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Abstract—Hardware security for an Internet of Things (IoT)
or cyber physical system drives the need for ubiquitous cryptog-
raphy to different sensing infrastructures in these fields. In par-
ticular, generating strong cryptographic keys on such resource-
constrained device depends on a lightweight and cryptographi-
cally secure random number generator. In this research work,
we have introduced a new hardware chaos-based pseudorandom
number generator, which is mainly based on the deletion of an
Hamilton cycle within the N-cube (or on the vectorial negation),
plus one single permutation. We have rigorously proven the
chaotic behavior and cryptographically secure property of the
whole proposal: the mid-term effects of a slight modification of
the seed (proven to be sensitive to the initial conditions) or of the
inputted generator cannot be predicted. The proposal has been
fully deployed on a FPGA and 65nm ASIC, it runs completely
in parallel while consuming as low resources as possible, and
achieving: (a) 11.5 Gbps for FPGA and 9.4 Gbps for ASIC
random bit throughput, (b) 3.3µW (LF) to 7.8mW (UHF) total
power consumption with 5% leakage power, measured at 1.32V ,
and (c) able to successfully pass the statistical tests of NIST and
TestU01 (BigCrush).

Index Terms—Random number generators, Chaotic circuits,
Discrete dynamical systems, Statistical tests, Lightweight Cryp-
tography, Constrained devices, Applied cryptography, FPGA.

I. INTRODUCTION

SEcurity and cryptography are key elements in Internet
of Things constrained devices and these elements are

challenging since they face a wider range of limitation [1],
[2], including energy (dynamic and static power), latency
(delay to complete a process), throughput (rate in bps), and
scalability [3]. Hardware security is still in its infant stage,
and a lot of technical difficulties associated with IoT need to
be overcome [4]. In this context, as most protocols rely on
the security of a good random number generator (e.g., key
establishment, authentication, etc. [5]), this latter appears as
a key element in lightweight security core for IoT devices.
However, only a few research works focus on such hardware
random number generators, and no standard is currently avail-
able.

Such generators are usually divided in two categories:
“pseudorandom” number generators (PRNGs), which use de-
terministic algorithms to produce numbers that look like
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random (they pass statistical tests with success), and “true”
random number generators (TRNGs) that employ a physical
source of entropy to produce randomness. Despite the intrinsic
quality of TRNGs, most of these techniques are however
implemented in a manner that is either slow (i.e, in a range
of some Kbps to Mbps, to extract noise or jitter from a
given component [6]) or costly (e.g., extracting or measuring
some noise using oscilloscope or laser [7]). A first alternative
solution was Entropy as Service [8], which generates keys
based on quantum effects at IoT boot, and without any
possibility for the cloud service to gain any insight into the
user keys [9]. However, many countries or enterprises do not
have access to this cloud infrastructure (locally or through the
Internet), and local solutions are often desired for securing,
monitoring, or to communicate data.

A lightweight cryptographic primitive must satisfy a number
of specifications and standards as defined for example in
ISO/IEC 14223, 14443 [10], or 18000 [11]. For instance,
for physical layer applications, we consider areas (in Gate
Equivalent GE) lower than 5000 [12] [13], dynamic and static
power conception in a range of 5µA to 15µA and working
in different frequency bands (Low Frequency LF of 100Khz,
high frequency HF of 13.56MHz, and Ultra high frequency
UHF). In a related work [14], an 8-bit PRNG (i-Beam sensor)
has initially been proposed that xored the current value of the
time with a key, reaching a throughput of 400Mbps. However,
this PRNG has revealed to have a short period, as described
in [15]. TinyRNG [16] is another PRNG that combines two
cipher blocks based on chaining message authentication code
(CBC-MAC) and on counter mode (CTR), where the first one
aims to extract the transmission of bit errors on the network as
randomness sources to reseed the second cipher key. In [17],
the authors propose a new PRNG named Warbler, in Electronic
product Code EPC GEN2 RFID Tag [18], that combines a
nonlinear feedback shift register (LFSR) with a nonlinear feed-
back Welch-Gong shift register. However, it has been proven
in [19] that this non linear LFSR has various vulnerabilities
when used as a stream cipher. Furthermore, it generates only
1 bit each 5 cycles, which drops the throughput to 408Mbps
(other PRNGs designed for IoT and RFID tags are reported
at the end of this paper, for the sake of comparison [20]).

In this article, our objective is to fill the gap of hardware
pseudorandom number generation specifically designed for
the IoT. To do so, the Chaotic Iterations based PRNGs
(CIPRNGs) class of generators will be presented, which can
be summarized as follows. At each iteration, a new input is
received from another given extremely fast generator, called
the strategy. This input is used with an updating function based
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on the so-called Generalized Chaotic Iterations (GCI), whose
graph is strongly connected. This property can been practically
established by removing a balanced Hamiltonian cycle in a
N-cube following the method suggested in [21]. Thanks to
an embedded Boolean GCI function and a permutation, this
generator named GCIPRNG (which can be considered as
a post-treatment on the inputted one), has usually a better
statistical profile than its input, while running at a similar
speed. The chaotic dependence between the input and the
output is then proven, as well as the preservation of the
cryptographically secure property.

The remainder of this article is organized as follows. The
next section recalls various proposals in the use of chaos
for hardware pseudorandom number generation. Their FPGA
implementation and statistical test analysis are reported. Sec-
tion III describes our proposed design for a new chaotic
PRNG, targeting a FPGA implementation. Section IV mathe-
matically demonstrates the chaotic properties of this proposal.
Then, the cryptographically secure proofs are presented in Sec-
tion V. In Section VI, the hardware platform used to evaluate
all evoked chaotic PRNGs is presented. Statistical comparisons
are provided in the same section, using the TestU01 battery
of tests [22]. This article ends by an ASIC implementation in
65nm (Section VII), while further comparisons for real-world
applications are finaly provided.

II. CHAOTIC RANDOM NUMBER GENERATORS
This section first presents an extended list of PRNGs that

are linked to a chaotic behavior in one way or another. It next
presents their FPGA implementation to compare them in terms
of hardware resources and statistical behavior.

Chaotic Mapping PRNGs. In [23], authors have used fixed
point representation to implement the logistic map (xt+1 =
rxt(1− xt), where 0 < xt < 1 and r is the biotic potential,
3.57 < r < 4.0) using Matlab DSP System Toolbox software.
They generate many designs with different lengths from 16 to
64 bits, where the resources are dependent on the precision
(24 to 53 bits). Authors of [24] compare this implementation
with another chaotic PRNG based on the Hénon map [25].
Unlike the logistic map, DSP blocks of the FPGA for all
multiplications needed to implement the value a(xt)2 of this
map. Two optimized versions of PRNGs based on chaotic
logistic map are proposed in [26] too, which aims to pipeline
the multiplication while adding some delays into each stage.

