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Multi-modal Face Pose Estimation with
Multi-task Manifold Deep Learning
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Abstract—Human face pose estimation aims at estimating the gazing direction or head postures with 2D images. It gives some very

important information such as communicative gestures, saliency detection and so on, which attracts plenty of attention recently.

However, it is challenging because of complex background, various orientations and face appearance visibility. Therefore, a descriptive

representation of face images and mapping it to poses are critical. In this paper, we make use of multi-modal data and propose a novel

face pose estimation method that uses a novel deep learning framework named Multi-task Manifold Deep Learning (M2
DL). It is

based on feature extraction with improved deep neural networks and multi-modal mapping relationship with multi-task learning. In the

proposed deep learning based framework, Manifold Regularized Convolutional Layers (MRCL) improve traditional convolutional layers

by learning the relationship among outputs of neurons. Besides, in the proposed mapping relationship learning method, different

modals of face representations are naturally combined to learn the mapping function from face images to poses. In this way, the

computed mapping model with multiple tasks is improved. Experimental results on three challenging benchmark datasets DPOSE,

HPID and BKHPD demonstrate the outstanding performance of M2
DL.

Index Terms—human face pose estimation, multi-task learning, deep learning, manifold learning.

✦

1 INTRODUCTION

E STIMATING the pose of human faces aims at achieving
the gazing direction or head postures with images.

Recently, it attracts plenty of attention since it gives some
very important information such as communicative ges-
tures, saliency detection and so on. Therefore, it is critical
in human activity analysis, human-computer interface and
some other applications. Generally speaking, according to
the routine of estimation by mapping images to poses,
current methods focus on feature representation of head
images and mapping the representation to head poses [1]
[2].

Feature representation is the key to the problem of face
pose estimation and feature mapping often depends on it.
Therefore, a descriptive representation is critical. Recently,
some researchers propose to represent head images in differ-
ent feature spaces that have more discriminatory property
for face pose independent of people. Chen and Odobez [3]
proposed the state-of-the-art method for unconstrained cou-
pled head-pose and body-pose estimation in surveillance
videos. They used multi-level Histogram of Oriented Gra-
dients (HOG) [4] for the head and body pose features and
extracted a feature vector for an adaptive classification using
high dimensional kernel space methods. A similar idea is
applied by Flohr et al. to jointly estimate head poses and
body poses [5]. These techniques are quite general and do
not depend on the heads being in near frontal poses unlike
current Human-Computer Interface (HCI) techniques. Nev-
ertheless the high degree of error or uncertainties that arise
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from these methods, render them unsuitable for the tasks
like fine grained human interaction or attention modeling.

To obtain descriptive representation, deep learning ar-
chitectures [6] [7] have been efficient in exploring hidden
representations in natural images and have achieved proven
success in a variety of vision applications. Therefore, we
look into deep learning. It is naturally data-driven and
powerful in concept abstraction. In this way, we assume
that it is able to describe the face images and connect
them with the corresponding poses with sufficient data. For
example, an autoencoder [8] is an efficient unsupervised
feature-learning method in which the internal layer acts as a
generic extractor of inner image representations. A double-
layer structure, which efficiently maps the input data onto
appropriate outputs, is obtained by using a multilayer per-
ceptron. In addition, deep learning can exploit parallel GPU
computation and deliver high speeds in the forward pass.
These advantages make deep models an attractive option
for handling the face pose estimation problem. However, the
neurons in neural networks are often considered separately,
which limits the performance.

