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Abstract

Recently, Recurrent Neural Network (RNN) control schemes for redundant manipulators have 

been extensively studied. These control schemes demonstrate superior computational efficiency, 

control precision, and control robustness. However, they lack planning completeness. This paper 

explains why RNN control schemes suffer from the problem. Based on the analysis, this work 

presents a new random RNN control scheme, which 1) introduces randomness into RNN to 

address the planning completeness problem, 2) improves control precision with a new 

optimization target, 3) improves planning efficiency through learning from exploration. 

Theoretical analyses are used to prove the global stability, the planning completeness, and the 

computational complexity of the proposed method. Software simulation is provided to 

demonstrate the improved robustness against noise, the planning completeness and the improved 

planning efficiency of the proposed method over benchmark RNN control schemes. Real-world 

experiments are presented to demonstrate the application of the proposed method.
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I. INTRODUCTION

Redundant manipulators demonstrated superior dexterity and are widely applied to 

intelligent robots. However, the redundant manipulator motion planning problem remains 

challenging. Actually, it has been proven that this problem is PSPACE-hard, when obstacles 

exist [1]. The redundant manipulator motion planning problem is to find the optimal path in 

the manipulator configuration space that delivers the end-effector to the desired target 

without breaking constraints [2]. The configuration space consists of all feasible arm joint 

configurations, q(t) ∈ ℝm, where m denotes the Degrees of Freedom (DoF) of the arm. Given 

the manipulator model, each joint configuration corresponds to a uniquely defined end-
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effector pose as r(t) = f (q(t)), where f ( ⋅ ) is the kinematic model. Therefore, the 

configuration space is mapped to the task space [3]. Correspondingly, the n-dimensional task 

space contains all feasible end-effector poses, r(t) ∈ ℝn .

Searching for the solution in the configuration space given a task and the kinematic model is 

known as the kinematic control problem [1]. The problem is often solved in the velocity 

space because the partial differentiation of the kinematic model linearizes and simplifies the 

problem to:

ṙt = Jq̇t, (1)

where J = ∂ f / ∂q is the n × m Jacobian matrix [2].

For redundant manipulators, an infinite number of solutions satisfy Eqn. 1, because the 

redundancy m – n > 0. The redundancy corresponds to the self motion, which is useful in 

obstacle avoidance [3]. Existing algorithms utilizing the redundancy for obstacle avoidance 

can be generally divided into two categories. One utilizes “Gradient Projection” Methods to 

determine the joint velocity vector q̇0 that corresponds the self motion of avoiding obstacles 

[3]. The components of q̇0 that are in the null space of J can be selected by (I − J† J). By 

adding the selected components to the motion that moves the end-effector J†r. , the optimal 

joint velocity is uniquely defined as: q. = J†r. + I − J†J q. 0, where J† is the Moore-Penrose 

pseudo-inverse defined as J† = JT JJT −1
 [2], [4]. The second family of algorithms treats the 

obstacle avoidance as constraints and converts them into tasks, through which the task space 

is augmented to uniquely define the solution [2], [4]. Mathematically, f y(q(t)) ∈ ℝs denotes 

the constraint of obstacle avoidance, where s is the dimension of the constraints, then the 

task is augmented as: rA(t) = f (q(t))T, f y(q(t))T T, and the solution can be uniquely 

determined when s = m − n, as:

r. At = JAq. t, (2a)

JA = JT, Jy
T T, (2b)

where Jy = ∂ f y/ ∂q .

From the previous paragraph we know the problem is mathematically well-defined. 

However, it is still challenging to solve the problem because the configuration spaces are 

often concave while obstacles exist. Neural network based methods attract attention recently, 

and many reported significant improvement of robot performance [5]–[18].

Most of these recent studies approach the problem from the control theory perspective, and 

focus on improving control stability [19], [20] or system adaptiveness [21], [22]. In real-

world robotic applications, the solutions from the motion planning perspective are preferable 
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because of the requirements on applicability, effectiveness, and efficiency. Among the works 

that approach the problem from the motion planning perspective, some of them assume 

obstacle-free environments. For example, Jin et al. proposed a Recurrent Neural Network 

(RNN) based solution to optimize motions for maximizing the manipulability of redundant 

manipulators [23]. Li et al. proposed a RNN control scheme to address the cooperative 

control problem for distributed redundant manipulators [24]. For environments with 

obstacles, Zhang et al. treats the condition of collision avoidance as an additional constraint 

and solved the motion planning in the velocity space [25]. Guo et al. extended the work into 

the acceleration space, and the proposed scheme guarantees minimum-acceleration-norm 

[26]. More discussion and comparison on neural network based motion planning can be 

found in [27]. Although these RNN control schemes have demonstrated improved control 

precision and efficiency, they model the problem as the constrained optimization, therefore, 

they suffer from the local minimum problem and lack the planning completeness.

