first attempt to
synergistically leverage PL trick and reinforcement learning
in HTV energy management field. It brings a new thought to
design model-free control in real-time so as to improve en-
ergy efficiency online. In the future, more simulation and ex-
perimental investigations are underway to verify the proposed
control strategy in different real-word working and driving
conditions.
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