In [27], the authors vary the biotic potential r and observe
the divergence of random for almost all initial values. Ac-
cordingly, they propose a range of the form [α,1−α], where
α < 0.5. Another way to select the parameter r is presented
in [28] in which the authors propose a couple of two logistic
map PRNGs, each having different seeds and parameters. The
main idea is to recycle the pseudorandom number generated
by the first chaotic map, namely xt+1, as the biotic potential
r2 for the second one (yt+1) when either 3.57 < xt+1 < 4 is
satisfied or the sequence output is divergent. Finally, in [29]
four different chaotic maps are implemented in FPGA, namely,
the so-called Bernoulli, Chebychev, Tent, and Cubic maps.

Chaotic based Timing Reseeding (CTR) PRNGs. Authors
of [30] address the short period problem due to the quanti-

zation error from a nonlinear chaotic map PRNG. Instead of
initializing the chaotic PRNG with a new seed, the seed can
be selected by masking the current state xt+1 at a specific
time. This main concept of CTR was first implemented in
FPGA [31], in which the critical path of the partial products
of the multiplication operation is optimized. Authors of [32]
present more hardware details for reducing multiplication
operation resources. They also mix the output from the PRNG
with an auxiliary generator yt+1 to improve statistical tests.

Differential Chaotic PRNGs. These tools use an approx-
imated numerical solution to solve a generalization of the
Lörenz hyperchaos equation. The resolution was the main
study done in [33] and in [34]. The authors design various
numerical methods (Chen [35] and Elwakil) for each system.
They show that obtained results with the Euler numerical ap-
proach are the best regarding area and throughput perspectives.
Authors of [24], for their part, have implemented the so-called
Oscillator Frequency Dependent Negative Resistors (OFDNR),
and use the same Euler approximation.

The three best chaotic generators for FPGA appear to
be, namely, the one from [26] that uses the logistic map
with Matlab simulink macros, the chaotic iterations based
PRNG [36], [37], and the one based on the chaotic Bernoulli
map [29]. If we consider the linear PRNGs who pass TestU01
(see section below), these PRNGS have the most reduced
throughput due to their use of multiplications and their various
dependencies. However, to have a large throughput does not
mean to produce an uniform distribution of numbers, which
leads to the investigation of statistical results.

Finally, statistical tests are fast methods to study in practice
the randomness of generated numbers, by the mean of software
batteries of tests. They are based on various mathematical and
physical approaches, and are thus used as generator bench-
marks. To perform comparisons, in this study, we considered
the reputed NIST SP800− 22 [38] (106 pseudorandom bits
evaluated by 16 tests) and TestU01 [22] batteries of tests
(up to 1038 pseudorandom bits under 319 tests). According
to [36] and [39], it can be observed that almost all chaotic
PRNGs can pass the NIST batteries, but they all fail on
TestU01. Meanwhile, a first application of chaotic iteration
as PRNG approach was presented in two CIPRNG variants
for FPGA, namely the CIPRNG-XOR and the CIPRNG-
MultiCycle (see [36] [40]). This is why the works in [26]
and in [29], based on the logistic map and the Bernoulli one,
will be used for throughput comparison, while linear PRNGs
will be considered for statistical tests. We can however already
conclude that only XOR-CIPRNG satisfies both low hardware
resources and a success against the TestU01 battery, which has
already been stated in [36].

III. THE PROPOSAL

A. General idea

Formally speaking, a Chaotic Iteration based PRNG
(CIPRNG) is a random walk in the graph of iterations of
a specific binary function. The direction to take and the
path length are defined by the embedded generator(s) [41].
A first application of such an approach was presented in the
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PRNG framework [36], [40]. Meanwhile, in [42], the authors
have proposed to remove an Hamilton Cycle, satisfying some
balance properties, from the Markov chain on the N-cube,
while in [21], authors proposed new functions without an
Hamilton cycle, and studied the length of the walk in their
cube, until having an associated Markov graph close enough
to the uniform distribution. These works end with the idea
that it is hard to have together the three properties of: chaos,
hardware efficiency, and statistically trustworthy.

Let us first discuss on how we tackle this problem. The
first key idea is to have a short internal state, possibly split
into parallel blocs. This divide and conquer approach aims at
ensuring hardware efficiency but is in conflict with statistical
quality. Chaotic iterations [43], [44] can be used to achieve
chaos objectives. However, as noticed in [21] the general
formulation of the chaotic iterations [45] should be preferred
than the original one when efficiency is needed. Finally,
permutation techniques [46] have presented a convenient way
to ensure statistical faultless, in a fast manner. Our proposal is
based on these three main ideas and is summarized in Figure 1.

Fig. 1: The proposal based on GCI functions issued from
removing a Hamilton cycle in the N-cube with a permutation
function

At first, it can be seen that the seed x0, the internal state
xt , and the output xt+1 are all expressed with the same
number N of bits. Without loss of generality, we consider
hereafter that N = 32. Let us show how to produce a new
output xt+1 for a given input xt . This one is first split into
n blocs of equal length. We consider here that n = 4 and
we thus have xt = (xt

A,xt
B,xt

C,xt
D) where xt

l is of size 8 for
l ∈ {A,B,C,D}. The next step consists in obtaining a N bits
number st from the embedded generator, which is called the
strategy. Similarly to xt , the vector st is split into n blocs. Here
we thus obtain st = (st

A,st
B,st

C,st
D). Each sl , l ∈ {A,B,C,D},

can be interpreted as a set of elements in {1,2, . . . ,8}. Each
block xt

l is modified separately as the result of the general
formulation of the Chaotic Iterations [45] applied on xt

l , st
l and

a specific GCI function f : B8 → B8, as described hereafter.
The i-th component of xt+1

l is the i-th one of f (xt
l) if i is

within the set st
l , else this component is the i-th one of xt

l (i.e.,
only the components indicated by the set st

l are updated). This
results xt+1

l . More formally, we have

xt+1 = (xt+1
1 , . . . ,xt+1

N ), 1≤ i≤ N,xt+1
i =

{
fi(xt) if i ∈ st ,
xt

i otherwise.

All the xt+1
l are concatenated hereafter, producing the new

internal state xt+1. Finally, a permutation over the N bits is
applied on xt+1 to produce the new output.

The choice of the function f executed inside the GCI
iteration, of the embedded PRNG, and of the chosen final
permutation function has a great influence on the quality of
the generator. It is discussed in the next sections.

B. Iterated Function

Let s ∈ (B8)N be a sequence of subsets of {1, . . .8}, where
x0 be a vector in B8 and f be a function from B8 → B8.

Five functions from B8 to B8 are mainly studied in this
article. The former is the negation function, further denoted
as NG. In this one, each fi is defined with fi(x) = xi. For
instance, the image of 5 = 00000101 is 250 = 11111010.
The four other functions, denoted as F1, F2, F3, and F4, are
the GCI functions whose graph of generalized iterations is
strongly connected and which has been obtained by removing
a balanced Hamiltonian cycle in a N-cube following the
method suggested in [21] and refined in [47]. The choice of
these five functions is motivated by the objective to obtain a
chaotic behavior. For instance, it has been proven in [48] that
the topological entropy of the chaotic iterations embedding
the NG function is equal to log(8) when the iteration vector
is constituted by 8 components. For the links between entropy
and noise-like randomness, see, e.g., [49].