Even with descriptive representation human face pose
estimation is still difficult since human faces are usually
captured at very low resolution and appear blurred. In
addition, the rotation of human faces is complicated and the
facial features are usually invisible in most of the scenarios.
Therefore, employing a single camera view or a single type
of input is often insufficient for studying peoples behavior
in large environments. A handful of approaches [9] [10] [11]
have exploited multi-view images to achieve robust pose
estimation. Yet, most of them estimate face pose of a person
rotating in place. Rajagopal et al. proposed a method to
estimate peoples 3D head orientation as they freely move
around in naturalistic settings such as parties, museums and
supermarkets [12]. Inspired by multi-view ideas, Mukher-
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jee and Robertson proposed a multimodal method [13].
It uses both RGB images and depth images to improve
the performance. Furthermore, by defining classification in
different views as different tasks, Yan et al. proposed a
novel framework based on Multi-Task Learning (MTL) for
classifying the face pose of a person who moves freely in
an environment monitored by multiple, large field-of-view
surveillance cameras [14].

In a word, current trend of face pose estimation is
using multi-view or multi-modal for learning. In traditional
methods, multi-view integration is often over-simplified
and the mapping function is assumed to be linear or nonlin-
ear. However, in reality, the correspondence between face
images and poses is complicated. It is often ambiguous
or even arbitrary. Therefore, we try to improve feature
description and mapping by deep learning and multi-task
learning respectively. Despite some exciting results with
classification or recognition from the related deep learning
approaches, the performance can be further improved with
the structural information of data considered [15]. Manifold
learning is widely used to learn the structural information
[16]. In this way, we develop a big data-driven strategy for
face pose estimation in this paper. Specifically, we design
a novel deep architecture named Multi-task Manifold Deep
Learning (M2DL) for multi-modal human face data. Dif-
ferent from existing face pose estimation methods, the pro-
posed method applies Deep Convolutional Neural Network
(DCNN) based feature extraction to represent face images
and multi-task learning based modal to construct the map-
ping relationship from images to poses. The contributions
of this paper are summarized below:

1) First, we propose a new multi-task learning frame-
work based on Deep Convolution Neural Network
(DCNN). In this framework, DCNN-based feature
mapping and multi-task learning is connected to
obtain a DCNN-Based regression for face pose esti-
mation, which unified the multi-view problem and
multi-modal problem in a single model.

2) Second, in the proposed framework, convolutional
layers are improved with manifold regularization,
which is called Manifold Regularized Convolutional
Layers (MRCL). In the proposed MRCL, the inner
relationship of neurons are utilized. In this way,
locality properties of neurons can be kept and better
feature mapping can be learnt.

3) Finally, the proposed framework is naturally multi-
modal and can be used in different scenarios. We
conduct comprehensive experiments to empirically
analyze our method on three benchmark datasets.
The experimental results validate the effectiveness
of our method.

The remainder of this paper is organized as follows.
Related works on multi-task learning and manifold learning
are reviewed in Section II. Then, the proposed M2DL is
presented in Section III. After that, we demonstrate the
effectiveness of M2DL by experimental comparisons with
other state-of-the-art methods in Section IV. We conclude in
Section V.

2 RELATED WORKS

2.1 Deep learning

As mentioned before, the traditional routine of face pose
estimation with images consists of feature representation
and feature mapping.

1) Feature representation. In this part, researchers try
to represent the images with descriptive features.
The pioneering work on face pose estimation was
proposed by Robertson and Reid [17] which used
a detector based on template training to classify
face poses in eight directional bins. This approach is
heavily reliant on skin colour model. Subsequently
this template-based technique was extended to a
color invariant technique by Benfold et al. [18].
Based on the template features, they proposed a
randomized fern classifier for hair face segmenta-
tion for matching. This work was later improved by
Siriteerakul et al. [1] using pair-wise local intensity
and colour differences. However, in keeping with all
template based techniques in head-pose estimation,
these suffer from two major problems: first, it is non-
trivial to localize the head in low resolution images;
second, different poses of the same person may
appear more similar compared to the same head-
pose of different persons.

