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Distributed Online Voltage Control in Active
Distribution Networks Considering PV Curtailment

Jiayong Li, Member, IEEE, Zhao Xu, Senior Member, IEEE, Jian Zhao, and Chaorui Zhang

Abstract—In this paper, we propose a distributed online voltage
control algorithm for distribution networks with multiple photo-
voltaic (PV) systems based on dual ascent method. Conventional
distributed algorithms implement voltage control only when the
algorithms converge. However, our proposed algorithm is able to
carry out voltage control immediately. In particular, we derive a
closed-form solution for PV controllers to locally update the ac-
tive and reactive power set-points aiming at minimizing the total
loss and maintaining bus voltages within the acceptable ranges.
The optimality is guaranteed and the convergence is established
analytically. Moreover, our proposed algorithm only requires
the information exchange between neighboring PV systems, thus
reducing communication complexity. Finally, numerical tests on
IEEE 37-bus distribution system verify the effectiveness and
robustness of our proposed algorithm.

Index Terms—Distribution networks, photovoltaic (PV) system,
distributed algorithm, online voltage control, dual ascent method.

I. INTRODUCTION

IN 2016, the total installed solar photovoltaic (PV) capacity
has increased by 97%, driven by the increasing environment

concerns, falling manufacturing costs and steady government
incentives [1]–[3]. However, the proliferation of PV genera-
tions poses significant challenges to the operations of power
systems, especially for the low-voltage distribution networks
(DNs) [4]. In particular, the fast varying solar energy could
result in unexpected voltage violations, at a time scale that
is not consistent with conventional voltage control using on-
load tap changers, step voltage regulators and shunt capacitors
[5]. In this regard, PV systems can play an important role to
provide voltage support in DNs [6]. Therefore, it is necessary
to develop an online control scheme for dispersed PV systems
to address the rapid voltage fluctuations.

Different voltgage control strategies using distributed gen-
erators (DGs) have been proposed, which can be classified
into three categories, i.e. centralized strategy (e.g., [6]–[8]),
decentralized strategy (e.g. [9], [10]), and distributed strategy
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(e.g. [11]–[13]). Under centralized voltage control, multiple
DGs are dispatched centralizedly by DN operator. Centralized
control is effective for relatively long term operations (e.g.
hourly), but it is hard to deal with real-time operation due
to its complex communication and control schemes [14].
Furthermore, it is not robust when subjected to a single point
failure [12].

Under decentralized voltage control, DGs are locally man-
aged by their own controllers instead of a central one.
Generally, decentralized control includes local control and
distributed control. Here it particularly refers to the former.
Decentralized control, e.g., droop control, only relies on local
measurements without any communication. Thus, it has much
lower computational complexity compared with centralized
voltage control. However, it often results in suboptimality due
to the lack of coordination [14].

Under distributed control, DGs cooperate with each other to
achieve a global goal predetermined by system operator or DG
owners, and only communication among DGs is required [14].
A research summary on distributed voltage control for DNs
can be found in [14]. Therein, dual-decomposition techniques,
e.g., dual-ascent method and alternating direction method of
multipliers (ADMM), are mostly used to develop distributed
algorithms. For example, dual ascent method is employed in
[15] to decompose a semi-definite programming (SDP) relaxed
optimal power flow (OPF) problem into subproblems such
that it can be solved in a distributed manner. In [13], an
OPF problem that optimizes the active and reactive power set-
points of PV inverters is decomposed based on ADMM and
SDP relaxation. ADMM is also combined with second-order
cone programming (SOCP) relaxation, to develop distributed
algorithms for voltage control problem in [11], [12]. The
general framework of such kind of distributed voltage control
for DGs is illustrated in Fig. 1(a). It shows that multiple
SDP/SOCP subproblems have to be solved iteratively before
applying the final converged solution to DGs in voltage
control. Consequently, the response speed of DGs cannot catch
up with the fast variations of system condition, which thwarts
an online application.

Apart from duality-based methods, approaches like gradi-
ent/subgradient method [16] and heuristic algorithms [17],
[18] have been applied to derive distributed control schemes
as well. For example, a gradient based distributed algorithm
is proposed in [16] to minimize the voltage deviations in a
microgrid with a consensus on reactive power utilization. In
[5], a local reactive power control framework is developed to
minimize the weighted voltage mismatch based on gradient-
projection method. However, these strategies will inevitably
encounter some problems when the reactive power capacities
of inverters are insufficient, especially during peak irradiance
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period. In such case, PV active power has to be curtailed for
ensuring the voltages within the acceptable ranges.

In this paper, we propose an efficient distributed online
voltage control algorithm using dual ascent method. PV cur-
tailment is taken into account to overcome the aforementioned
inadequacy of reactive power capacity. The objective is to
maintain the voltages within the acceptable ranges and mean-
while minimize the total loss consisting of network loss and
PV curtailment. In our proposed algorithm, the active and
reactive power (P-Q) set-points of multiple PV systems can
be updated in a distributed manner based on local voltage
measurements and communications between neighboring PV
systems. The contributions of this paper are summarized as
below.
• Different from most existing works (e.g. [11]–[13]), our

proposed distributed voltage control algorithm can be
implemented online. That is, each update obtained by our
proposed algorithm can be applied directly into voltage
control, as shown in Fig. 1(b). Therefore, the response
speed is faster than conventional algorithms, where the
voltage control cannot be implemented before algorithms
converge. Numerical results show the voltage violations
can be eliminated with only one iteration.