This work aims to address the planning incompleteness problem of these neural network-

based control schemes in environments with obstacles. Being different from these existing 

works, this work proposed a novel random RNN control scheme, inspired by the recent 

finding that neural network randomness correlates with superior learning abilities [28]. 

Therefore, the proposed method inherits the robustness, the computational efficiency, and 

the effectiveness of neural network-based control schemes, while it also achieves the 

probabilistic planning completeness. Furthermore, through learning in the process of 

exploration, the proposed method balances the random exploration of environments with the 

heuristic search and improves the planning effectiveness. In summary, the main 

contributions of this work are:

• We propose a novel Recurrent Neural Network (RNN) control scheme to address 

the planning incomplete problem. The proposed method inherits the advantages 

of classical RNN control schemes, including high precision, the high efficiency 

and the high robustness from RNN. Meanwhile, it addressed the local minimum 

problem and achieved guaranteed probabilistic planning completeness.

• We introduce Short Term Memory (STM) model into the proposed method to 

learn environmental complexity from exploration. The proposed scheme 

balances the random exploration and the heuristic search to improve planning 

efficiency.

• We prove the global stability, the planning completeness and show the 

computational complexity of the proposed method.

• We study the control precision, the robustness against noise and the planning 

completeness and the planning efficiency of the proposed method through 

comparing it with other three algorithms.

• We demonstrate the application of the proposed method in both software 

simulation and real-world experiments.

The rest of this paper is organized as follows: Section II presents the proposed RNN control 

schemes in detail. Section III presents the theoretical analyses of the proposed method. 

Section IV compares the proposed method with other three schemes in simulation 
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experiment, and further verifies it in real-world experiments. The paper concluded with the 

discussion in Section V.

II. RANDOM RECURRENT NEURAL NETWORK FOR REDUNDANT 

MANIPULATOR MOTION PLANNING

A. Solving Kinematic Control in Dual Space with Recurrent Neural Networks

Recurrent Neural Networks (RNNs) refer to networks that have inter-layer connections. 

RNNs are intrinsically parallel and capable of processing sequential or time-varying data 

[29]. RNNs showed superior robustness and efficiency on solving the Quadratic 

Programming problem (QP) [30], [31], thus have been used for redundant manipulator 

control. The kinematic control of redundant manipulators can be express in the form of QP 

as:

min
q.

q. TWq. + cTq. , (3a)

s.t. ṙd = Jq. , (3b)

q ∈ Ω, (3c)

where W and c are two weighting factors that are a m × m real symmetric matrix and a real 

valued m-dimensional vector, respectively, J = ∂ f / ∂q ∈ ℝn × m, ṙd = ∂r(t)/ ∂t ∈ ℝn, and 

q. = ∂q/ ∂t, q ∈ Ω, Ω ⊂ ℝm denotes the configuration space of the redundant manipulator.

To simplify the QP problem, we project it into its dual space, through designing the 

Lagrange multiplier, λ ∈ ℝn, to correspond to the constraint (Eqn. 3b). The problem 

described in Eqn. 3 is simplified to:

L(q. , λ) = q. TWq. + cTq. + λT r. d − Jq. . (4)

The Karush-Kuhn-Tucker condition (Chapter 5.5.3 in [32]) ensures that the solution to Eqn. 

4 equals to the solution to the following equation:

q. = PΩ q. − ∂L
∂q. ,

ṙd = Jq̇,
(5)

where PΩ(x) = argminy ∈ Ω y − x  is a projection function from domain Ω′ to Ω, where x ∈ Ω′

and y ∈ Ω .
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Eqn. 5 naturally matches the neural dynamics of a projected Recurrent Neural network (Eqn. 

6), and it can be proved that the equilibrium of the network equals to the optimal solution of 

the system described in Eqn. 3 [33], [34].

ϵq
..