C. Permutation Function

First of all, our proposal is a parallel execution of 4
blocks, each one producing 8 bits. The internal state x is
next produced as the concatenation of the results of the 4
blocks. This design is guided by the goal of reducing the
required resources. However, such an approach suffers from
decreasing the statistical complexity of the PRNG: without any
post treatment it would be dramatic, because it is equivalent to
deal with 8 bits only. A final step which scrambles the internal
state is thus necessary to tackle this problem.

This can be practically implemented with a permutation
function (which allows to obtain a uniform output) provided
it does not break the chaos property (as proven in the next
section). Among the large choice of permutation functions
(such as rotation, dropping, xoring...), we inspire from one
detailed in [46]. This work indeed proposes a bench of
permutation functions allowing to succeed statistical tests.

This permutation function is implemented as in Algo-
rithms 1. It is not hard to see that it is mainly a composition
of three subfunctions. Let In32 be the internal state. The first
function scrambles between 17 and 28 rightmost bits (i.e.
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TABLE I: Boolean functions
Function f (x) f or x ∈ [0,1,2,3,4,5 . . . ,2n −1]
NEG [255, 254, 253, 252, 251, 250 . . . , 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

F1

[223, 190, 249, 236, 243, 234, 241, 252, 183, 244, 229, 245, 179, 178, 225, 248, 237, 254, 173, 232, 171, 202, 201, 200, 247, 198, 228, 230, 195, 242, 233, 160, 215, 220, 205, 216, 218, 154, 221, 208, 213, 210, 212, 148,
147, 211, 217, 209, 239, 238, 141, 140, 235, 203, 193, 204, 135, 134, 199, 197, 131, 226, 129, 224, 63, 174, 253, 184, 251, 250, 189, 176, 191, 246, 180, 182, 51, 50, 185, 240, 47, 46, 175, 188, 139, 42, 161, 172, 231, 164,
181, 165, 227, 130, 33, 32, 31, 222, 153, 158, 219, 26, 25, 156, 159, 214, 151, 149, 146, 18, 144, 152, 207, 206, 157, 136, 138, 170, 169, 8, 133, 6, 5, 196, 3, 194, 137, 192, 255, 110, 109, 120, 107, 126, 125, 112, 103, 114,
116, 118, 123, 98, 121, 96, 79, 78, 111, 124, 75, 122, 97, 108, 71, 100, 117, 101, 115, 66, 113, 64, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 74, 106, 105, 104, 69, 102, 68, 70, 99, 67,
73, 65, 55, 58, 57, 44, 187, 186, 49, 60, 119, 52, 37, 53, 35, 54, 177, 56, 45, 62, 61, 40, 59, 10, 9, 168, 167, 166, 36, 38, 163, 162, 41, 48, 23, 28, 13, 24, 155, 30, 29, 16, 21, 150, 20, 22, 27, 19, 145, 17, 143, 142, 15, 14,
43, 11, 1, 12, 39, 4, 7, 132, 2, 34, 0, 128]

F2

[223, 190, 249, 254, 243, 186, 233, 252, 183, 182, 247, 228, 242, 226, 240, 224, 237, 206, 173, 232, 203, 250, 169, 248, 167, 246, 245, 164, 235, 227, 241, 192, 215, 158, 157, 216, 218, 222, 221, 152, 213, 210, 149, 214, 219,
211, 217, 209, 239, 202, 207, 236, 139, 138, 193, 136, 231, 230, 199, 197, 194, 130, 225, 200, 63, 188, 253, 184, 251, 58, 189, 56, 191, 54, 165, 244, 51, 179, 161, 177, 47, 238, 175, 140, 163, 234, 41, 172, 39, 134, 229,
36, 162, 178, 129, 176, 31, 154, 29, 220, 147, 26, 145, 24, 159, 148, 151, 212, 146, 150, 144, 208, 141, 14, 205, 204, 171, 142, 201, 128, 133, 198, 132, 196, 195, 2, 137, 0, 255, 124, 109, 120, 122, 106, 125, 104, 117, 102,
101, 118, 123, 115, 97, 113, 79, 126, 111, 76, 99, 74, 121, 108, 71, 70, 103, 116, 98, 114, 65, 112, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 110, 93, 72, 107, 78, 105, 64, 69, 66, 68, 100, 75,
67, 73, 96, 55, 46, 57, 62, 187, 59, 185, 60, 119, 52, 181, 180, 50, 34, 48, 32, 45, 174, 61, 40, 11, 170, 9, 168, 37, 166, 53, 4, 43, 35, 49, 160, 23, 28, 13, 156, 155, 30, 153, 16, 21, 18, 20, 22, 27, 19, 25, 17, 143,
10, 15, 44, 3, 42, 1, 12, 135, 38, 7, 5, 131, 6, 33, 8]

F3

[223, 238, 189, 254, 243, 251, 233, 184, 183, 230, 229, 245, 242, 246, 177, 224, 237, 174, 253, 204, 203, 170, 201, 248, 247, 226, 197, 164, 235, 227, 241, 192, 215, 158, 205, 216, 155, 222, 221, 208, 151, 210, 212, 214,
219, 211, 145, 209, 143, 202, 207, 206, 139, 234, 193, 232, 135, 134, 199, 228, 194, 198, 129, 200, 63, 188, 61, 252, 186, 250, 249, 168, 191, 178, 180, 244, 187, 179, 49, 240, 239, 46, 175, 236, 163, 138, 185, 136, 231,
38, 181, 36, 162, 166, 225, 176, 31, 30, 153, 220, 147, 218, 217, 24, 159, 148, 213, 149, 19, 150, 144, 152, 141, 140, 13, 12, 171, 142, 9, 8, 133, 130, 5, 196, 195, 2, 137, 160, 255, 124, 109, 120, 122, 106, 125, 104,
103, 114, 116, 100, 123, 115, 97, 113, 79, 126, 111, 110, 99, 74, 121, 72, 71, 118, 117, 68, 98, 102, 65, 112, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 108, 107, 78, 105, 64, 69, 66,
101, 70, 75, 67, 73, 96, 55, 190, 57, 62, 51, 59, 41, 60, 119, 182, 37, 53, 50, 54, 48, 32, 45, 44, 173, 172, 11, 58, 169, 56, 167, 34, 165, 52, 43, 35, 161, 0, 23, 28, 157, 156, 26, 154, 29, 16, 21, 18, 20, 22, 27,
146, 25, 17, 47, 10, 15, 14, 3, 42, 1, 40, 39, 4, 7, 132, 131, 6, 33, 128]