2) Feature mapping. In this part, researchers try to
define the reasonable mapping relationship from
images to poses. Previous methods usually employ
regression. The regression methods used for face
pose are Gaussian process regression (GPR) [19],
support vector regression (SVR) [20], partial least
squares (PLS) [21] and kernel PLS [22]. Both [19]
and [20] estimate the pose angles independently, so
several regression functions must be learned, one
for each angle, hence correlations between these
parameters cannot be taken into account. Another
drawback of all kernel methods is that they require
the design of a kernel function with its hyper-
parameters, which must be either manually selected
or properly estimated using non-convex optimiza-
tion techniques.

Recently, theres been a great deal of excitement and
interest in deep neural networks because theyve achieved
breakthrough results in areas such as computer vision [23].
In the current big data era, the extensive availability of
training images enables deep models to be generic and
flexible. In feature representation, deep learning can be
used to improve the descriptive ability [24] [25]. In feature
mapping, non-linear regression approaches like Artificial
Neural Networks [26], [27] and high-dimensional manifold
based approaches [28] [2] try to estimate the face poses in a
continuous range.

2.2 Multi-task learning

Multi-task learning has recently been employed in image
classification [29], visual tracking [30], multi-view action
recognition [31] and egocentric daily activity recognition
[32]. Given a set of related tasks, MTL [33] seeks to si-
multaneously learn a set of task-specific classification or
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regression models. The intuition behind MTL is that a joint
learning procedure accounting for task relationships is more
efficient than learning each task separately. Traditional MTL
methods [34] [35] assume that all the tasks are related
and their dependencies can be modeled by a set of latent
variables. However, in many real world applications, not all
tasks are related, and enforcing erroneous (or non-existent)
dependencies may lead to negative knowledge transfer.

Recently, sophisticated methods have been introduced
to counter this problem. These methods assume a-priori
knowledge (e.g., a graph) defining task dependencies [36],
or learn task relationships in conjunction with task-specific
parameters [37], [38], [39], [40], [41]. Among these, our work
is most similar to [36] and our algorithm adopts two graphs
(one defining appearance similarity among grid segments,
and the other relating face pose classes) to specify task
dependencies.

2.3 Manifold learning

Traditionally, images are represented by different features,
such as color, texture, shape and so on. Some of these
features are high dimensional. High dimensionality results
in high computational complexity in pose retrieval, which
is called curse of dimensionality. To overcome it, researchers
look into dimension reduction, which is often achieved
by manifold learning or subspace learning [42]. It aims at
finding the transformation from the original feature space
to a low dimensional subspace that retains most of the
discriminative information. There are also many existing
methods such as Principal Component Analysis (PCA) [43],
Linear Discriminant Analysis (LDA) [44], Discriminative
Locality Alignment (DLA) [45], ISOMAP [46], Locality Sen-
sitive Discriminant Analysis (LSDA) [47], Locality Preserv-
ing Projections (LPP) [48], Neighborhood Preserving Em-
bedding(NPE) [49], Isometric Projection (IsoP) [50] and so
on. Raytchev et al. extended the Isomap model to be able
to map (high-dimensional) input data points which were
not in the training data set into the dimensionality-reduced
space found by the model. From this representation, a pose
parameter map relating the input face samples to view
angles was learnt [16]. Aghajanian et al. represented a face
with a non-overlapping grid of patches in manifold space.
This representation was used in a generative model for
automatic estimation of head pose [51].

The structures of features are important for data mining,
especially for multi-view data. However, traditional meth-
ods make use of multiple feature by directly concatenating
them, which is over-simplified. To solve this problem, re-
searchers also apply manifold learning to combine different
types of features [52] [53]. These methods are called multi-
view learning methods, which has been comprehensively
studied and widely used.

3 MULTI-TASK MANIFOLD DEEP LEARNING

3.1 Overview of the proposed method

The flowchart of the proposed method is shown in Fig. 1. To
get rid of the influences of background, we should extract
faces in images first. This process depends on the definitions
of different datasets. In some datasets, the positions and

sizes are provided and they can be used directly. However,
in some other datasetes, we need face detection or face
tracking to get the face area. Then, we use three convolu-
tional layers and one full connected layer to compute the
features. Finally, multi-task learning is applied to learn the
mapping models from images to poses. In different datasets,
the definitions of tasks are also different. For multi-view
image datasets, we set a view as a task. For datasets with
different modals, we set a modal as a task.

