
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

TeMA: a Tensorial Memetic Algorithm for
Many-Objective Parallel Disassembly Sequence

Planning in Product Refurbishment
Francesco Pistolesi, and Beatrice Lazzerini, Member, IEEE

Abstract—The refurbishment market is rich in opportunities,
the global refurbished smartphones market alone will be $38.9
billion by 2025. Refurbishing a product involves disassembling
it to test the key parts and replacing those that are defective
or worn. This restores the product to like-new conditions, so
that it can be put on the market again at a lower price.
Making this process quick and efficient is crucial. This paper
presents a novel formulation of parallel disassembly problem
that maximizes the degree of parallelism, the level of ergonomics,
and how the workers’ workload is balanced, while minimizing
the disassembly time and the number of times the product has
to be rotated. The problem is solved using the Tensorial Memetic
Algorithm (TeMA), a novel two-stage many-objective (MaO)
algorithm which encodes parallel disassembly plans by using
third-order tensors. TeMA first splits the objectives into primary
and secondary on the basis of a decision maker’s preferences, and
then finds Pareto-optimal compromises (seeds) of the primary
objectives. In the second stage, TeMA performs a fine-grained
local search that explores the objective space regions around the
seeds, to improve the secondary objectives. TeMA was tested on
two real-world refurbishment processes involving a smartphone
and a washing machine. The experiments showed that, on
average, TeMA is statistically more accurate than various efficient
MaO algorithms in the decision maker’s area of preference.

Index Terms—Disassembly, Evolutionary computation, Many-
objective optimization, Memetic algorithm, Product refurbish-
ment, Tensor.

I. INTRODUCTION

TODAY, the refurbishment market for consumer electron-
ics is estimated to be $10 billion and it shows no sign of

slowing down [1]. According to the Global E-waste Monitor,
the volume of end-of-life electronics generated in the USA is
7.1 million tonnes every year. Refurbishing products can help
reduce this environmental impact for years to come.

When thinking about refurbished electronics, people imag-
ine products with some visible defect, which operate at
degraded performance. In reality, refurbished products are
restored to like-new conditions, and this provides consumers
with quality products at a more affordable price. Companies
generally list refurbished products offering savings that range
from 15% to 30% off the original price.

Many leading global brands are entering the refurbished
market, thus gaining new customers that previously could not

Manuscript received July 31, 2018; revised November 30, 2018; accepted
February 26, 2019. Date of publication ; date of current version . Paper no. .

(Corresponding author: Francesco Pistolesi.)
F. Pistolesi and B. Lazzerini are with the Department of Information

Engineering, University of Pisa, Largo L. Lazzarino 1, 56122 Pisa, Italy,
(email: f.pistolesi@iet.unipi.it; b.lazzerini@iet.unipi.it)

access the brand on the primary market. Manufacturers and
researchers have thus increased their interest in refurbishment,
proposing new standard methodologies [2]. At the same time,
closed-loop fashion supply chains are modeled to optimize the
service rates and refurbishment facilities [3].

As soon as products are returned to companies, they can
enter the refurbishment cycle. The first step is to disassemble
the products, in order to test specific components and ensure
quality standards, before putting them again up for sale. Find-
ing the best way to disassemble all or part of these components
is a Disassembly Sequence Planning (DSP) problem. The
DSP is an NP -hard combinatorial problem [4] with multiple
objectives, typically more than three. This makes the DSP a
many-objective (MaO) problem.

Disassembly processes are key in the industry for refurbish-
ment, end-of-life dismantling, remanufacturing and so on, and
various purposely-designed algorithms have been proposed in
the last years. Due to the high complexity of the problem, these
approaches are widely based on evolutionary computation,
such as ant colony optimization [5], tabu search [6] and
genetic algorithms (GAs) [7]. Hybrid techniques have also
been proposed. For instance, in [8] a GA is hybridized with
extremal optimization. Scatter search is used with Petri nets
in [9], and with dual objective program in [10]. A hybrid
algorithm integrating fuzzy simulation and artificial bee colony
optimization is proposed in [11]. An artificial bee colony
optimization algorithm is finally used in [12].