F4

[223, 250, 249, 254, 243, 234, 185, 232, 183, 244, 229, 180, 242, 178, 240, 248, 237, 206, 253, 252, 171, 170, 201, 224, 247, 246, 165, 230, 195, 227, 161, 192, 215, 220, 205, 216, 218, 222, 153, 208, 151, 150, 212,
214, 219, 211, 217, 209, 239, 202, 207, 236, 235, 138, 137, 204, 135, 196, 199, 228, 194, 130, 225, 128, 63, 188, 61, 172, 251, 190, 189, 176, 191, 166, 245, 182, 187, 50, 241, 177, 143, 238, 175, 140, 43, 42, 233,
184, 231, 164, 37, 132, 35, 226, 33, 168, 31, 154, 221, 158, 27,155, 145, 156, 159, 22, 213, 149, 146, 210, 144, 152, 141, 14, 157, 136, 203, 142, 9, 200, 7, 198, 197, 4, 163, 131, 193, 0, 255, 124, 109, 108, 107,
126, 125, 112, 103, 102, 116, 118, 123, 115, 97, 113, 79, 106, 111, 76, 75, 122, 121, 120, 71, 100, 117, 68, 98, 114, 65, 104, 127, 90, 89, 94, 83, 91, 81, 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 110, 93, 72, 74, 78,
105, 64, 69, 66, 101, 70, 99, 67, 73, 96, 55, 58, 57, 62, 51, 186, 41, 40, 119, 52, 181, 53, 179, 34, 48, 56, 45, 174, 173, 60, 59, 46, 169, 32, 167, 54, 5, 38, 3, 162, 49, 160, 23, 28, 13, 24, 26, 30, 29, 16, 21, 18,
20, 148, 147, 19, 25, 17, 47, 10, 15, 44, 139, 11, 1, 12, 39, 134, 133, 36, 2, 6, 129, 8]

Algorithm 1 Random Xorshift Permutation Function
Input: In32 (32 bits word); Output: Out32 (a 32 bits word)

1: word1← (In32� ((In32� 28u)+4u))⊗ In32,
2: word2← word1∗b,
3: word3← (word2� 22u)⊗word2,
4: return Out32← word3.

middle bits) with a xor function. The number of selected
elements depends on the value of In32. Then, the second
function applies a modular multiplication in the cyclic group
of elements in {1, . . . ,231− 2}. The chosen multiplier b is a
primitive root of the modulus 231−1 and in this work is set
to 277803737. The latter function is a simple right xorshift on
the lowest bits to scramble them.

The next section proves that such a proposal provides a
chaotic PRNG.

IV. MATHEMATICAL CHAOS OF THE PROPOSED
DESIGN

A. First considerations

We want now to characterize how much chaotic is our
proposal. By chaos, we mean that the effects, on the output
sequence, of any slight alteration of either the seed or the
embedded PRNG cannot be predicted in the short or medium
term. Additionally, with two different strategies or seeds, we
can reach twice the same xt , but with two different xt+1: this
finite state machine does not necessarily enter into a loop, as at
each iteration we take a new value from the “outside world”,
that is, from the strategy (this machine does not iterate in a
vacuum). Furthermore, this strategy can be non-periodic, if we
consider a TRNG like a physical white noise or any physical
source of entropy of that kind.

To sum up, by designing a finite state machine that only
manipulate integers (no floating point issue), but which takes
a new input from the outside world at each iteration, we thus
obtain an iterative process working on an infinite space, and
which does not enter necessarily within a loop. We are then
left to evaluate the chaotic behavior of the proposal depicted
in Figure 1.

B. Proof of chaos: the internal process

Let us first specify some notations and definitions in use
in this section. In what follows, B is the Boolean set, while

R and N are the usual sets of real and integer numbers, with
the notations of N∗ and R+ for their positive (or equal to
zero) subsets. For a,b ∈N, Ja,bK is the set of integers: {a,a+
1, . . . ,b}. XN is the set of sequences belonging in X and sk

is the k-th term of a sequence s =
(
sk
)

k∈N, which may be a
vector. Finally, f n means the n-th composition of the function
f (i.e., f n = f ◦ f ◦ . . .◦ f ), while vi is the i-th component of
a vector v.

Consider a topological space (X ,τ) and a continuous
function f : X → X . A discrete dynamical system is said
chaotic [50] when it satisfies the three following properties
defined by Devaney [51]: Transitivity, Regularity, and Sensi-
bility to the initial conditions [52]. Note that various other
mathematical definitions of chaos, or of “unpredictability” for
a dynamical system, can be found in the literature, like Li-
Yorke and Knudsen chaos, mixing, topological and metrical
positive entropy. They all are non equivalent and complemen-
tary, but the Devaney’s formulation is usually the first one to
state.

We first focus on the proposal without the permutation,
which is referred as the internal process.

For N ∈ N∗, let us define the set

XN = BN×
(
BN
)N

,

and the following functions:

iN :
(
BN
)N −→ BN

(sk)k∈N 7−→ s0,

and
σN :

(
BN
)N −→

(
BN
)N

(sk)k∈N 7−→ (sk+1)k∈N.

They respectively extracts the first term of an inputted se-
quence (iN), and shifts it to the left by removing the first term
(σN).

We now define the distances:

dN,E : BN×BN −→ R+

(e,e′) 7−→ ∑
N
k=1 |ek− e′k|,

which is the Hamming distance on BN, and

dN,S :
(
BN
)N× (BN

)N −→ R+

(s,s′) 7−→ 9
N

∑
∞
k=0

dN,E(sk,s′k)
10k+1 .
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It has been already proven in [45] (by identifying, mutatis
mutandis, the set of subsets of J1,NK with BN) that, with the
distance dN = dN,E + dN,S, XN becomes a metric space. We
define

FN, f : BN×BN −→ BN

(b,e) 7−→ FN, f (b,e),

where ∀i ∈ J1,NK,

FN, f (b,e)i =

{
ei if bi = 0,
f (e)i else,

and
g f : X8 −→ X8

(e,s) 7−→ (F8, f (i8(s),e);σ8(s)) .

It has already been established, in [45], that such general
iterations are continuous on the metric space (X8,d8), and
that the discrete dynamical space x0 ∈ X8, xn+1 = g f (xn) is
chaotic, according to Devaney, on (X8,d8). It is shown too
that this dynamical system is strongly transitive [45].

Given n,N ∈ N,N > n, we define:

ψn,N : J1,N−n+1K×BN −→ Bn

(k,e) 7−→ (ek, . . . ,ek+n−1) ,

and, similarly, Ψn,N , as follows:

J1,N−n+1K×
(
BN
)N −→ (Bn)N(

k,(si)i∈N
)

7−→ (Ψn,N(Si))i∈N ,

and, finally,

h : X32 −→ X32

(e,s) 7−→
((

g f (ψ8,32(1,e),Ψ8,32(1,s))1,1 ,
....

g f (ψ8,32(1,e),Ψ8,32(1,s))1,8 ,
g f (ψ8,32(9,e),Ψ8,32(9,s))1,1 ,
....

g f (ψ8,32(9,e),Ψ8,32(9,s))1,8 ,
g f (ψ8,32(17,e),Ψ8,32(17,s))1,1 ,
....

g f (ψ8,32(17,e),Ψ8,32(17,s))1,8 ,
g f (ψ8,32(25,e),Ψ8,32(25,s))1,1 ,
....

g f (ψ8,32(25,e),Ψ8,32(25,s))1,8),
σ32(s)) .

We can remark that the h function is what is iterated inside
our proposal, if we except the permutation. Indeed, the four
blocks (binary digits ranging from 1 to 8, and then from 9 to
16, from 17 to 24, and finally from 25 to 32) appear well in
the first component of the output of h.