3.2 The Framework of Multi-task Learning

As mentioned before, the traditional routine to achieve
face pose estimation is mapping images to poses with pre-
computed regression models. Therefore, the key is comput-
ing a well-defined regression model. In data mining and
machine learning, a common paradigm for classification and
regression is to minimize the penalized empirical loss:

argmin
W

ℓ(W ) + Φ(W ), (1)

where W is the parameter to be estimated from the training
samples, ℓ(W ) is the loss function and Φ(W ) is the regular-
ization term that encodes task relatedness.

In our application, multi-view face pose estimation with
V views can be considered as a multi-task process with
V tasks. The training data for v-th task can be denoted
by xv

i , y
v
i , where v = 1, ..., V , i = 1, ..., N and N is the

number of samples. X = xv
iR

d1 and Y = yvi R
d2 are

image features and face poses respectively, where d1 and
d2 are their dimensions respectively. The goal of multi-task
learning can be defined as:

argmin
V
∑

v=1

N
∑

i=1

ℓ(yvi , f(x
v
i ;w

v)) + Φ(wv), (2)

where f(xv
i ;w

v) is a function of xv
i and parameterized by a

weight vector wv . There are several existing choices of ℓ(·).
The least square is widely used for regression and the hinge
loss is used for classification. Φ(wv) is the regularization
term that penalizes the complexity of weights. In this way,
the objective function can be rewritten as:

argmin
W

1

2

V
∑

v=1

‖ Y −F(Xv;W v) ‖2 +
V
∑

v=1

‖W v ‖2, (3)

where W = wv is the weighted matrix with the same
meaning as Eq. (1) and task relatedness is encoded by
summing the weights. To solve the above function, the key is
how to define an optimized regression function F(Xv;W v).

3.3 Deep Convolution Neural Network based regres-

sion

Deep neural networks has been proven success in image
description, especially with multi-task learning [54]. In our
method, we solve f(·) by using the deep neural network.
In the deep neural network, this function is called the acti-
vation function. In computational networks, the activation
function of a node defines the output of that node given an
input or set of inputs. In the scenario of the deep neural
network, activation functions project xv

i to higher level
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Fig. 1. The flowchart of the proposed method is shown. Without loss of generality, we use the dataset with color images and depth images as an
example. Generally speaking, it consists of three stages. First, we extract clear faces from the images. Second, we use deep neural networks to
compute features. For two types of features, we train two networks. In this stage, we propose Manifold Regularized Convolutional Layers. Finally,
we connect multi-task learning with neural networks to compute the regression model for face pose estimation. In this stage, the model with each
type of features is considered as a task. With this model, we can map image features to estimated poses.

representation gradually by learning a sequence of non-
linear mappings, which can be defined as:

(xv
i )

0 R
−→
W

(xv
i )

1 R
−→
W

...
R
−→
W

(xv
i )

l, (4)

where l is the number of layers and R is the mapping
function from input to estimated output.

To optimize the weighted matrix W which contains the
mapping parameters, we use a back-propagation strategy.
For each echo of this process, the weighted matrix is up-
dated by ∆W , which is defined by:

∆W = −η
∂Z

∂W
. (5)

η is the learning rate and Z is the energy loss of neural
networks. Eq. (5) can be further defined as:

∂Z

∂W
= (yvi −R(x

v
i ))(x

v
i )

T . (6)

In this way, we try to minimize the differences between the
groundtruth yvi and the estimated output R(xv

i ). The back-
propagation strategy can be modeled by:

(xv
i )

0 R
←−
W

(xv
i )

1 R
←−
W

...
R
←−
W

(xv
i )

l. (7)