Although these approaches are interesting and efficient, they
limit the number of objectives, calculate scalarizations of the
objectives, or both. When the objectives are scalarized, certain
solutions that better represent a decision maker’s preferences
might be impossible to find [13]. On the other hand, limiting
the number of objectives is detrimental, as real-world problems
typically deal with many objectives. Moreover, the previous
approaches, as well as most techniques for DSPs in the
literature, focus on sequential disassembly, where workers
remove one component at a time. This is quite inefficient.
Parallel disassembly is becoming of interest, as it employs
several workers to simultaneously remove several components,
thus making the process considerably faster [14].

The contribution of this paper is twofold, as it proposes:
1) an MaO formulation of a novel parallel DSP that

minimizes the disassembly time and the number of times
the product is rotated, while maximizing the degree of
parallelism, the way the workers’ workload is balanced,
and the workers’ level of ergonomics;

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2

2) the Tensorial Memetic Algorithm (TeMA), an MaO algo-
rithm that blends a genetic approach with a local search
process to go straight to the decision maker’s area of
preference and discover Pareto-optimal solutions that put
the most important objectives first.

The paper is structured as follows: Section II contains a
background on MaO, memetic algorithms and GAs; Section III
outlines the formulation of the problem; Section IV presents
TeMA; Section V discusses the experiments; Section VI de-
scribes the performance evaluation. Section VII draws the
conclusions.

II. BACKGROUND

A. Many-objective optimization (MaOO)
MaOO problems are multi-objective problems with more

than three objectives, formulated as maxx∈X f(x) =
[f1(x), . . . , fm(x)], s.t. m ≥ 4, where X = {x ∈ Rn :
gi(x) ≤ 0, hj(x) = 0,∀i = 1, . . . , G, ∀j = 1, . . . ,H} is
the feasible region, where G and H are the number of in-
equality and equality constraints, respectively. Vector function
f : Rn → Rm contains the objective functions. Given x1,x2 ∈
X , solution x1 Pareto-dominates x2 if fi(x1) ≥ fi(x2), ∀i ∈
{1, . . . ,m}, and ∃ j ∈ {1, . . . ,m} s.t. fj(x1) > fj(x

2). Non-
dominated solutions are Pareto-optimal and form the Pareto
front, in the objective space.

MaOO problems are hard because the number of non-
dominated solutions becomes huge when the number of objec-
tives is increased [15]. Using exact methods is not practical be-
cause: i) they are not applicable (e.g., due to non-differentiable
objective functions); ii) they fail to converge, as in the case of
real-world problems, which typically have huge quantities of
variables, objective functions and constraints; iii) they involve
a large set of Pareto-optimal solutions in order to find one that
faithfully represents the decision maker’s preferences [13].

Evolutionary algorithms are very efficient in multi-objective
optimization. However, their performance degrades consid-
erably when dealing with MaOO problems because of the
high dimensionality, which causes a huge increase in non-
dominated solutions, makes crossover and mutation less effi-
cient, and requires a higher computational power [16]. Various
heuristic algorithms have thus been proposed which are based
on preference ordering relations, objective reduction, prefer-
ence incorporation, or decomposition: no single solution has
been shown to be superior to the others [17].

B. Genetic algorithms (GAs)
GAs mimic evolution [18] to solve complex problems.

Potential solutions are encoded as data structures (individuals)
made up of binary/integer/real elements (genes). One or more
fitness functions assess each individual’s goodness.

A GA first generates a population of individuals. The
better the fitness, the more likely an individual is selected
for reproduction. Those selected evolve via crossover and
mutation. Crossover mixes the genetic information of several
individuals to get one or more offspring. Mutation makes slight
changes to some, as occurs throughout the evolution of a
species. The offspring replace part of the population on the
basis of the fitness. GAs iterate until a stop condition is met.

C. Memetic algorithms (MAs)

MAs are one of the most recent growing areas in evolu-
tionary computation [19]. MAs are population-based meta-
heuristics that are made up of an evolutionary core equipped
with a set of local search algorithms that work alongside the
evolutionary core to find better solutions [20]. Although pure
evolutionary algorithms are not well suited to fine-grained
search in complex combinatorial spaces, hybridization with
other techniques can improve the search efficiency [21].