• We derive a closed-form solution for PV controllers
to locally update P-Q set-points rather than solving
SDP/SOCP subproblems in conventional algorithms. The
convergence is established analytically. To speed up the
convergence, the step sizes are diagonally scaled. More-
over, the optimality is guaranteed. Numerical results show
our method achieves a near-optimality (< 4%) of a
benchmark centralized optimization problem.

• We significantly reduce the communication complexity
through the analysis of the distribution network property.
Consequently, each PV system only needs to communi-
cate with its neighbors to update its P-Q set-points.

• We conduct a comprehensive sensitivity analysis to
demonstrate the influence of various parameters on the
voltage control and loss minimization of our proposed
method. In addition, we validate its robustness against
communication interruptions.

The remainder of this paper is organized as follows. Section
II introduces the system model and some preliminaries. In Sec-
tion III, the problem formulation is elaborated in a centralized
model. In Section III, a distributed algorithm is developed
based on dual ascent method. Section V demonstrates the
numerical results. Finally, Section VI concludes the paper and
guides our future work.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

Consider a radial distribution network represented by a
directed tree G = (N , E), where N := {0, 1, . . . , N} denotes
the bus set and E denote the line set. Each bus i except the
substation bus (indexed as 0) has a unique parent bus πi and
several child buses, denoted by Ci. Without loss of generality,
we label the bus in a way such that πi < i. In addition, we
assume each line points from a parent node πi to a node i

Solve SDP/

SOCP 

subproblems

Communic-

ate with 

neighbors

Iteration 1 Iteration 2
Iteration n 

 (converged)
...

...
Commands

DG i

Solve SDP/

SOCP 

subproblems

Communic-

ate with 

neighbors

Solve SDP/

SOCP 

subproblems

(a)

Update 

primal/dual 

variables

Communic-

ate with 

neighbors

Iteration 1 Iteration 2
Iteration m

  (converged)
...

...

DG i

Update 

primal/dual 

variables

Communic-

ate with 

neighbors

Update 

primal/dual 

variables

Commands

DG i

DG i

(b)

Fig. 1. (a) General distributed voltage control v.s. (b) our proposed distributed
online voltage control

and uniquely label the line as i. Hence, the label of the line
is consistent with the label of the bus and E := {1, . . . , N}.
Let A0 of size N × (N + 1) denote the incidence matrix of
G, whose entries are defined as

A0
ij =

 1 line i leaves bus j
−1 line i enters bus j
0 otherwise

Since G is a connected tree, the rank of A0 equals to N [19].
Let a0 denote the first column of A0 and A be the rest of A0,
i.e. A0 = [a0 A]. Note that A is a full-rank square matrix and
thus invertible.

B. Branch Flow Model

For radial DNs, branch flow model is well established to
represent the power flow equations [20] as (1a)-(1c)

Pi −
P 2
i +Q2

i

V 2
πi

ri + pi =
∑
j∈Ci

Pj ∀i ∈ N/0 (1a)

Qi −
P 2
i +Q2

i

V 2
πi

xi + qi =
∑
j∈Ci

Qj ∀i ∈ N/0 (1b)

V 2
πi
− V 2

i = 2 (riPi + xiQi)−
(
r2i + x2i

) P 2
i +Q2

i

V 2
πi

∀i ∈ E

(1c)

where pi and qi are active and reactive power injection at
bus i; Pi and Qi are active and reactive power flow on line
i observed from the sending bus πi; ri and xi are resistance
and reactance of line i; Vi is voltage magnitude at bus i. Eq.
(1a) and (1b) describe the active and reactive power balance
at bus i, respectively. Eq. (1c) shows the voltage relationship
between two neighboring buses.

Since the original branch flow model (1a)-(1c) is non-
convex, linearized branch flow model ( LinDistFlow) will be
adopted by neglecting the high order terms and assuming a
relatively flat voltage profile, i.e. Vi ≈ 1, ∀i. It has been
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widely used to solve DN operation and planning problems
(e.g., [5], [7]) and is given by

Pi −
∑
j∈Ci

Pj = −pi ∀i ∈ N/0 (2a)

Qi −
∑
j∈Ci

Qj = −qi ∀i ∈ N/0 (2b)

Vπi
− Vi = riPi + xiQi ∀i ∈ E (2c)

C. PV Inverter Control Strategies

Advance control strategies, e.g., optimal inverter dispatch
[6], enable PV inverters to adjust both active and reactive
power to provide voltage regulation service. Let pmi denote
the maximum available active power for PV system i. The
operating region of P-Q set-points can be represented by

0 ≤ psi ≤ pmi (3a)

|qsi | ≤
√
S2
i − (psi )

2 (3b)

where psi and qsi are active and reactive power set-points; Si is
the rated apparent power. In order to decouple the correlation
between active and reactive power, (3b) is linearized by
imposing restricted limits on qsi as (4).

q
i
≤ qsi ≤ qi (4)

where qi =
√
S2
i − (pmi )

2 and q
i
= −qi.