= − q. + PΩ q. − ∂L
∂q. , (6a)

ϵλ̇ = ṙd − Jq̇, (6b)

where ϵ > 0 is a scaling factor. These types of projected RNN has simple architeture as they 

are a single layer neural network, in which neurons are fully connected. The output of the 

neural network goes to a projection function as explained in Eqn. 9.

B. Improve Control Precision and Robustness by Closing the Loop of RNN Control 
Scheme

The control precision and the robustness against noise are critical in motion planning, 

because: 1) the control precision defines the minimum safety distance to obstacles, which 

shrinks the configuration space; 2) high control precision and robustness against noise 

ensure the successful execution of planning results. Classical RNN control schemes have 

demonstrated improvement on the control precision, the robustness and the efficiency of 

redundant manipulator control, compared with their Jacobian inversion based equivalents 

[35], we identified the problem of error accumulations in these control schemes and design a 

new RNN control scheme to overcome the error accumulation problem through introducing 

a new optimization target. We first introduced the new design and the proof of the 

effectiveness will be presented in Section III-A.

Intuitively, feeding the tracking errors, e = rd − r, back into the optimization target forces 

RNN to minimize the errors. Correspondingly, the new optimization target can be designed 

as:

min
q.

q. Tq. + keTe , (7)

where k > 0 is a weighting factor and r is the end effector position [36]. Eqn. 7 will direct 

RNNs to minimize the magnitude of e, because q. Tq. ≥ 0 and eTe ≥ 0. Control precision and 

robustness of RNNs based on Eqn. 7 are analyzed in theory in Subsection III-A, and 

empirically compared in Subsection IV-A.

With the new defined optimization function (Eqn. 7), Eqn. 4 becomes:

L(q. , λ) = q. Tq. + keTe + λT r. d − Jq. . (8)

The constraints of joint physical limits can be fulfilled by designing a proper projection 

function. A projection function has the form of:
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PΩ(x) =
d− for x ≤ d−,
x for d− < x < d+,

d+ for d+ ≤ x,
(9)

where we design the boundary conditions as:

d− = max −c1 q − q− , w− ,

d+ = min −c2 q − q+ , w+ .
(10)

Eqn. 10 ensures the joint limits are met. This is because when joints approach the upper (q+) 

and the lower (q−) bounds of joint limits, the magnitudes of the two terms, −c1 q − q−  and 

−c2 q − q+  decrease to zeros, as the speed regulated by two positive scaling factors, c1 and 

c2. These two scaling factors can be empirically tuned to clamp the joint accelerations, 

which improves the control precision in mechanics with non-negligible inertial, for example, 

cable-driven manipulators. w+ and w− are the upper and the lower bound of the joint speed. 

They can be used to clamp movement speeds, which improve manipulator performance 

through regulating motion patterns [36].

By substituting Eqn. 8, 9 and 10 into Eqn. 6, we have a new RNN control scheme that meets 

the constraints of joint limits and joint speeds in obstacle free environments.

C. Obstacle Avoidance and Complete Motion Planning with RNN

Because of the flexibility of RNN architecture, the obstacle avoidance problem can be 

addressed by both augmenting the task space, and converting the obstacle avoidance 
constraints into bounding conditions [25], [26]. The former adopts the scheme explained in 

Subsection II-A. To be more specific, the Jacobian and the task are augmented by the 

obstacle avoidance constraints, as explained in Eqn. 2. These methods require the dimension 

of the extra tasks, s, to meet the condition s ≤ m − n. The latter does not have such 

limitation. In order to explain it, we first introduce the concept of “critical points”, as 

indicated by green points in Fig. 2. The critical points are the points on the manipulator, 

whose distances to obstacles equal or are smaller than the safety threshold. Let’s denote the 

critical points as ro,i, and denote the nearest points on the obstacle by oo,i, where i indicates 

the i-th critical point. Then the algorithms in the latter category avoid a collision through 

exerting “escaping velocity” on the critical points.

The escaping velocity denotes the velocity that moves the critical points away from the 

obstacles:

r. o = a ro − oo , (11)

where a is a semi-positive scaling factor. Any critical point velocity between zero and the 

escaping velocity will avoid a collision. It is obvious that this method converts the 
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constraints of obstacle avoidance, r.o, i = a ro, i − oo, i , into a closed set in the configuration 

space, and in the RNN control scheme, this set bounds neuron activities:

di
−, 0 , for r. o, i < 0,

0, di
+ , otherwise.