We will show that iterations of h are chaotic on X32 and,
using a topological semi-conjugacy, that the permutation does
not alter such an unpredictable behavior. In order to do so, we
must first check that,

Proposition 1. h is a continuous map on the metric space
(X32,d32).

Proof. Let us consider a sequence xn = (en,sn)n∈N ∈ X N
32,

which is convergent to an element x = (e,s) ∈ X N
32. As

d32(xn,x) −→ 0
= d32,E(en,e)+d32,S(sn,s),

and due to the fact that d32,E produces only integers, we have
∃n1 ∈ N,n > n1⇒ en = e.

Similarly, d32,S(sn,s)−→ 0, so ∃n2 ∈N such that n > n2⇒
d32,S(sn,s) <

1
1032 . Due to the way we defined dN,S, we can

conclude that ∀n > n2, the sequence sn has the same first 32
terms than the sequence s. And we can conclude from these
two facts that

∀n > max{n1,n2},h(en,sn)1 = h(e,s)1.

Finally, for n > n2, we have ∀i < 32, sn,i = si. So, ∀n > n2,

d32,S(sn,s) =
9
N

∑
∞
k=0

dN,E(sn,k,sk)

10k+1

=
9
N

∑
∞
k=0

dN,E(σ(sn)k,σ(s)k)

10k+1

=
d32,S(σ32(sn),σ32(s))

10
.

As d32,S(sn,s) −→ 0, we can deduce that
d32,S(σ32(sn),σ32(s))−→ 0, and so:

h(en,sn)2 −→ h(e,s)2.

As a conclusion, for all sequence xn = (en,sn)n∈N of X N
32,

if xn −→ x = (e,s) ∈ X32, then h(xn) −→ h(x). This is the
sequential characterization of the continuity, and so h is
continuous on (X32,d32).

Let us now show that:

Proposition 2. If g f is strongly transitive on X8, then h f is
chaotic according to Devaney on (X32,d32).

Proof. Let us first prove that,

Lemma 1. If g f is strongly transitive on X8, then h f is strongly
transitive on (X32,d32).

Proof. Let x = (e,s) and x̌ = (ě, š) two points of X32, and
ε > 0. We must find x′ = (e′,s′) inside the open ball B(x,ε) =
{u ∈ X32,d32(u,x)< ε} such that:

hn
f (x
′) = x̌.

Let us consider:

p1 = (ψ8,32(1,e);( Ψ8,32(1,s),Ψ8,32(32+1,s),
Ψ8,32(2×32+1,s), . . . ,
Ψ8,32(k×32+1,s), . . .)),

q1 = (ψ8,32(1, ě);( Ψ8,32(1, š),Ψ8,32(32+1, š),
Ψ8,32(2×32+1, š), . . . ,
Ψ8,32(k×32+1, š), . . .)),

in which the second components are infinite sequences of B8.
p1 and q1 belong to X8 and g f is strongly transitive, so there
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exist p̃1 = ((ẽ1, . . . ẽ8),(s̃1, s̃2, . . .)) in B(p1,ε) and n1 ∈N such
that:

gn1
f (p̃1) = q1.

We can apply the same process on points:

p2 = (ψ8,32(9,e);( Ψ8,32(9,s),Ψ8,32(32+9,s),
Ψ8,32(2×32+9,s), . . . ,
Ψ8,32(k×32+9,s), . . .)),

q2 = (ψ8,32(9, ě);( Ψ8,32(9, š),Ψ8,32(32+9, š),
Ψ8,32(2×32+9, š), . . . ,
Ψ8,32(k×32+9, š), . . .)),

leading to the existence of p̃2 ∈ X8 and n2 ∈ N such that
gn2

f (p̃2) = q2. The process if finally applied on the last two

“quarters” of X32 = B32 ×
(
B32
)N, dividing the first (resp.

second) set of the Cartesian product in 4 vectors of 8 bits
(resp. in sequences belonging in B8) thanks to φ8,32 (resp.
Φ8,32). This leads to the points of X8 defined below:

p3 = (ψ8,32(17,e);( Ψ8,32(17,s),Ψ8,32(32+17,s),
Ψ8,32(2×32+17,s), . . .)),

q3 = (ψ8,32(17, ě);( Ψ8,32(17, š),Ψ8,32(32+17, š),
Ψ8,32(2×32+17, š), . . .)),

p4 = (ψ8,32(25,e);( Ψ8,32(25,s),Ψ8,32(32+25,s),
Ψ8,32(2×32+25,s), . . .)),

q4 = (ψ8,32(25, ě);( Ψ8,32(25, š),Ψ8,32(32+25, š),
Ψ8,32(2×32+25, š), . . .)).

As previously, due to the strong transitivity of g f , we have the
existence of p̃3, p̃4 ∈ X8 and of n3,n4 ∈N such that gn3

f (p̃3) =

q3 and gn4
f (p̃4) = q4.

Let us introduce the following notation: p̃i = (ẽi, S̃1) for
i = 1, . . . ,4, and n0 = max4

i=1{ni}. We define:

s̃i
k =


Sk

i if k 6 ni,
0 if k ∈ Jni +1,n0K,

Sk−n0+ni
i else.

Indeed, for each quarter of X32 we have four different ni, i =
1..4, number of iterations to reach a given point of X8 by
starting to a neighborhood of another given point of this
quarter. By adding 0’s in the iteration sequence, we thus allow
to iterate in a vacuum the required number of times in each
quartet, so that after n0 iterations each 4 part of the targeted
point x′ are reached. Let us do it with details.

Let us consider the point p′ = (e′,s′) ∈ X32 defined by:
• e′ = (ẽ1,1, . . . , ẽ1,8, ẽ2,1, . . . , ẽ2,8, ẽ3,1, . . . , ẽ3,8,

ẽ4,1, . . . , ẽ4,8) ∈ B32,
• s′ = ((s̃1,8k+1, . . . , s̃1,8k+8, s̃2,8k+1, . . . , s̃2,8k+8,

s̃3,8k+1, . . . , s̃3,8k+8, s̃4,8k+1, . . . , s̃4,8k+8))k∈N, which is
a sequence of

(
B32
)N .

By construction, this point of X32 is such that hn0
f (x

′) = x̌ and
x′ ∈ B(x,ε).

Let us now finalize the proof of Prop. 2. h f being strongly
transitive on (X32,d32), it is thus transitive. We are then left
to establish the regularity of h f .

Let us consider x = (e,s) ∈ X32, and ε > 0. We need to find
a periodic point x′ = (e′,s′) inside B(x,ε). As ε may be lower
than 1, and due to the definition of d32, we must choose e′ = e.
Let k0 =−blog10(ε)c+1 the integer such that any point of the
form (e,(s0,s1, . . . ,sk0 ,a,b,c, . . .)) is inside B(x,ε).