III. PROBLEM FORMULATION

A. Objective Function

The objective is to minimize the total loss consisting of
network loss and PV curtailment cost.

The network loss is given by

Loss =
∑
∀i∈E

ri
P 2
i +Q2

i

V 2
πi

≈
∑
∀i∈E

ri
P 2
i +Q2

i

V 2
0

(5)

where V0 is the voltage magnitude at the substation bus and
is assumed to be 1 p.u. without loss of generality; Vπi

is
approximated by V0 since Vi ≈ 1, ∀i.

PV curtailment cost is evaluated by a convex quadratic
function, which is given as

h (pc) = K · (pc)TRpc (6)

where pc is the vector collecting all pci and pci is curtailment
amount of PV system i; R is a positive definite matrix with
positive entries, which will be further explained in subsection
III-C. Thus, h (pc) is strictly increasing in each component
of pc. K is an adjustable parameter. A larger K results in
less PV curtailment amount but lower efficiency in eliminating
overvoltage violations, vice versa.

Hence, the total loss is given as

F = Loss + h (pc) (7)

B. Constraints

The constraints include power flow equations, voltage con-
straints and PV operation constraints. The power flow equa-
tions are represented by LinDistFlow model as (8)-(10)

(2a)-(2c) (8)

pi = pmi − pci − pli ∀i ∈ N/0 (9)

qi = qsi − qli ∀i ∈ N/0 (10)

where pli and qli are active and reactive load at bus i. The PV
system located at bus i is labelled as PV i so that the indices
of PV systems are identical with the indices of buses.

The bus voltage magnitudes should be maintained within
the acceptable ranges as

V i ≤ Vi ≤ V i ∀i ∈ N/0 (11)

where V i and V i are the lower and upper limits for Vi.
PV active power curtailment and reactive power set-point

are constrained by

0 ≤ pci ≤ pmi ∀i ∈ N/0 (12)
q
i
≤ psi ≤ qi ∀i ∈ N/0 (13)

C. Centralized Optimization Model

The centralized optimization model is given as

CEN1 min
pci ,q

s
i

F = Loss + h (pc)

s.t. (8)-(13)

CEN1 is a convex quadratic optimization problem with linear
constraints. A distributed online algorithm will be developed in
the next section to solve it. Towards this end, it will be written
in a compact matrix format for clarity. The corresponding
compact form for LinDistFlow model is given as

−ATP = −p (14a)

−ATQ = −q (14b)
a0 + AV = DrP + DxQ (14c)

p = pm − pc − pl (14d)

q = qs − ql (14e)

where Dr and Dx are N × N diagonal matrices whose
diagonal entries are constituted by ri and xi, respectively.
Solving P and Q and plugging them into (14c), LinDistFlow
model boils down to

V = Rp + Xq + V01 (15)

where R := A−1DrA
−T , X := A−1DxA

−T and 1 is
a N demension vector with the value of each component
being 1. Eq. (15) reveals linear relationship between nodal
power injections and bus voltage magnitudes. According to
Proposition 1 in [5], R and X are positive definite (PD) and
their entries are positive.

The network loss can be reformulated as

Loss =
∑
∀i∈E

[
(
√
riPi)

2
+ (
√
riQi)

2
]

= ‖D1/2
r P‖22 + ‖D1/2

r Q‖22 = pTRp + qTRq

(16)
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L =
K + 1

2
(pc)

T
Rpc − (pm − pl)TRpc +

1

2
(qs)

T
Rqs − (ql)TRqs + µT (V + Rpc −Xqs −Vr)

+ µT
(
−V −Rpc + Xqs + Vr

)
+ νT (0− pc) + νT (pc − pm) + ωT (q− qs) + ωT (qs − q)

(20)

The last equality follows from the substitution of P and Q.
Note that the PV curtailment evaluation in (6) shares a similar
structure with the network loss in (16). It will be demonstrated
in the next section that such a modelling of PV curtailment
will facilitate the reduction of communication complexity.

By plugging (14d) and (14e) into (15) and (16), we obtain
the compact format of CEN1 as

min
pc,qs

1

2

[ (
pm − pc − pl

)T
R
(
pm − pc − pl

)
+
(
qs − ql

)T
R
(
qs − ql

) ]
+
K

2
(pc)

T
Rpc (17a)

s.t. V = R
(
pm − pc − pl

)
+ X

(
qs − ql

)
+ V01 (17b)

V ≤ V ≤ V (17c)
0 ≤ pc ≤ pm (17d)
q ≤ qs ≤ q (17e)

IV. DISTRIBUTED ONLINE VOLTAGE CONTROL

A. Distributed Online Algorithm

In this subsection, we develop a distributed online algorithm
using dual ascent method. In particular, a closed-form solution
is derived for PV systems to locally update P-Q set-points and
Lagrangian multipliers.