(12)

Because in this scheme, the obstacle avoidance does not explicitly “consumed” the 

manipulator redundancy, algorithms based on this scheme can deal with the infinite number 

of constraints and are more flexible.

From Eqn. 12 we know that in classical RNN control schemes, the target globally “drags” 

the end effector to move toward it, while obstacles “push” the critical points to move away. 

Intuitively, this causes the local minimum problem and the planning is guaranteed to be 

complete. This problem is visualized in Fig. 2. In the figure, RNN schemes failed to drive 

the manipulator from the position indicated by the solid red circle, to the target indicated by 

the dashed red circle, because the obstacle made the configuration concave and trapped the 

manipulator. The mathematical explanation of this local minimum problem is in Section III-

B.

In order to address this problem, the manipulator needs the ability to “jump” out of local 

minimum, and the neural network randomness can be utilized because recent study 

demonstrated that the randomness correlated with superior learning abilities and has been 

used to demonstrate human-level concept learning ability [28].

In order to grant RNNs the randomness, we replace the global attraction from the target with 

random attractions. The random attractions, rrandom ∈ ℝn, is designed as:

r. d = g ⋅ rrandom − r , (13)

where g is a non-zero weighting factor that regulates the attractions.

D. Balancing Random Exploration and Heuristic Search with Short Term Memory Model

The local minimum problem was due to the concave configuration space. In sparse 

environments, the heuristic search has a high probability of success and is efficient, 

therefore, is preferable. In environments with complex obstacles, the heuristic search is easy 

to fail and the random exploration is the key to success. However, the full knowledge of the 

environments is often not available, and it is known, calculating the configuration space for 

the environment is computational expensive [2]. In this work, we balance the heuristic 

search and the random exploration, through learning the environmental complexity online.

This environmental complexity can be learned by probabilistic methods, such as the classical 

theory of probability or Bayesian methods. The classical theory of probability is simple in 

concept as it counts the percentage of failed exploration, but these algorithms prone to bias 

[37]. For example, in a scenario that the target is inside a corridor, when the manipulator’s 
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initial position is unluckily located, the manipulator reaches obstacles before it reaches the 

targets. Therefore, the algorithm degenerates to pure random exploration because collisions 

are frequent. However, we know the configuration space is wide and nicely connected. 

Bayesian methods do not suffer from this problem, because of the existence of the prior. 

However, the prior depends on the configuration space and is difficult to achieve [38], [39].

Shunting Short Term Memory model (STM) is a solution to this online learning problem. 

STM is a robust and powerful tool that describes how living creatures adapt to 

environmental changes and has been widely used in addressing the system adaptiveness 

problem [40]. STM was derived from the additive Short Term Memory model, which is 

mathematically described as [40], [41]:

dxi
dt = − Aixi + ∑

j = 1

N
f j x j B jiz ji

( + ) − ∑
j = 1

N
g j x j C jiz ji

( − ) + Ii,

where −Aixi is a passive decay; ∑ j = 1
N f j x j B jiz ji

( + ) is the positive feedback and 

∑ j = 1
N g j x j C jiz ji

( − ) is the negative feedback; Ii is the input inspiration (see detailed 

explanation in [40]).

Algorithm 1

Proposed Random RNN Control Scheme

Input: Target (rT), Manipulator Start Position (r0)

Output: Sequence of Joint States (C)

 Init : rs=r0, rd=r0, Ts = {[rs, rd, ∅]}, RRNN
†
, re

‡

1: if (Neural activity of RRNNSTM > rand (0,1)) then

2:  rd = random point in the task space

3: else

4:  rd = rT

5: end if

6: Select the reached goals( rd in Ts), which is closes to rd, use it as rs

7: RRNNRNN plan motion for given rs and rd, and produce a sequence of commands cs,d

8: while re>0 do

9:  rr = end effector position

10:  if (rd = rr) then

11:   if (rd == rT) then

12:    Back tracing control sequence C = Σ cs, d

13:    Break

14:   end if

15:  else

16:   rd = rr

17:  end if

18:  Feed collision into RRNNSTM
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19:  Insert [rs, rd, cs,d] into Ts

20:  re = re − 1

21: end while

22: return C

†
The architecture of RRNN is explained in Fig. 1, which consists RRNNRNN and RRNNSTM.