3.4 Manifold Regularized Convolutional Layers

Classic convolutional neuron networks consist of alter-
natively stacked convolutional layers and spatial pooling
layers. The convolutional layers generate feature maps by
linear convolutional filters followed by nonlinear activation
functions (rectifier, sigmoid, tanh, etc.). Rectified Linear
Units (ReLU) is defined by:

fr(x) =

{

0 , x < 0
x , x ≥ 0

. (8)

Sigmoid is defined by:

fs(x) =
1

1 + e−x
(9)

Tanh is defined by:

ft(x) =
2

1 + e−2x
− 1 (10)

The above activation functions are non-linear and widely
used. Taking the Rectified Linear Units (ReLU) as an exam-
ple, the feature map can be calculated as follows:

F (Xv;W v) = R(xv
i ) = max(0, wvxv

i ) =

{

0 , xv
i < 0

wT
k x

v
i , xv

x ≥ 0
.

(11)
Traditional CNN implicitly makes the assumption that

the latent concepts are linearly separable. However, the data
for the same concept often live on a nonlinear manifold,
therefore the representations that capture these concepts
are generally highly nonlinear function of the input. In
the proposed Manifold Regularized Convolutional Layers
(MRCL), we add manifold regularization to impose the
locality constraints, which is shown in Fig. 2.

In MRCL, the output is defined as:

F (Xv;W v) = M(xv), (12)

where xv represents all the samples in Task v and M(xv)
is the output of R(xv) with manifold structure. In this way,
Eq. (3) can be re-rewritten as:

argmin
W

1

2

V
∑

v=1

‖ Y −M(xv) ‖2 +
V
∑

v=1

‖W v ‖2
2
, (13)

To learn the manifold structure of R(xv) and compute
M ·, many existing methods can be used, such as subspace
learning and manifold learning. Recently, low-rank sparse
learning attracts plenty of attention. In order to recover
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Fig. 2. The process of Manifold Regularized Convolutional Layer is shown. After convolution and activation of traditional CNNs, we add manifold
regularization with low-rank representation.

the low-rank matrix X0 from the given observation matrix
X corrupted by errors E0(X0 + E0), it is straightforward
to consider the following regularized rank minimization
problem:

min
D,E

rank(D) + λ ‖ E ‖l, s. t. X = D + E, (14)

where λ > 0 is a parameter and ‖ · ‖l indicates certain
regularization strategy, such as Frobenius Form, the l0 norm
and the l2,0 norm. To better handle the mixed data, Liu
et. al suggested a more general rank minimization problem
defined as follows:

min
Z,E

rank(Z) + λ ‖ E ‖l, s. t. X = AZ + E, (15)

where A is a dictionary that linearly spans the data space
and the minimized Z∗ (with regard to the variable Z) is
the lowest rank representation of data X with respect to a
dictionary A. To solve (12), we use the l2,1 norm since it
ensures the row sparsity. In this way, a low-rank recovery to
X0 is obtained by solving the following convex optimization
problem:

min
Z,E

rank(Z) + λ ‖ E ‖2,1, s. t. X = AZ + E, (16)

To solve it, the Augmented Lagrange Multiplier method
can be used. In this way, it can be converted to the following
equivalent problem:

min
Z,E,J

rank(Z)+λ ‖ E ‖2,1, s. t. X = AZ+E,Z = J. (17)

It can be solved by the ALM method, which minimizes
the following augmented Lagranrian function:

L =‖ E ‖∗ +λ ‖ E ‖2,1 +tr(Y T
1
(X−AZ−E))+tr(Y T

2
(Z−J))+

µ

2
(‖ X−AZ−E) ‖2F + ‖ Z−J ‖2F .

(18)

The above problem is unconstrained. So, it can be mini-
mized with respect to J , Z and E, respectively, by fixing the
other variables and then updating the Lagrange multipliers
Y 1 and Y 2, where µ > 0 is a penalty parameter.