1) Dual Ascent Method: In dual ascent method [21], the
dual problem is solved using gradient projection algorithm and
the primal optimal solution is recovered from the dual optimal
solution. Define the dual problem as D(y) = minx L(x,y),
where L(x,y) is the Lagrangian function. The iterations of
Lagrangian multipliers y and primal variables x are given as
(18) and (19), respectively.

yk+1 =
[
yk + αk∇D

(
yk
)]Y

(18)

xk+1 = argmin
x
L(x,yk+1) (19)

where ∇D
(
yk
)

is the gradient of the dual problem at yk, αk

is the step size at k-th iteration, Y is the feasible set of y, and
[·]Y denotes the projection operator onto the set Y .

2) Update Rules for Lagrangian Multipliers: The La-
grangian function of CEN1 is given as (20) located at top of
this paper, where µ, µ, ν, ν, ω and ω are Lagrangian mul-
tipliers associated with (17c), (17d) and (17e), respectively;
and Vr := R(pm − pl)−Xql + V01.

The Lagrangian multipliers are locally updated based on
gradient projection method for each PV system [22], given as

µk+1
i

=
[
µk
i
+ αi(V i − V ki )

]+
(21a)

µk+1
i =

[
µki + αi(V

k
i − V i)

]+
(21b)

νk+1
i =

[
νki + β

i
(0− pc,ki )

]+
(21c)

νk+1
i =

[
νki + βi(p

c,k
i − p

m
i )
]+

(21d)

ωk+1
i =

[
ωki + γ

i
(q
i
− qs,ki )

]+
(21e)

ωk+1
i =

[
ωki + γi(q

s,k
i − qi)

]+
(21f)

where αi, αi, βi, βi, γi and γi are step sizes for PV i,
and [·]+ denotes the projection operator onto the non-negative
range.

3) Update Rules for Primal Variables: Since L is a
quadratic function of pc and qs, a closed-form solution at
k-th iteration can be obtained as

pc,k =
pm − pl + µk − µk + R−1(νk − νk)

K + 1
(22a)

qs,k =ql + R−1X(µk − µk) + R−1(ωk − ωk) (22b)

The optimization problem (19) boils down to trivial al-
gebraic operations. However, it is still unclear to see how
the information is exchanged among PV systems. By using
the following two propositions, we will show that each PV
system only needs to exchange Lagrangian multipliers with
its neighboring PV systems for the update of active power
curtailment and reactive power set-point.

Proposition 1. Denote H := R−1 := ATD−1r A. H is a
weighted Laplacian matrix induced by the network incidence
matrix A. For any pair of buses (i, j) that are not directly
connected, the corresponding entry is zero, i.e. (i, j) /∈ E ⇔
Hij = 0.

The proof of Proposition 1 is deferred to Appendix A.

Proposition 2. The i-th component of R−1X(µk −µk) only
involves the information of PV system i and PV systems on its
child buses Ci.

Proof. Plugging R and X, R−1X(µk − µk) is transformed
to

R−1X(µk − µk) = ATD x
r
(λk − λk) (23)

where D x
r
:= D−1r Dx, λk := A−Tµk and λ

k
:= A−Tµk.

By observing Eq.(2a) and (14a), we have

λ
k

i =
∑
j∈Ci

λ
k

j − µki (24a)

λki =
∑
j∈Ci

λkj − µki (24b)
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Fig. 2. One iteration of the proposed distributed voltage control algorithm
for online implementation

Hence, each PV system i only needs to know λ
k

j and λkj

of PV systems on its child buses for calculating λ
k

i and
λki . Expanding (23), we can obtain the i-th component of
R−1X(µk − µk) as[

R−1X(µk − µk)
]
i
= −xi

ri
(λki − λki ) +

∑
j∈Ci

xj
rj

(λkj − λkj )

Therefore,
[
R−1X(µk − µk)

]
i

only involves λki , λ
k
i and

λkj , λ
k
j , where j is the index of child buses of bus i.

Applying (22) to a particular PV system i, we have

pc,ki =

pmi − pli + µk
i − µk

i
+Hii(ν

k
i − νki ) +

∑
j∈Ni

Hij(ν
k
j − νkj )

K + 1

(25a)

qs,ki = qli −
xi
ri

(λk
i − λk

i ) +
∑
j∈Ci

xj
rj

(λk
j − λk

j ) +Hii(ω
k
i − ωk

i )

+
∑
j∈Ni

Hij(ω
k
j − ωk

j ) (25b)

where Ni := {πi, Ci} denotes the set of neighbors of PV
system i. Now the update for each PV system is only coupled
with its neighbors.