‡
A big integer to control the maximum allowed exploration time.

The intuition is easy to understand through an analogy of “pain” from the collision. If a 

collision was fed into a STM, the output of the STM can be seen as the memory of “pain”. 

In the beginning, the STM has no pain and lean to the heuristic search. While a collision 

happens, the neural activity of the STM increases and it tends to random exploration. The 

“pain” decays with time, and it tends to perform the heuristic search again. In the extreme 

case that collisions happen very time, STM is still able to perform the heuristic search as the 

decay is continuous and the neuron activities are guaranteed to be unsaturated. From the 

description we know that unlike to some “windowed” methods, STM does not explicitly 

have a fixed term of memory; instead, it nonlinear decays memory and the old ones will be 

“flashed” by new ones.

A single cell STM is the simplest model that meets our needs, which can be mathematically 

described as:

dx
dt = − Ax + (1 − x) I + ∑

j = 1
w x j

+ , (14)

where parameters A denotes the passive decay rate; variable x is the neural activity and x ∈ 

[0,1] is guaranteed; the excitatory inputs (inspirations) to neurons are I + ∑ j = 1w x j
+, I is 

the excitatory input from the exploration, it can simply be 0 for no collision and 1 for 

collision; wj denotes weights of the self-excitatory. The neural activities of STM, 

RRNNSTM, will be used to balance the random search with the heuristic search. The 

proposed RNN control scheme is explained in Fig. 1 and in Algorithm 1.

In Algorithm 1, RRNNRNN denotes the control scheme described in Eqn. 8, 9, 10 and 12, 

and RRNNSTM is mathematically explained in Eqn. 14.

III. THEORETICAL ANALYSES

A. Precision and Stability

Subsection II-B states that the proposed RNN control scheme overcomes the error 

accumulation and improves the control precision. The classical RNN control scheme is:

λ = λ0 + 1
ϵ∫ ṙd − Jq̇ dt,

= λ0 + 1
ϵ rd − rd0 − ∫ Jq̇dt ,

(15)

Li et al. Page 9

IEEE Trans Industr Inform. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where λ0 and ṙd0 denotes the value of λ and ṙd at t = 0, respectively.

By replacing λ in Eqn. 6 with Eqn. 15 we have:

ϵq
..

= − q. + PΩ JT(λ0 + 1
ϵ (rd − rd0 − ∫ Jq. dt)

= − q. + PΩ JT(λ0 + 1
ϵ rd − rd0 − r − r0

(16)

From Eqn. 16 we know that given arbitrary time point t = 0, the errors accumulates with 

time as long as errors e0 = rd0 − r0 ≠ 0. With the proposed scheme (Eqn. 7), for any time 

point t, its initial error accumulation, e0 = rd0 − r0 ≠ 0, is fed back into the controller as:

ϵq
..

= − q. + PΩ JT(1
ϵ rd − r) . (17)

We can see the accumulated errors are canceled out in Eqn. 17, thus the proposed scheme 

does not suffer from the problem anymore.

In order to prove the global stability of the proposed method, we define the Lyapunov 

function as V = eTe/2, where e = rd − r denotes the tracking errors (used as feedback in Eqn. 

7). Then from Eqn. 3a and 5 we know r. = JPΩ
1
ϵ JT rd − r . Because rd is the goal, which is 

a constant, we have:

ė = − JPΩ
1
ϵ JTe (18)

By substituting Eqn. 18 into the defined Lyapunov function, we have:

V̇ = eTė = − eTJPΩ
1
ϵ JTe (19)

Because the defined projection function is a saturation function as 

PΩ(x) = argminy ∈ Ω y − x , we have:

PΩ(x) − x 2 ≤ y − x . (20)

Therefore, by projection 1
ϵ JTe to zero we have:
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− 1
ϵ JTe

2
≥ PΩ

1
ϵ JTe − 1

ϵ JTe
2

= PΩ
1
ϵ JTe

2
+ − 1

ϵ JTe
2

+ 2 − 1
ϵ JTe

T
PΩ

1
ϵ JTe

The above equation is simplified as:

2 1
ϵ JTe

T
PΩ

1
ϵ JTe ≥ PΩ

1
ϵ JTe

2
.

From the definition of the norm, we have:

−eTJPΩ
1
ϵ JTe ≤ 0 . (21)

Eqn. 21 can be used in LaSalle’s invariant set principle to prove that e = 0 is the only 

solution to V̇ = 0, and the proposed control scheme globally converges to zero [42].