3.5 Implementation Details

In the implementation of Multi-task Deep Learning with
Manifold Regularized Convolutional Layers, we use three
convolutional layers and each is followed by max pooling.
Finally, a fully connected layer that has 512 neurons is used
to get feature mapping. In the multi-task learning stage,
we optimize (3) with the least trace method. With this
key structure of deep convolutional network, the details
of algorithms are shown in Algorithm 1. To implement the
proposed deep neural network, Caffe is used and works on
a workstation with 4 Titan X (Pascal) GPUs.

Algorithm 1 Details of Multi-task Deep Learning with Man-
ifold Regularized Convolutional Layers

Input: Multi-view Head Images X = xv ∈ Rd1

Output: Face Poses represented by pan, tilt and so on. Y =
yv ∈ Rd2

1: Stage 1:
2: for all each view do
3: The first convolutional layer, with 32 kernels of size

5× 5× 1, followed by 2× 2 max pooling;
4: The second convolutional layer, with 32 kernels of

size 3× 3× 32, followed by 2× 2 max pooling;
5: The third convolutional layer, with 24 kernels of size

3× 3× 32, followed by 2× 2 max pooling;
6: The fully connected layer that has 512 neurons,

M(xv);
7: end for
8: Stage 2:
9: Solving Eq. (3) with a specific multi-task loss method;

10: Mapping testing images to poses with optimized param-
eter W ;

11: return mapped face poses;

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Benchmark datasets

In this section, we demonstrate the effectiveness of the
proposed approach by conducting experiments on three face
pose benchmark datasets: DPOSE multi-view dataset [55],
Head Pose Image Database (HPID) [56] and Biwi Kinect
Head Pose Database (BKHPD) [57]. Overview of them is
shown in Table.

DPOSE contains sequences acquired from 16 subjects,
where the subject is either (i) rotating in-place at the room
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TABLE 1
An Example of a Table

Name Tasks Training Set per Task Testing Set per Task

DPOSE 4 (Cameras) 500 500

HPID 3 (Views) 465 465

BKHPD 2 (Modals) 400 465

center, or (ii) moving around freely in a room, and moving
their head in all possible directions. The dataset consists
of over 50000 images, recorded from four cameras with
overlapping field of view. Images have resolution 1024×768
and are stored in jpeg format. Head pan, tilt and roll
measurements for various poses are recorded using an
accelerometer, gyro, magnetometer platform strapped onto
the head using an elastic band running down from the back
of the head to the chin. We use the first subject, randomly
choose 500 frames from each camera as the training set and
the rest as the testing set. In this way, videos from each
camera are treated as separate tasks.

The Head Pose Image Database is a benchmark of 2790
monocular face images of 15 people with variations of pan
and tilt angles from -90 to +90 degrees. For every person, 2
series of 93 images (93 different poses) are available. The
purpose of having 2 series per person is to be able to
train and test algorithms on known and unknown faces (cf.
sections 2 and 3). People in the database wear glasses or
not and have various skin color. Background is willingly
neutral and uncluttered in order to focus on face operations.
In our experiments, we use the first series of all the people
as the training set and the second series as the testing set.
The 93 poses of the first series are randomly divided into
three views.

In Biwi Kinect Head Pose Database, over 15K images of
20 people (6 females and 14 males - 4 people were recorded
twice) are contained. For each frame, a depth image, the
corresponding RGB image (both 640 × 480 pixels), and the
annotation is provided. The face pose range covers about
+-75 degrees yaw and +-60 degrees pitch. Ground truth is
provided in the form of the 3D location of the head and
its rotation. Because cheap consumer devices (e.g., Kinect)
acquire row- resolution, noisy depth data, the authors
recorded several people sitting in front of a Kinect (at about
one meter distance). The subjects were asked to freely turn
their head around, trying to span all possible yaw/pitch
angles they could perform. Each frame is annotated with the
center of the head in 3D and the head rotation angles. In our
experiments, RGB images and depth images are treated as
two modals. We randomly choose 20 degrees as the training
set and the rest as the testing set.