Since constraints (17d) and (17e) are relaxed, the primal
variables obtained from (25a) and (25b) may be infeasible. In
case of infeasibility, they will be projected onto the feasible
ranges as

pc,k,ai =
[
pc,ki

]pmi
0

(26a)

qs,k,ai =
[
qs,ki

]qki
qk
i

(26b)

where [·]ba denotes the projection operator onto the range
[a, b]; qki and qk

i
are iteratively renewed as qki =√

S2
i − (pmi − p

c,k,a
i )2 and qk

i
= −qki . Compared with the

fixed limits in (17e), qki and qk
i

enlarge the reactive power
capacity and thereby improving the system performance as
will be shown in Section V.

4) Implementation of the Distributed Algorithm: Fig. 2
shows one iteration of the proposed distributed algorithm for
online implementation and Fig. 3 illustrates the information
exchange between neighboring PV systems, where πi and j

(a)

(b)
Fig. 3. Information exchange between neighboring PV systems (a) PV i
receives information from its neighbors (b) PV i sends information to its
neighbors

denote the parent bus and child bus of bus i, respectively. We
assume each bus is equipped with a PV system that could
monitor the local bus voltage magnitude and communicate
with its neighboring PV systems. Each iteration of the process
consists of five steps below.

Step 1: Monitor the local bus voltage magnitude Vi.
Step 2: Update Lagrangian multipliers according to (21a)-

(21f).
Step 3: Exchange multipliers with neighboring PV systems.
Step 4: Update active power curtailment and reactive power

set-point according to (25a) and (25b) and project them onto
the feasible ranges as (26a) and (26b).

Step 5: Apply the P-Q set-points to the PV inverter.
Since each iteration only involves simple algebraic oper-

ations and limited communication between neighboring PV
system, the time required to implement the above five steps is
negligibly short. Moreover, the duration of transient process
is also very short. Hence, we choose a four-second duty cycle
for each iteration just like the case in the automatic generation
control (AGC) [23]. In other words, the iteration is repeated
every four seconds until the stopping criterion is met. In this
paper, the voltage stopping criterion is adopted since the opti-
mal solution is directly related to the bus voltages. Specifically,
if the voltage difference of two successive iterations is smaller
than the tolerance ε, i.e. |V ki − V

k−1
i | < ε, then the iteration

will stop.
B. Convergence Analysis

CEN1 is a strongly convex quadratic problem with linear
inequality constraints and can be written more compactly as

min
x

1

2
xTQx + cTx (27a)

s.t. Bx ≤ b (27b)

where x is the vector of decision variables collecting pc and
qs. Q and B are coefficient matrices, c and b are coefficient
vectors. The strong convexity of (27) implies Q is PD and
invertible. The associated dual problem is given by

max
y≥0

g(y) = −1

2
yTBQ−1BTy−(BQ−1c+b)Ty−1

2
cTQ−1c

(28)
where y is the vector of dual variables collecting µ, µ, ν, ν,
ω and ω. Then the update rules of dual and primal variables
are given as

yk+1 =
[
yk + D(Bxk − b)

]+
(29)

xk+1 =−Q−1c−Q−1BTyk+1 (30)
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where D is a diagonal matrix whose diagonal entries are
constituted by the step sizes.

Theorem 1. Considering the update rules of (29) and (30),
the trajectories of xk and yk asymptotically converge to
the optimal solutions x∗ and y∗, respectively, if the largest
eigenvalue of PD matrix D

1
2 BQBTD

1
2 is smaller than 2

The proof of Theorem 1 is deferred to Appendix B.

V. NUMERICAL RESULTS

In this section, we test our proposed distributed online volt-
age control algorithm, denoted as DIS, on the modified IEEE
37-bus distribution system. The network topology and system
data can be found in [24]. The nominal voltage value is 4.8 kV
and per unit value is used in the case studies. Suppose each
bus except the substation bus is equipped with a PV system
with 150 kW peak capacity and 1.05×150 kVA rated apparent
power. Four case studies are carried out. In the first one, we
apply DIS to two representative static cases and compare its
performance with three other approaches. Then, we conduct
a sensitivity analysis on various parameters to demonstrate
their influence on voltage control and loss minimization of
DIS. In the third case study, we verify the robustness of DIS
against communication interruptions. Finally, we test DIS on
dynamic cases of system loading and PV generation with
one-minute resolution. Note that in all cases the actual bus
voltage magnitudes obtained from local voltage measurements
are used for updating Lagrangian multipliers . The acceptable
range for bus voltage magnitudes is set as [0.95, 1.05] p.u.. All
tests are implemented using MATLAB on a personal computer
with an Intel Core i5 of 2.4GHz and 12GB memory.

A. Performance Comparisons

In this section, we compare the performance of DIS with
two centralized strategies (CEN1 and CEN2) and a decentral-
ized Q-V droop control scheme (Droop), where CEN1 is to
solve the problem (17) in a centralized manner and CEN2
is to minimize the total loss using SOCP relaxed branch flow
model. CEN2 is regardes as the benchmark. Note that here we
use the standard form of linear droop VAR control method
as shown by Fig. 4 and thus do not need to optimize its
parameters. To speed up the convergence of DIS, the step
sizes are diagonally scaled. Specifically, β

i
, βi, γi and γi

are chosen as 0.8/Hii, where Hii is i-th diagonal entry of
matrix H. αi is set as 3. αi is chosen adaptively in order
to quickly eliminate overvoltage violations. If an overvoltage
violation occurs, a big step size will be applied to αi, e.g.,
150. Otherwise, a normal step size will be applied, e.g., 50.
K is set as 200.