B. Probability Completeness

We first introduce two lemmas and a definition to facilitate the analysis.

Remark 3.1: The task space of a manipulator is a bounded connected open set, as X ⊂ ℝn, 

because of the existence of obstacles, there is an obstacle space as: Xobs ⊂ X, and the 

subspace that is reachable by a manipulator becomes Xreach ⊂ Xfree, where Xfree is the free 

space as: Xfree = X\Xobs.

Lemma 3.1: For all points in the reachable space ∀xd ∈Xreach), there exists a space, Bd for 

xd, and all points in the space ∀xj ∈ Bd , a valid path can be found by the control scheme 

described in Eqn. 7.

Proof: Because the point xd is reachable by the manipulator, for any points ∀xs ∈ Xreach , 

there exists at least one valid path δ: [0, t] xδ, xδ ∈ Xreach, and xδ0 = xs, and xδ0 = xd. 

However, because the control scheme defined in Eqn. 7 is consistently attracted by the target 

rd, a subset of the path δ: [t − n, t] xδ that corresponds to the non-concave configuration 

subspace is directly reachable by the control scheme in Eqn. 7. If we define Bd as ∀xj ∈ Bd
and xj ∈ δ: [t − n, t] xδ,, Lemma 3.1 holds truth. □

Intuitively, Bd can be imagined as a basin to xd. We know that, for most of the manipulators, 

if there are no joint limits, self collisions and obstacles, Bd = Xreach holds truth for any 

xd ∈ Xreach. Those constrains break Xreach into basins, and here we have Lemma 3.2.
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Lemma 3.2: For a given manipulator and a environment, ∪ Bd = Xreach.

Proof: Lemma 3.1 proves that ∀xd ∈ Xreach, Bd, exists, so ∪ Bd ≥ Xreach holds truth. Let’s 

define x ∈ ∪ Bd \Xreach, because x locates on at least one of the valid path, as proved in 

Lemma 3.1, we have x ∈ Xreach, therefore, ∪ Bd \Xreach = Ø, therefore ∪ Bd = Xreach. □

Now it is ready to prove the proposed method has the planning probabilistic completeness.

Definition 3.1: For a given target xd ∈ Xreach, if the set of valid paths, Σδ = δ: [0, t] xδ

equals to Ø, it is reported in finite time. If Σδ ≠ Ø, P Σδ ∩ Ts = Ø = 0.

Theorem 3.1: For the proposed method, for Σδ ≠ Ø, in finite time, P Σδ ∩ Ts = Ø = 0.

Proof: Lemma 3.1 and 3.2 show that Bd can be reached within finite time and Theorem 3.1 

is immediate.

In real applications, as described in Algorithm 1, the maximum allowed exploration time 

needs be set to ensure the algorithm will not take arbitrarily long to explore. After exceeding 

the time, the algorithm will report the non-existence of a valid trajectory.

C. Efficiency

If we denote a valid path by the control points as: xs, xd−k, ⋯, xd−1, xd , where xs ∈ Bd−k and 

xd−i ∈Bd−i + 1, ∀i ∈ [1, ⋯, k] . Then we have following theorem.

Theorem 3.2: For the given path, xs, xd−k, ⋯, xd−1, xd , the possibility of finding a path 

grows exponentially in n iterations as: 1 − exp 2k − np
2 , where p = min pi  and pi denotes the 

probability of sampling a point in Bi.

Proof: Because of the uniform random sampling is adopted in the proposed method, given 

the volume of B, the probability of sampling a point in B is known as the ratio of the volume 

of B with respect to the volume of the reachable space. However, precisely calculating the 

volume B is more computationally expensive than motion planning. Here we estimate the 

upper bound of the efficiency instead.