Let us denote by x̌ = (ě, š) the point hk0
f (x). Due to the

strong transitivity of h f (Lemma 1), there is a point x̃ = (ẽ, s̃)
in B(x̌,0.1) and k1 ∈N such that hk1

f (x̃) = x. Finally, the point
x′ = (e,(s0,s1, . . . ,sk0 , s̃0, . . . , s̃k1 ,s0,s1, . . . ,sk0 , s̃0, . . . , s̃k1 , . . .) is
k0 + k1 periodic and inside the neighborhood B(x,ε) of x,
which proves the regularity, and then the chaotic behavior of
h f .

C. Proof of chaos: the whole generator

In the proposal, the internal function h f is iterated on the
current internal state, and with a and with a new generated
sequence taken from the outer strategy. Then, the output is
a permutation p of the internal state, which is not internally
modified. To prove that the whole generator G f is chaotic,
this permutation p must be integrated inside the iterations, to
see if the output has a chaotic behavior when modifying the
input (internal state or strategy). To write the generator as a
discrete dynamical system, we need to introduce the reverse
permutation p−1.

Let us define

P : X32 −→ X32

(e,s) 7−→ (p(e),s),

its inverse being

P−1 : X32 −→ X32

(e,s) 7−→ (p−1(e),s).

We can now introduce the following diagram:

X32
h f−−−−→ X32xP−1 P

y
X32

G f−−−−→ X32

P−1 and P are obviously continuous on (X32,d32), which
can be directly deduced by the sequential characterization of
the continuity. So the commutative diagram depicted above is
a topological conjugacy, and the generator

G f = P◦h f ◦P−1,

thus inherits the chaotic behavior of h f on (X32,d32).

V. CRYPTOGRAPHIC ANALYSIS

After having investigated the chaos properties of our gen-
erator, we now discuss about security.

Definition V.1. A cryptographic PRNG (cPRNG) is a deter-
ministic algorithm G transforming strings into strings and such
that, for any seed s of length m, G(s) (the output of G on the
input s) has size lG(m) with lG(m)> m.
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Definition V.2. A cPRNG G is secure if for any probabilistic
polynomial time algorithm D, for any positive polynomial p,
and for all sufficiently large m s,

|P[D(G(δm)) = 1]−P[D(δlG(m)) = 1]|< 1
p(m)

,

where δm is the uniform distribution on Bm and the probabil-
ities P are taken over δm, δlG(m)

as well as over the internal
coin tosses of D.

Intuitively, it means that there is no polynomial time algo-
rithm that can distinguish a perfect uniform random generator
from G with a non negligible probability.

Now fix a seed and suppose that the strategy in our generator
is computed by a secure cPRNG, say G′, then the whole
process, say G, is secure too. Indeed it has been shown that:

Proposition 3. Let f :Bn→Bn, Γ( f ) its iteration graph, M̌ its
adjacency matrix and M a n×n matrix defined by Mi j =

1
n M̌i j

if i 6= j and Mii = 1− 1
n

n
∑

j=1, j 6=i
M̌i j otherwise.

If Γ( f ) is strongly connected, then the output of GCIPRNG f
follows a law that tends to the uniform distribution if and only
if M is a double stochastic matrix.

With this result, is not hard to see that the proposed
algorithm preserves the security property.

Proposition 4. If in the algorithm described in Figure 1 the
strategy is computed by a secure cPRNGs G′, then for any
fixed seed the whole algorithm is secure (with respect to the
input of G′).

Proof. Suppose that G′ takes in input m bits and returns 4m
bit (thus lG′(m) = 4m); since G′ is secure, for any probabilistic
polynomial time algorithm D, for any positive polynomial p,
and for all sufficiently large m s,

|P[D(G′(δm)) = 1]−P[D(δ4m) = 1]|< 1
p(m)

.

Let us decompose the algorithm in Figure 1 in three parts
G = P ◦C ◦G′ i.e., we firstly produce a strategy, then we
apply the chaotic iterations C as described before and finally
a permutation function P.

Fix a probabilistic polynomial time algorithm D and a
polynomial p, our aim is to prove that for any sufficiently
large m

|P[D(G(δm)) = 1]−P[D(δ4m) = 1]|< 1
p(m)

,

that is equivalent to

|P[D(P(C(G′(δm)))) = 1]−P[D(δ4m) = 1]|< 1
p(m)

.

Since the CIs have a uniformed distributed output (in the sense
of the proposition above)

P[D(C(δ4m)) = 1] = P[D(δ4m) = 1],

and since P is a bijective function we also have

P[D(P(δ4m)) = 1] = P[D(δ4m) = 1],

and thus the thesis can be rewritten as

|P[D(P(C(G′(δm)))) = 1]−P[D(P(C(δ4m))) = 1]|< 1
p(m)

, and the formula above is true, because G′ is secure for any
probabilistic polynomial time algorithm, and so it is secure for
D◦P◦C too.

At this point, we have at hand a tool that is both chaotic and
cryptographically secure, thus achieving two objectives that
are often both sought-after and rarely achieved in a rigorous
manner [53].

VI. HARDWARE IMPLEMENTATION ON FPGA
A. General Presentation

This new platform is an alternative hardware and test
concept of the Zynq one that has been proposed in the research
work [36]. Here, the platform is fully independent of any CPU
(Zynq) and it is fully reconfigurable with a main software.

Figure 2 presents the main architecture of the AXI-test
platform, which consists of the following components. A
Decoder Command Controller Unit (DCCU), a Design Un-
der Test (DUT) controller based on the GCIPRNG, and an
Universal Asynchronous Receiver Transmitter (UART) serial
port. All these units are compatible with the AXI-4 Lite bus
protocol, which resumes the data transition and handshaking
communication between units. Additionally, each of these
units has an address map and an identifier (ID), which can be
read and reconfigured. On the one hand, the DCCU decodes
all commands received from both UART (PC-FPGA-PC) and
DUT controller. It also chooses the strategy used in the
GCIPRNG. Additionally, the DCCU defines latency of the
final outputs, and the read&write operations in the internal
registers of the platform (UART, strategy, and GCIPRNG that
is tested). Finally, a software application is deployed with this
platform, to have a full control and access to the GCIPRNGs
tested in FPGA. Note that this AXI-test platform allows too
the runs of TestU01 statistical tests in real time.

For the experiments, the test platform is designed and im-
plemented using Xilinx Vivado tools and two FPGA prototype
boards, namely the ZYBO board and Nexys V.4 Artix−7.
The system is embedded with at least 3 strategies for the
GCIPRNG core (unary, parallel, or generalized chaotic itera-
tions), where the hardware resources are 2.5 times lower than
in the Zynq platform [36], with 1211 LUT (1.19%), 1467 FF
(1.16%), and 211Mhz respectively.