Two representative cases corresponding to high negative net
load and positive net load will be considered, as the former
leads to overvoltage issues and the latter leads to undervoltage
issues.

Case 1: high negative net load during the period of peak PV
generation. Without loss of generality, the load at that moment
is assumed to be 50% of the peak load.

Fig. 4. Linear droop VAR control curve without deadband
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Fig. 5. Convergence of the total loss for (a) overvoltage case and (b)
undervoltage case

Case 2: high positive net load during the period of peak
load. Since the peak load often occurs at night, PV generation
is not available at that moment.

Fig. 5 shows the convergence of the total loss for cases 1 and
2, representatively. It is observed that the total loss of case 1
is much higher than that of case 2. Moreover, the convergence
speed in case 1 is also slower than that in case 2. The reason is
that in case 1 the goal of alleviating voltage violations conflicts
with the goal of reducing the total loss, while in case 2 they
are consistent. Specifically, to mitigate overvoltage violations
in case 1, PV systems need to increase their reactive power
consumptions and reduce active power productions, which
gives rise to the increase of the total loss. In contrast, in case
2, raising the reactive power productions of PV systems not
only facilitates the alleviation of undervoltage violations but
also contributes to the reduction of network loss. Fig. 6(a)
and 6(b) depict the convergence of the maximum bus voltage
magnitude for case 1 and the convergence of the minimum
bus voltage magnitude for case 2, respectively. Prior to the
iterations, severe overvoltage and undervoltage violations are
observed in cases 1 and 2, respectively. However, the voltage
violations are eliminated immediately with only one iteration
in both cases using our proposed DIS and thus validating the
high efficiency of DIS.

Tables I and II summarize the performance comparisons
of four different approaches for cases 1 and 2, respectively,
where P cur and P loss denote the PV curtailment and the
network loss, respectively. For each method, the total loss is
compared with the benchmark result, i.e. the total loss under
CEN2, and the ratios to the benchmark result are exhibited
in the tables. Fig. 7 and Fig. 8 plot the corresponding bus
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Fig. 6. Convergence of (a) the maximum bus voltage magnitude for over-
voltage case and (b) the minimum bus voltage magnitude for undervoltage
case

TABLE I
PERFORMANCE COMPARISONS OF DIFFERENT METHODS FOR CASE 1

Methods P cur/kW P loss/kW Total loss/kW Ratio

DIS 51.5 278.4 329.9 1.045
CEN1 154.8 273.5 428.3 1.357
CEN2 25.1 290.5 315.6 1
Droop 0 277.1 277.1 0.878
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Fig. 7. Bus voltage magnitudes under different methods for case 1
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Fig. 8. Bus voltage magnitudes under different methods for case 2
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Fig. 9. Bus voltage magnitudes without and with PV curtailment

TABLE II
PERFORMANCE COMPARISONS OF DIFFERENT METHODS FOR CASE 2

Methods P cur/kW P loss/kW Total loss/kW Ratio

DIS 0 89.4 89.4 1.001
CEN1 0 95.3 90.3 1.011
CEN2 0 89.3 89.3 1
Droop 0 246.1 246.1 2.753

Note: oscillation is observed in Droop

voltage magnitudes under different methods, respectively. With
a first glance of the results, we may conclude that in both
cases CEN2 outperforms other methods in terms of voltage
control and loss minimization providing that the centralized
control is applicable. However, in practice, the centralized
method is incapable of dealing with the real-time problem,
especially the voltage problem caused by the rapid variation
of PV generation, due to the considerable computational and
communication burden. In contrast, our proposed method
DIS can be applied online to address the real-time voltage
problem. As can be observed from the results, DIS can not
only efficiently remove voltage violations but also yield a
relatively low total loss that is just slightly higher than the
total loss using CEN2. Note although Droop is a decentralized
method and can be also applied online, it fails to remove
the overvoltage violations in case 1 and results in system
oscillation and considerably higher network loss in case 2. The
reason is that the droop method is prone to system instability
as pointed out by ref [10] and it does not take network loss
into consideration. Furthermore, it is interesting to notice that
DIS achieves a better performance in loss minimization than
CEN1, even though DIS is derived from CEN1. One reason is
that in CEN1 the reactive power capacity is fixed at a restricted
value, while it is iteratively renewed in DIS. Another reason is
that in CEN1 the voltages are approximated using LinDistFlow
model. Therein, approximation error could result in voltage
violations. To avoid this kind of voltage violations, the upper
and lower voltage limits in CEN1 need to be tightened, which
causes additional network loss. Nevertheless, in DIS the actual
voltage values obtained from local voltage measurements are
used to update the multipliers and thereby avoiding approxi-
mation error. Therefore, DIS outperforms other three methods
in addressing real-time voltage problem.