MAs can tackle many complex optimization problems
across a wide range of industrial application areas, such
as assembly [22], vehicle routing [23], real-time production
scheduling [24], and wireless sensor networks [25]. In all
cases, MAs were shown to be more efficient and/or converge
to better solutions compared to their purely-evolutionary coun-
terparts.

III. PROBLEM FORMULATION

A. Basic concepts

Consider a product with F faces that lies on one of these
(the ground face), which cannot be accessed. Consider W
workers who, if necessary, can work in parallel. Refurbishment
policies entail removing and testing some parts of the product.

Let T = {1, . . . , T} be the set of the disassembly tasks,
each removing one or more parts from the product. Let
T TARGET ⊆ T be the set of the target tasks, i.e., those that
remove the parts to test. A task i has a duration di. In order
to perform a given task, a worker must act on a specific face.
If this is the ground face, the task entails rotating the product.
Also, all preceding tasks must have already been performed.
These tasks determine the precedence constraints (PCs).

Let b be a branch, i.e. a sequence of tasks that meets the
PCs, which is performed by one worker and may be executed
in parallel with other branches, if both of the following hold:

1) the tasks of the branches do not act on the ground face;
2) no branch contains any preceding task of the tasks that

make up the other branches.

A group of branches executed in parallel forms a phase, and a
series of phases forms a disassembly schedule (DS). A DS may
contain phases with just one branch. The maximum number
of branches per phase is equal to the number W of workers.

B. Notation

Let vector s ∈ {0, 1}T×T×B×P be a DS, where T is the
number of tasks to disassemble the product entirely, B is
the maximum number of branches per phase, and P is the
maximum number of phases of a DS. Note that B = W and
P = T . The elements of s are in lexicographic order, and the
generic element is:

sikbp=

{
1 if i is the k-th task in branch b of phase p
0 otherwise. (1)

Let C = [cij] be a T ×T matrix where cij = 1 if task i must
be performed before task j, and cij = 0 otherwise.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 3

C. Model

The proposed parallel DSP problem is formulated as:

max
s

f(s) = [−f1(s),−f2(s), f3(s), f4(s),−f5(s)] (2a)

subject to:
P∑
p=1

B∑
b=1

T∑
k=1

sikbp ≤ 1, ∀i = 1, . . . , T (2b)

∑
p′<p

B∑
b′=1

T∑
k′=1

∑
h:chi=1

shk′b′p

+
∑
k′<k

∑
h:chi=1

shk′bp −
∑
h6=i

chi = 0, ∀i,∀k, ∀b,∀p (2c)

P∑
p=1

B∑
b=1

T∑
k=1

sikbp = 1, ∀i ∈ T TARGET (2d)

∑
b′>b

T∑
k=1

T∑
i=1

sikb′p = 0, ∀p,∀b :
∑
k

∑
i sikbp = 0 (2e)

sikbp ∈ {0, 1}, ∀i,∀k, ∀b,∀p. (2f)

1) Objective functions: Equation (2a) contains the objective
functions, whose formulations are given in the next sections.

a) Number of rotations: Function f1(s) counts how
many times the product is rotated to perform s. There is more
than one sequence of rotations that allows access to the faces
required while performing s. Function f1(s) finds a sequence
with the lowest number of rotations, and takes this number as
a value.

This nested optimization problem can be formulated as the
one of finding the shortest path from a node s to a node d
in a layered graph, called ground face graph (GFG). A GFG
has the same number of layers as the number of phases of s.
Each layer p is associated with phase p of s, and has the same
number of nodes as there are faces that are not required by
phase p. These faces can be the ground face during p. Each
node of a layer is connected to all nodes of the next layer. The
arc that connects two nodes u and v has a cost rsuv ∈ {0, 1, 2}
that corresponds to the number of rotations required to change
the ground face from u to v. The product needs no rotation if
u = v, 1 rotation if u and v are adjacent, and 2 rotations if u
and v are parallel. An example of GFG is shown in Fig. 1.