To evaluate the performance of different methods, we
estimate head pan and compute the differences between the
estimation and the ground truth. Experiments are repeated
20 times to get the average performance and standard
deviation. Besides, we make use of SeetaFace [58] to locate
the position of faces in DPOSE. To solve Eq. (18), we set
λ = 0.3 and µ = 0.5.

4.2 Comparison of different activation functions

As notated in III.C. there are several activation functions.
They define the mapped output of a node in different ways.
In this way, different activation functions may influence the
performance. Therefore, we have tried ReLU, Sigmoid and
Tanh. The results of three datasets are shown in Fig. 3. We
can figure out that ReLU achieves the best performance on
all the datasets, which matches recent publications.

4.3 Comparison of different multi-task loss functions

Multi-task loss functions may also influence the perfor-
mance of face pose estimation. Until now, a number of
multi-task loss functions have been proposed to define the
relationship among tasks. In our experiments, we compare
the following loss functions:

• Trace-Norm Regularized Learning with Least
Squares Loss (LeastTrace) [59]: The loss function is
defined as:

argmin
W

t
∑

i=1

(0.5 ∗ norm(Yi −X ′

i ∗W (:, i))2)+

ρ1 ‖W ‖∗,
(19)

where ‖W ‖∗=
∑

(SV D(W, 0)) is the trace norm.
• L21 Joint Feature Learning with Least Squares Loss

(LeastL21) [34]: The loss function is defined as:

argmin
W

t
∑

i=1

(0.5 ∗ norm(Yi −X ′

i ∗W (:, i))2)+

opts.ρL2∗ ‖W ‖
2

2
+ρ1 ‖W ‖2,1 .

(20)
• Sparse Structure-Regularized Learning with Least

Squares Loss (LeastLasso) [60]: The loss function is
defined as:

argmin
W

t
∑

i=1

(0.5 ∗ norm(Yi −X ′

i ∗W (:, i))2)+

opts.ρL2∗ ‖W ‖
2

F +ρ1 ‖W ‖1 .
(21)

• Incoherent Sparse and Low-Rank Learning with
Least Squares Loss (Least- SparseTrace) [61]: The loss
function is defined as:

argmin
W

t
∑

i=1

(0.5 ∗ norm(Yi −X ′

i ∗W (:, i))2)+

γ∗ ‖ P ‖1,

subject to: W = P +Q, ‖ Q ‖∗≤ τ.
(22)

where ‖ Q ‖∗=
∑

(SV D(Q, 0)) is the trace norm.

We make use of MALSAR to conduct the performance
[62]. The results are shown in Fig. 4. We can clearly figure
out that LeastSparseTrace outperforms the other loss func-
tions. Due to the sparse constraints, LeastSparseTrace can
improve the descriptive ability with features from different
tasks. In our experiments, we use LeastSparseTrace as the
loss function.
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Fig. 3. Comparison of different activation functions. ReLU achieves the best performance.

4.4 Effectiveness of applying manifold learning and

multi-task learning

In this part, we show the performance without manifold
learning or multi-task learning to emphasize the effective-
ness of the proposed M2DL. Four different configura-
tions are used. They are Multi-task Manifold Deep Learn-
ing M2DL, Single-task Manifold Deep Learning (with-
out multi-task learning)SMDL, Multi-task Deep Learning
(without manifold learning) MDL and Traditional Deep
Learning (without manifold learning and multi-task learn-
ing) TDL. The performance is shown in Fig. 5. It can be seen
that M2DL achieves the best performance, which indicates
the effectiveness of the proposed method with manifold
learning and multi-task learning.

4.5 Comparison with state-of-the-arts

For face pose estimation, we compare the following meth-
ods including the proposed multi-task manifold deep learn-
ing:

• Multi-task Manifold Deep Learning (M2DL). The
propose method using multi-task learning and man-
ifold regularized convolutional layer. ReLU is used
as the activation function in the convolutional layer
and LeastSparseTrace is used as the loss function in
the multi-task learning.