To demonstrate the contribution of reaction power control to
the voltage regulation, we depict the bus voltage magnitudes
with only reactive power control and with both active and
reactive power control (DIS) in Fig. 9 along with the bus
voltage magnitudes before the implementation of the control.
Note that although the reactive power control can significantly
mitigate the overvoltage violations, it fails to eliminate the
violations without curtailing PV generation due to the limited
reactive power capacity of PV inverters during the period of
peak PV generation. Moreover, with the increasing adoption of
PV generation, the overvoltage issue will become more severe
that cannot be resolved by the reactive power control alone.
Therefore, PV curtailment is necessary to address this issue.
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Fig. 11. Convergence of maximum voltage magnitude under different K for
case 1
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Fig. 12. Convergence of total loss under different step size α for case 1
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Fig. 13. Convergence of maximum voltage magnitude under different step
size α for case 1

B. Sensitivity analysis

In this subsection, sensitivity analysis on various parameters
are conducted. Firstly, we demonstrate the influence of the
parameter K on the voltage control and loss minimization of
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Fig. 14. Convergence of total loss under different step size β, γ for case 1
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Fig. 15. Convergence of maximum voltage magnitude under different step
size β, γ for case 1
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Fig. 17. Convergence of minimum voltage magnitude under different step
size α for case 2

our proposed method. Fig. 10 shows the network loss and PV
curtailment under different K for overvoltage case (case 1).
Note that the parameter K is indifferent to the undervotlage
case (case 2) since no PV curtailment is required. We can see
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TABLE III
COMPARISONS OF ROBUST PERFORMANCE FOR 37-BUS SYSTEM

Probability ρ Case1 Case2
Loss/kW Iteration Loss/kW Iteration

0 340.9 11 89.3 7
0.1 336.6 18.4 89.3 7.2
0.2 337.8 21.6 89.3 7.4
0.3 340.2 23.5 89.3 7.1

from the figure when K = 0, a great amount of PV generation
is curtailed since its cost is not taken into account. When K
grows to 100, PV curtailment is substantially reduced. With
the increase of K, PV curtailment and total loss continue to
diminish. Fig. 11 depicts the convergence of the maximum
bus voltage magnitude under different K for case 1. It can be
seen when K < 200, the overvoltage violations are quickly
removed with only one iteration. But when K ≥ 200, it
takes several iterations to eliminate the overvoltage violations.
Hence, there is a tradeoff between minimizing the total loss
and improving the voltage control performance. Tuning K to
100 is an appropriate choice for the considered case.

Secondly, we also illustrate the impact of the step sizes
on the performance of DIS. Fig. 12 and Fig. 13 demonstrate
the convergence of the total loss and maximum bus voltage
magnitude under different α for case 1, respectively. We can
observe that increasing α to some extent can accelerate the
convergence of the total loss and voltage magnitude. But when
the value of α reaches 110, the algorithm fails to converge
as shown by the purple curves in Fig. 12 and Fig. 13. Fig.
14 and Fig. 15 show the convergence of the total loss and
maximum bus voltage magnitude under different values of β
and γ for case 1, respectively. The similar phenomenon is
observed and the algorithm diverges when the values of β and
γ are increased to 1/Hii. Note that α, β and γ have no impact
on the result of case 1 and α, β, β, γ and γ are indifferent to the
result of case 2. Fig. 16 and Fig. 17 illustrate the convergence
of the total loss and minimum bus voltage magnitude under
different value of α for case 2. We can see decreasing the value
of α will improve the convergence speed of the algorithm.
But when α is decreased to 1, the undervoltage violations are
difficult to alleviate. Therefore, it is important to tune the step
sizes to proper values off-line in order to optimize the online
performance of the proposed algorithm.

C. Robustness

In this subsection, we validate the robustness of our pro-
posed voltage control algorithm against communication in-
terruptions. The stopping criterion of the algorithm is given
by |V ki − V k−1i | < ε, where the tolerance ε is set as
1.0 × 10−4. Assume that the communication interruptions,
e.g. packet drop, occur randomly between PV systems with a
probability of ρ. In case of failure in receiving the information
from the neighbors for some PV systems, these PV systems
would use the information obtained from last iteration. Tables
III lists the average total loss and iteration number for 500
simulations under different probabilities. ρ = 0 represents
intact communication and is the benchmark. Compare with
the benchmark, the communication interruptions have limited
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Fig. 19. Daily maximum and minimum bus voltage magnitudes with and
without DIS control
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influence on the total loss and iteration number for both cases.
Therefore, the proposed DIS algorithm is robust.