Fig. 2: FPGA Test platform for GCIPRNG
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TABLE II: FPGA Implementation of 32 bits and 64 bits GCIPRNG using different linear PRNGs as strategies

PRNG 32 bits GCIPRNG 64 bits GCIPRNG
Functions Negation F1 F2 Negation F1 F2
Strategies Taus88 LFSR113 Taus88 LFSR113 Taus88 LFSR113 Taus88+ LFSR113 xorshift128P64 Taus88+ LFSR113 xorshift128P64 Taus88+ LFSR113 xorshift128P64

A
R

E
A LUT 263 273 421 433 421 415 617 662 874 914 881 906

FF 305 344 412 518 412 444 740 740 748 785 748 785
Total Area (LUT+FF)*8 4544 4936 6664 7608 6664 6872 10856 11216 12976 13592 13032 13528

SP
E

E
D Frequency (Mhz) 199.3 217.3 200.68 197.32 194.93 205.76 180.15 172.5 177.03 171.71 176.09 169.22

Output Latency 1 1 1 1 1 1 1 1 1 1 1 1
Throughput/Latency (Gbps) 6.38 6.95 6.42 6.31 6.24 6.58 11.53 11.04 11.33 10.99 11.27 10.83

T
E

ST NIST PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS
TestU01 PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS PASS

TABLE III: ASIC implementation of GCIPRNG with other PRNGs Lightweight Primitives

PRNG

GCIPRNG
With ermutation

GCIPRNG
Without permutation

Other PRNGs lightweight primitives

GCI-NEG
with LFSR113

GCI-F1
with LFSR113

GCI-NEG
with LFSR113

GCI-F1
with LFSR113

PRNG Stream chiper TRNG
Warbler

[54]
Warbler

[55]
LAMED

[56]
Melia-Segui

[57]
J3Gen
[58]

AKARI1B
[59]

Grain
[60]

Trivium
[60]

Grain
[61]

Trivium
[61]

PVT
[62]

[63]

Technology (nm) 65 65 65 65 65 65 *** *** 130 90 130 130 65 65 45 180
Gate Elements (GE µm2) 3584.72 4774,30 1709 2799,3 511 1238 1585 761 1190 1749 1259 2088 1126 1986 4004 **
Frequency (Mhz) 296 279 301 740 1370 689 *** *** *** *** *** *** 1020 962 **** ***
Output Latency 1 1 5 5 160 160 194 220 *** *** 160 1152 *** *** 32 ***
Throughput (Gbps) 9.4 8.9 23.6 /5 9.65 /5 0.556 0.396 *** *** *** *** *** *** 1.02 0.962 2.4∗106 5∗103

Total Power (mw) 1.8 2.36 0.6 1.04 *** 5.83 2.04 *** *** *** *** *** 2.04 3.88 7.0 3.6
Throughput@14Mhz (Kbps) 3.2x106 3x106 17.8x106 /5 8.3x106/5 *** *** *** *** *** *** *** *** *** *** *** ***
Total Power@14Mhz (µW ) 102.8 135.1 60.1 35.7 *** *** *** *** *** *** *** *** *** *** *** ***
Throughput@100Khz (Kbps) 4.3x106 3.2x106 16x106/5 11x106/5 20 *** 8.2 *** *** 14.2 100 100 *** *** *** ***
Total Power@100Khz (µW ) 6.8 7.8 3.31 4.5 1.3 *** *** *** 156.3 nW 0.182 0.78 1.44 2.04 3.88 *** ***
NIST PASS PASS PASS PASS PASS PASS PASS NO PASS PASS PASS PASS PASS PASS PASS PASS
TestU01 PASS PASS PASS PASS NO NO NO NO NO NO NO NO NO NO NO NO

B. Global Comparison

Table II presents the results of two different implementa-
tions of our proposal on FPGA with their TestU01 statistical
test evaluations. During these implementations, we considered
five distinct Boolean functions, namely the negation and GCI
F1, F2 as mentioned in Section III (F3 and F4 have the same
behaviors than F1 and F2). To pass TestU01, the multiplier
constant “b” of the permutation function (see Algorithm 1)
must be equal to 811 for all strategies based 32 bits generators
and 995 for 64 bits (as a comparison, we found 277803737
for PCG32). Linear PRNGs are used as strategies (inputted
generators), which are LFSR113, Taus88, and xorshift128P64.
All the design is synchronized with a main clock of 125Mhz
and reset. Obtained results are described hereafter.

Negation Function. Three implementations have been re-
alized and evaluated for each GCIPRNG width (32/64 bits).
We have obtained that the negation outperforms other GCI
functions in terms of throughput and area. For 32 bits gener-
ators, it is obviously more efficient than its best competitors
recalled in this paper, as its throughput is between 1 and 6
times larger than the other chaotic PRNGs (that cannot pass
TestU01). However, the exception comes from [26] using the
logistic map and Berouili [64]: it is true that the latter has a
throughput of 7.5 and 8.5 Gbps for 32 bits (we discarded [26],
as this latter is fully dependent on Matlab Simulink macros,
which is not relevant for ASIC implementation). Similarly, our
three implementations using the negation function exhibit less
robust results compared to XOR-CIPRNG [36] for throughput
compared to the area.

Finally, compared to the 32 bits PRNGs that can also pass
TestU01, our 64 bits generators with the negation function
use less area and are faster. To conclude this part, and when

considering the negation, our proposal using LFSR113 as
strategy is our best candidate for 32 bits generating 6.96 Gbps,
which is increased to 11.5 Gbps for 64 bits generators.

GCI functions. We performed similar experiments than for
the negation function. We obtained a lower performance in
terms of throughout when compared with the negation func-
tion, which is due to the function implementation, and because
in the negation we iterate a very simple logical operation (see
Algorithm 1 to compare). However, despite its use of a bigger
constant, which leads to a longer data path, the proposal with
GCI functions does not consume any DSP block of FPGA:
logic operators are sufficient. Additionally, results show that
the three implementations with GCI functions perform better
than all the other chaotic PRNGs that can pass the TestU01, if
we except both our proposal with the negation and the XOR-
CIPRNG [36]. Their performances are close to what has been
obtained with the negation function, or to [36] with Taus88 as
strategy, while GCIPRNG makes harder to reverse the process
without knowing the internal transition function. However,
XOR-CIPRNG [36] is limited to 32 bits (8.5 Gbps) and uses
three different strategies (two 64 bits and one 32 bits), when
GCIPRNG is up to 64 bits (≈ 11.5 Gbps) while less strategies
are used (two 32 bits). Indeed, GCIPRNG is much practical
for embedded cryptographical applications and system with a
flexibility of integration in SoC for different sizes.

C. Statistical Tests Analysis
The test batteries have been run in Z-book Intel Core

i7−4800MQCPU@2.70GHz×8, working with Ubuntu 16.4
(64bits) and GCC 5.4.0. We have verified that all what
we proposed can pass all statistical tests of TestU01, from
SmallCruh to BigCrush. Let us recall that the permutation
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function [46] does not pass Crush and BigCrush when the
space is lower than 36 bits, while in our case it does with
only 32 bits and a lower modular multiplicative constant. Note
that these results are naturally improved when we consider 64
outputted bits, leading to a better throughput.