If we approximate pi with p, then the probability of sampling B are independent and 

identical, and follow Bernoulli distribution with parameter p. Let L denotes the event of 

achieving the given path with n samplings. With the approximation of p, the event L follows 

a binomial distribution with parameters k and p, as:

L n!
k!(n − k)! pk(1 − p)n − k

(22a)
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μ = E[L] = np . (22b)

σ2 = Var(L) = np(1 − p) . (22c)

Therefore, P L ≤ kμ
np < exp μ

2 1 − k
np

2
 hold truth [45]. We also have:

μ
2 1 − k

np
2

= μ
2 1 − 2k

np + k2

n2p2

= k − np
2 − k2

2np .
(23a)

Because exp − k2
2np ≥ 0, the probability of missing the path is less than exp 2k − np

2 , and the 

probability of finding the path is bigger than 1 − exp 2k − np
2 . □

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

Table. I compares RNN control schemes for redundant manipulator motion planning. To our 

best knowledge, the proposed method is the first RNN control scheme that achieved 

planning completeness. Among all those algorithms, three were selected to compare with the 

proposed method, based on similarity. The first algorithm [25] solves the redundant 

manipulator obstacle avoidance problem in the velocity space. For conciseness, we refer the 

work as “Method1” in this paper.The second algorithm [26] addresses the obstacle 

avoidance problem in the acceleration space, and we refer to it as “Method2”. The third 

method [44] is not capable of avoiding obstacles, but it demonstrated the superior control 

precision and the outstanding robustness in obstacle-free environments. In order to provide a 

benchmark for the proposed method, we included that work in the comparison and refer to it 

as “Method3”.

The three representative algorithms were compared with the proposed method on the 

Mitsubishi PA10–7C based simulation. The PA10 redundant manipulator was chosen 

because it has 7 DoF and its mechanics are similar to human arms [46].

In the simulation experiments, the parameters of the proposed method were empirically 

chosen as: k = 100, c1 = c2 = 0.5, A = 0.9 and w = 0.95. For the other algorithms, we 

followed the references to set up the parameters [25], [26], [44].

A. Control Precision and Robustness against Noise

Because “Method3” is not capable of obstacle avoidance, the four algorithms were 

compared in obstacle-free environments. Obstacle-free environments can also validate that 

the proposed method balances the random exploration and the heuristic search, and succeed 

in planning with one heuristic search attempt.
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In the simulation experiments, the manipulator starts from a known position and tracks a 

circular trajectory. White Gaussian process noise was injected in order to study the 

robustness against noise. The white noise has three different levels of standard deviation: σ 
= 0.01, σ = 0.05 and σ = 0.25. End effector trajectory errors are compared in Fig. 3. From 

the results we can see that with the increase of noise, “Method3” and the proposed method 

showed stronger robustness against noise, due to their ability against error accumulation. 

Although the proposed method and “Method3” have similar performance, we know the 

proposed method is better from Table. II.

B. Planning Completeness and Efficiency

Because “Method3” is not capable of obstacle avoidance, only “Method1” and “Method2” 

were compared with the proposed method,

Two representative scenarios in redundant manipulator planning are adopted in the 

experiments. Scenario 1 is the environment with a plane-like obstacle and Scenario 2 has a 

window-shaped obstacle. In both scenarios, the three algorithms command the PA10 

manipulator to reach a target behind the obstacles. The manipulator randomly starts from the 

known initial positions because both “Method1” and “Method2” suffer from the error 

accumulation problem. Table III compares the planning success rates, which is defined as: 

vs/ve, where vs denotes the total number of successes, and ve = 50 denotes the total number 

of experiments.

Example planning results in the scenario 1 and 2 are shown in Fig. 4(a)~(c) and (d)~(f), 

respectively. In the figure, the semi-transparent blue plane denotes the obstacle; the thick 

colored lines indicate manipulator initial configurations and the thin colored lines denote the 

trajectory. The goal is denoted by a red sphere, and the curved red line segments denote the 

end effector trajectories. From Fig. 4 and Table III it is clear that the proposed method 

addresses the local minimum problem and achieves the planning completeness.

Planning efficiency of the proposed method was demonstrated by comparing the proposed 

method with a control scheme described in [47]. This control scheme is not capable of 

learning from exploration. Table IV compares the efficiency and shows how many random 

explorations and heuristic searches have been conducted in the planning. Fig. 5 shows how 

RRNNSTM neuron activities change during the exploration and adapt to different 

environments. From Table IV and Fig. 5 it is clear that the proposed method optimizes the 

exploration per environment and dramatically increases the planning efficiency.

C. Real World Experiment

The proposed method was applied to a Raven II surgical robot. Raven II surgical robots are 

popular in the robotic surgery community and are deployed at 18 sites worldwide. The 

challenges of controlling Raven II, as well as the kinematic model, can be found in [8]. The 

experiment simulates the popular endoscopic robotic surgeries, in which the robot reaches a 

target through a small orifice. Compared to exiting teleoperated robotic surgeries, the robot 

starts from an unknown position and autonomously reaches the goal without collision. Fig. 