D. Dynamic cases

The dynamic cases for system loading and solar energy are
included to verify the effectiveness of our proposed algorithm
for online application. The instantaneous maximum available
PV active power and load are calculated by multiplying PV
and load factors with the peak PV capacity and the peak load,
respectively. Fig. 18 plots the daily load and PV factors with
one-minute resolution, where the load data and solar irradiance
date are obtained from [25] and [26], respectively. Since the
duration of one duty cycle is four seconds, the maximum
iteration number is 15 for each time interval (one minute).
The step sizes and K are the same with those in subsection
V-A. Fig. 19 depicts the daily maximum and minimum bus
voltage magnitudes with and without DIS control. Severe
overvoltage and undervoltage violations are observed without
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DIS control during the peak PV period and the peak load
period, respectively. As expected, all violations are eliminated
by DIS control, which verifies the effectiveness of DIS for
online application. Fig. 20 shows the difference of the total
loss between DIS and CEN2 as well as the total loss under
CEN2. The difference is relatively small and is negligible for
most periods. Therefore, DIS achieves a near-optimality of
CEN2 even for the dynamic cases.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a distributed online voltage
control algorithm for DNs with dispersed PV systems based
on dual ascent method. Different from conventional distributed
algorithms, our proposed algorithm can be implemented online
to address the real-time voltage fluctuation problem. At each
iteration, only trivial algebraic operations are needed for the
update of P-Q set-points of each PV system. Moreover, the
proposed algorithm significantly lightens the communication
burden such that each PV system only needs to communicate
with its neighbors. Consequently, it is highly efficient for
voltage control and loss minimization as the time required
for completing one iteration is negligibly short. The numer-
ical results show the voltage violations can be immediately
eliminated with only one iteration and the total loss quickly
converges to the near-optimality of a benchmark centralized
optimization problem. The robustness of the algorithm against
communication interruptions is also validated.

In this work, we assume the DN is three-phase balanced.
Thus, an equivalent single-phase model is adopted. In our
future work, we will extend our approach to the three-phase
unbalanced DNs by considering the coupling between phases.
Besides, due to the high R/X ratio of distribution lines, it is
appealing to extend the current work by incorporating demand
response in the future. Finally, the discrete voltage control (e.g.
tapper changing) is not considered in the current work. But we
will investigate the coordination between the fast responding
resources (e.g. inverter-based DGs) and conventional voltage
regulation devices (e.g. tapper changer and capacity banks) in
the future.

APPENDIX

A. Proof of Proposition 1

Proof. Let
[
AT
]
i

denote the i-th row of AT and
[
D−1r A

]j
denote the j-th column of D−1r A. The entry on l-th row and
j-th column of D−1r A is

[
D−1r A

]
lj

= Alj/Dr,ll. Thus, we
have

Hij =
[
AT
]
i

[
D−1r A

]j
=

N∑
l=1

Ali
Alj
Dr,ll

According to the definition of A, if bus i and bus j are not
directly connected, AliAlj = 0,∀ l and thus Hij = 0.

B. Proof of Theorem 1

Proof. Since problem (27) is a strictly convex-quadratic prob-
lem with linear constraints, the Slaters condition [27] holds
and thus there is no duality gap between (27) and (28).
Therefore, given dual optimal solution y∗, the primal optimal

solution can be retrieved by minimizing L(x,y∗). Plugging
(30) into (29), we obtain

yk+1 =
[
yk + D(−BQ−1BTyk −BQ−1c− b)

]+
=
[
yk + D∇g(yk)

]+
Thus, the iteration of y is based on diagonally scaled gra-

dient projection method. To show yk converges to the optimal
solution y∗, it is equivalent to show (29) is a contraction
mapping regarding to the norm of the scaled error. Define
ȳk = D−

1
2 yk and ȳ∗ = D−

1
2 y∗. We have∥∥ȳk+1 − ȳ∗

∥∥
=
∥∥∥D− 1

2

[
yk + D∇g(yk)

]+ −D−
1
2

[
y∗ + D∇g(y∗)

]+∥∥∥
≤
∥∥∥ȳk − ȳ∗ + D

1
2

(
∇g(yk)−∇g(y∗)

)∥∥∥
=
∥∥∥ȳk − ȳ∗ −D

1
2 BQ−1BTD

1
2

(
ȳk − ȳ∗

)∥∥∥
=
∥∥∥(I−D

1
2 BQ−1BTD

1
2

) (
ȳk − ȳ∗

)∥∥∥
≤
∥∥∥I−D

1
2 BQ−1BTD

1
2

∥∥∥∥∥ȳk − ȳ∗
∥∥

The first equality holds since y∗ is a stationary point. The
first inequality holds since the projection is non-expansive
according to Proposition 1.1.4 in [22]. The second equality
holds by plugging in the gradient of dual function g.

Denote W := D
1
2 BQBTD

1
2 . By definition, the Euclidean

norm of I−W equals to the largest singular value ρ of I−W.
Thus, ρ = max

k
|1 − λk|, where λk is k-th eigenvalue of W.

Since W is positive definite, ρ < 1 if λmax < 2, where λmax

is largest eigenvalue of W. Therefore, (29) is a contraction
mapping and yk converges to dual optimal solution y∗. Then
xk converges to the primal optimal solution x∗ with x∗ =
−Q−1c−Q−1BTy∗.
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