D. Discussion

We have proven that if the generator provided in input
is cryptographically secure, then the new generator resulting
from our post-processing preserves this property. Of course,
if the input generator is not safe (like the LFSR for example),
ours is unlikely to be safe. In other words, this processing
does not reduce the security of the generator provided in the
input, and whether or not it is safe or not, this post-processing
remains interesting. First of all, it has been proven that the
output can change chaotically when the input is modified as
long as the iteration graph is strongly connected. That is why,
in connection with chaos, the output produced numbers can
statistically appear as random (full success at TestU01), even
if the input generator is statistically biased. In other words,
the randomness is improved, at least from a statistical point
of view. The resulting generator is fast, specifically designed
for FPGA, and its architecture could eventually be massively
parallelized on other architectures.

VII. ASIC IMPLEMENTATION ANALYSIS AND
REAL-WORLD APPLICATIONS

In order to illustrate the hardware complexity of the PRNG
based on generalized chaotic iterations, different ASIC im-
plementation of our proposal are reported. Our GCIPRNG
generators have been implemented and tested with TestU01
first with the previously defined permutation function (1)
and next without such function but with generating a 32-
bits number at each 5 cycles only. Indeed, an 65-nm CMOS
Low leakage process technology node of UMC and Cadence
flow V 14.2 are used in our experiments. Table III summarizes
the ASIC implementation, which uses two global flows: the
synthesis Cadence RTL Compiler is based on the Worst Case
library (WC=108◦C and 1.08 Volt), while Multi Mode Multi
Corner (matrix MMMC: 3−SDC × 3−Function-Mode ×
2−Library) is applied for Place and Route flow (Cadence
Encounter Digital Implementation) including both worst and
best case library (BC=−40◦C and 1.32 Volt). The obtained
area in term of logic gate equivalent is the rate

area o f P & R (µm2)

area o f logic AND(65nm) = 1.44 (µm2)
.

Additionally, the Static Timing Analysis (STA) and power
analysis are obtained after Signoff Verification flow and Gate-
Level Simulation (using Switching Activity Interchange (SAI))
for each MMMC. Meanwhile, some researchers do not con-
sider the last two parameters for power estimation, which
further induces a large difference when considering SAI in-
formation for dynamic power analysis.

Table III resumes the ASIC comparison results of
GCIPRNG with other PRNGs for different applications and
for each frequency band as: Low frequency 100Khz (LF), high

frequency 13.56MHz (HF), and Ultra high frequency (UHF)
(as defined in ISO/IEC 14223, 14443 [10], or 18000 [11]).
Indeed, as noticed in the introduction, we consider the power
and the throughput comparison for RFID EPC GEN-1&2 real
applications under 100Khz ( [18]). Our proposal GCIPRNG
satisfies the power consumption constraints (3.3µW to 7.8µW )
as it ranges between 5.4µW and 19µW [12] [13]. Moreover,
the power consumption of our generators can be reduced if
we consider a low power embedded strategy (linear PRNG)
or disabling the permutation function. The same results for the
area estimated less than 5000 GE as recommended [12]. Fi-
nally, even if the performance in terms of power consumption
and the deployed area is lower than that of some other PRNG
for these applications (RFID EPC GEN-1&2), our approach
is the one that passes the whole TestU01 with the highest
throughput. Additionally, based on HF and UHF frequencies,
our generators provide the highest throughput (3.2Gbps to
9.4Gbps) and low power (0.6mW to 2.3mW) with less of 5%
of total leakage power for different GCIPRNGs.

Finally, our generators GCIPRNG can be easily integrated
to the internet of things (IoT,WSN) or smart card and is re-
configurable for any data length (8 to 128-bits). Moreover, our
approach based on generating Boolean function by suppressing
Hamilton cycle from generalized iteration graph equilibrium,
can provide more than 1 million functions to be integrated.
We can compare with an example of IoT [65] that uses
MSP430g2553 (16-bits) requires approximately 25.8mA ⇒
77.4mW (3V) and security part based on AES that consumes
24µW to generate 16-bits. Moreover, with the same frequency
band (LF), our solution consumes between 3 to 7 times less
energy.

VIII. CONCLUSION

In this research work, we have introduced a new chaotic
PRNG implemented in FPGA, which is based on the combi-
nation of parallel executions of generalized chaotic iterations
and of an efficient permutation scheme. Five Boolean functions
have been iterated: the vectorial negation and four issued from
removing a Hamilton cycle in the N−cube. Three interesting
strategy builders have been evaluated for each of them. These
six variations lead to an hardware generator with one of the
best throughput of the literature, and that can pass the most
stringent statistical batteries of tests. If we consider the two
conditions of throughput and statistics, we thus have obtained
one of the best existing hardware generator. Last, but not least,
we have rigorously proven too the chaotic and cryptographic
behaviors of the whole proposal, and for the two Boolean
functions.
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8417-9417-8. 362 pages. Publication de la thse de doctorat.

[51] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd
Edition. Westview press, March 2003.

[52] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On devaney’s
definition of chaos,” The American Mathematical Monthly, vol. 99, no. 4,
pp. 332–334, 1992.

[53] Y. Deng, H. Hu, N. Xiong, W. Xiong, and L. Liu, “A general hybrid
model for chaos robust synchronization and degradation reduction,”
Information Sciences, vol. 305, no. Complete, pp. 146–164, 2015.

[54] G. Yang, M. D. Aagaard, and G. Gong, “Efficient hardware implementa-
tions of the warbler pseudorandom number generator.” IACR Cryptology
ePrint Archive, vol. 2015, p. 789, 2015.

[55] K. Mandal, X. Fan, and G. Gong, “Design and implementation of
warbler family of lightweight pseudorandom number generators for
smart devices,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 15, no. 1, p. 1, 2016.

[56] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador, and
A. Ribagorda, “Lameda prng for epc class-1 generation-2 rfid specifi-
cation,” Computer Standards & Interfaces, vol. 31, no. 1, pp. 88–97,
2009.

[57] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-Joancomarti, “Analysis
and improvement of a pseudorandom number generator for epc gen2
tags,” in Financial Cryptography and Data Security, R. Sion, R. Curt-
mola, S. Dietrich, A. Kiayias, J. M. Miret, K. Sako, and F. Sebé, Eds.
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University. He received a Ph.D. in Computer Science
in 2006 in the FEMTO-ST institute. He has applied
for a postdoctoral position at INRIA Saclay Ile de
France in 2006. His research focuses on discrete dy-
namic systems (data hiding, pseudorandom number
generators, hash function) and on bioinformatics, es-
pecially in gene evolution prediction. He has written
more than 25 scientific articles in these areas.

Luigi Marangio received his Master degree in
Mathematics from the University of Pisa in 2017
and he is currently Ph.D student in Computer Sci-
ence in the Femto-ST Institute, Bourgogne Franche-
Comté University, France. His research project in-
volves the study of dynamical systems in several
situations, with particular focus on pseudorandom
number generators and some not well-understood
chaotic phenomena that comes out from different
situations in science (for instance, toy models in
biology or chemistry).

Stefano Galatolo is Associate Professor at Diparti-
mento di Matematica, University of Pisa and director
of Centro Interdipartimentale per lo Studio dei Sis-
temi Complessi. His research focuses on dynamical
systems, its statistical behavior and computational
methods. He is author of about 50 papers in these
fields and currently editor of Chaos Solitons and
Fractals and Journal of Fixed Point Theory and
Applications. .