6a shows the Raven II surgical robot and 6b explains the experimental setup. A box with a 4 

cm square opening represents the surgical environmental obstacle and the target is denoted 
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by a pin with a red head. The robot trajectory is recorded by a stereo camera. Fig. 6c 

visualizes the robot trajectory, in which thick colored lines indicate the manipulator initial 

configuration and the thin lines indicate the end effector trajectory. The obstacle position is 

indicated by the semi-transparent blue plane and the goal is denoted by a red dot. From the 

experimental result, it is clear that the proposed method achieved success in such a complex 

task in robotic surgeries.

V. CONCLUSION

This paper presents a new RNN control scheme for complete and efficient redundant 

manipulator motion planning. The proposed scheme addresses the local minimum problem 

in RNN control scheme, through introducing randomness. Moreover, it avoids the low-

efficiency of the random explorations, through online learning from exploration. Rigorous 

theoretical analyses show the precision, the stability, and the planning completeness and the 

planning efficiency of the proposed method. Simulation experiments demonstrate the 

proposed method has better precision, robustness than other three representative RNN 

schemes, and more importantly, it achieves the planning completeness and improves the 

planning efficiency. Real-world experiments demonstrate the application of the proposed 

method in the endoscopic robotic surgery scenario. The proposed method shares the 

efficiency and the robustness with other RNN control schemes, meanwhile, it achieves 

higher control precision. More importantly, the proposed method is the first RNN control 

scheme that achieves the planning completeness in environments with obstacles and shows 

the much broader applicability of Recurrent Neural Network.
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Fig. 1: 
The Architecture of the Proposed Random Recurrent Neural Network. The proposed method 

consists a single layer Recurrent Neural Network(RNN) and a single cell Short Term 

Memory (STM). The STM learns from exploration and controls the RNN to generate 

precise, efficient and robust motion planning results for redundant manipulators.
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Fig. 2: 
Explanation to the Reason that Classical RNN Control Schemes Suffer from the Local 

Minimum Problem and Lack of Planning Completeness. In the simple 2-dimensional 

environment, classical RNN control schemes fail to find a valid pathway to move from the 

pose indicated by the solid line to the pose indicated by the dashed line because the 

configuration space is concave due to the existence of the obstacle.
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Fig. 3: 
Tracking Precision Comparison. Different levels of process noise have been injected to 

verify the robustness of the RNN control schemes.
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Fig. 4: 
Example Planning Results in Environments with a Plane-shaped Obstacle or a Window-

shaped Obstacle. The semitransparentplanes denote the obstacle, the red globe denotes the 

target and the colored lines indicate the manipulator trajectories.
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Fig. 5: 
Example RRNNSTM Neuron Activity Changes in Exploration. The neural network learns 

from exploration. In simpler environments, it tends to perform the heuristic search; in 

complex environments, it leans to the random exploration.
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Fig. 6: 
Applying the Proposed Method to Simulate Autonomous Robotic Endoscopic Surgery. The 

Raven II robot automatically reaches the surgical target under the control of the proposed 

method. (a): the Raven II surgical robot. (b): the experimental setup and the initial 

manipulator position. The zoomed-in area shows the manipulator reaches the goal. (c): the 

surgical robot trajectory.
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TABLE II:

RMS Position Tracking Error With Respect to Various Noise Level.

σ = 0.01 σ = 0.05 σ = 0.25

Proposed 0.007 0.010 0.010

Schemel [25] 0.027 0.092 0.246

Scheme2 [26] 0.025 0.069 0.199

Scheme3 [44] 0.005 0.010 0.011
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TABLE III:

Planning Success Rate Comparison.

Method 1 Method2 Proposed

Scenario 1 92% 92% 100%

Scenario 2 72% 74% 100%
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TABLE IV:

Planning Efficiency Comparison. The averaged total numbers of explorations in 50 experiments are compared 

in the table.

Without Learning Proposed

RE HS Total RE HS Total

Scenario 1 20.80 21.46 42.26 19.88 2.92 22.80

Scenario 2 56.66 56.60 113.26 52.76 5.42 58.18

RE: Random Exploration, HS: Heuristic Search, Total=RE+HS
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