• Linear regression (LR) [63]: This recovers poses
by direct linear regression against shape descriptor
vectors extracted automatically from image silhou-
ettes. Ridge regression and relevance vector machine
(RVM) regression are applied; however, comprehen-
sive experiments show that their performance is
quite similar. In our comparison, RVM is adopted.

• Twin Gaussian Processes (TGP) [64]: TGP adopts
Gaussian process priors on both covariates and re-
sponses, and estimates outputs by minimizing the
Kullback-Leibler divergence between two Gaussian
processes, which are modeled as normal distribu-
tions over finite index sets of training and testing
examples.
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Fig. 4. Comparison of different loss functions of multi-task learning. LeastSparseTrace achieves the best performance.

• Salient Facial Structures (SFS) [56]. This is the base-
line provided by HPID. In this method, the imagette
containing the face is normalized in scale and ori-
entation using moments provided by a face tracker.
Each pixel in the face image is associated with an
appearance cluster. One particular cluster stands for
salient robust face structures which are: eyes, nose,
mouth, chin. The authors have tried to extract and
exploit a maximum of information provided by a sin-
gle image of a face and to limit the loss of generality.

• Transfer Learning for Head Pose Classification
(TLHPC) [12]. In this paper, the authors propose
transfer learning solutions to overcome the adverse
impact of changing attributes between the source and
target data on face pose classification performance.

• Probabilistic High-Dimensional Regression (PHDR)
[65]. This method maps HOG-based descriptors, ex-
tracted from face bounding boxes, to corresponding
face poses. To account for errors in the observed

bounding-box position, the authors learn regression
parameters such that a HOG descriptor is mapped
onto the union of a face pose and an offset, such that
the latter optimally shifts the bounding box towards
the actual position of the face in the image.

• Random Regression Forests (RRF) [66]. The authors
address the problem of face pose estimation from
depth data, which can be captured using the ever
more affordable 3D sensing technologies available
today. To achieve robustness, pose estimation is for-
mulated as a regression problem. While detecting
specific face parts like the nose is sensitive to occlu-
sions, learning the regression on rather generic sur-
face patches requires enormous amount of training
data in order to achieve accurate estimates.

• Head pose estimation using Perspective-N-Point
(PnP). In this method, PnP is used to get the 6DOF
pose of the head from point-correspondences. The
correspondences are manually picked up before-
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Fig. 5. Performance with and without manifold learning or multi-task learning

hand. The 2D positions of Left Eye, Right Eye, Left
Ear, Right Ear, Left Mouth, Right Mouth and Nose
are used. Then 3D objects orientation is computed
by solving a PnP (Perspective- N-Point) problem.

The results are shown in Fig. 6. Based on it, we can make
the following summarizations:

1) The performance of some general mapping learning
methods such as LR and TGP cannot achieve satis-
factory performance.

2) The methods that look into the structure of faces
such as SFS and RRF achieves better performance
than the general methods.

3) The performance of the propose M2DL is better
than state-of-the-arts.

5 CONCLUSION

In this paper, we propose a novel human face pose estima-
tion method. It improves previous methods by employing
deep learning and multi-task learning. First, the Manifold
Regularized Convolutional Layers adopts manifold learn-
ing to compute the hidden relationship for neurons, with
which we term better intrinsic representations. Second, we
handle multi-modal features with multi-task learning. Each
task handles a type of feature or a view. In this way, the
mapping relationship can be simultaneously learnt. Finally,
we can obtain an end-to-end mapping function from face
images and poses. Experimental results on the datasets of
DPOSE, HPID and BKHPD show that the proposed method
outperforms previous methods of face pose estimation.
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Fig. 6. Comparison with existing methods. The performance of the propose M
2
DL is better than state-of-the-arts.
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