Let As and N s be the sets of the arcs and nodes, respec-
tively. The objective function can be modeled as:

f1(s)=

min
∑

(u,v)∈As

rsuvxuv

∑
(u,z)∈As

xuz −
∑

(z,v)∈As

xzv =

−1, z = s
1, z = d
0, z ∈ N s\{s, d}

xuv ∈ {0, 1} ∀(u, v) ∈ As.
(3)

b) Disassembly time: Function f2(s) measures the time
required to perform s, which depends on the longest branch
of each phase, and can be calculated as follows:

f2(s) =

P∑
p=1

B
max
b=1

(
T∑
i=1

T∑
k=1

disikbp

)
. (4)

s

12

14

22

23

25

36

42

43

45

d

0

0

0

1

2

1 2

1

2

2

1

2

1

2

0

0

0

Figure 1. GFG of a DS with four phases. The label of each node is made
up of two ciphers: the first one is the phase id, the second is the face id,
assuming a product with six faces. For example, the first layer (nodes 12 and
14) indicates that faces 2 and 4 are not required by the tasks in phase 1.
The path in blue is an example of sequence that minimizes the number of
rotations, where the ground faces, one per phase, are: 2, 2, 6, and 3, in order.

c) Level of ergonomics: Function f3(s) is the workers’
level of ergonomics when performing s. Each task acts on a
specific face of the product. While task i is being performed
by one worker on a face, other workers may be performing
other tasks on that face, or on parallel/adjacent faces. At any
instant, the more the workers that are performing tasks on the
same face, the less comfortable they are, as they are too close
to each other and get in each other’s way. Conversely, the less
close they are on the faces that are working on, the higher the
ergonomics.

The level of ergonomics is measured by first discretizing
time into intervals with length ∆τ . The set of the tasks of s
performed in each time interval [τ, τ + ∆τ] is

Tτ = {i : sikbp = 1 ∧ τ ≤ Dpi +Dki + di}, (5)

where terms Dpi =
∑
p<pi maxBb=1(

∑T
k=1

∑T
i=1 disikbp) and

Dki =
∑
i

∑
k<ki disikbipi are, respectively, the total duration

of the phases that precede the one where task i is performed
(i.e., pi), and the total duration of the tasks that precede i in
the same branch where i is performed (i.e., bi).

Each task i ∈ Tτ is assigned a maximum level of er-
gonomics if it is the only one being performed, or there are
only tasks j 6= i being performed on the parallel face of the
product. For each task j being performed on the same face as
that of i, or on adjacent faces, the level of ergonomics of i
is decreased by a penalty coefficient qij ≥ 0. This coefficient
has two levels of penalty. The high level is used for the tasks
j performed on the same face of i; the low level is used for
the tasks performed on the faces adjacent to that of i.

Let Ds ∈ R+ be the duration of s, and let ϕi be the face
on which task i operates. The formulation of the objective is

f3(s) =
Ds∑Ds

τ=0 1/exp
(∑

i∈Tτ
∑
j∈Tτ ,j 6=i qij

) , (6)

where qij = 0, qij = 1, or qij = 1.5 if ϕi and ϕj are parallel,
adjacent, or are the same face, respectively. Eq. (6) calculates
the harmonic mean.

d) Degree of parallelism: Function f4(s) measures the
degree of parallelism. The average number of workers em-

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 4

ployed per phase is used to measure the degree of parallelism:

f4(s) =
1

P

P∑
p=1

(∑B
b=1 maxTi,k=1 sikbp

W

)
. (7)

e) Branch smoothness: Function f5(s) measures how
leveled the idle times are of the branches of all phases of
s. The idle time of branch b of phase p is the time that, once
finished, the associated worker has to wait until the longest
branch of phase p is completed. The leveling is measured as
the sum of the squared idle times of all branches of all phases:

f5(s)=

P∑
p=1

B∑
b=1

(
B

max
b′=1

(
T∑
k=1

T∑
i=1

disikb′p

)
−

T∑
k=1

T∑
i=1

disikbp

)2
.

(8)
2) Constraints: Constraints (2b) ensure that each task is

performed at most in one branch of one phase. Constraints (2c)
prevent each task i from being performed as k-th in branch
b of phase p if its preceding tasks are not performed either
in the same branch at positions k′<k, or in a branch of the
previous phases p′<p. Constraints (2d) force each target task
in T TARGET to be performed. Constraints (2e), given a phase
p, guarantee that an empty branch is preceded by one or more
non-empty branches. Constraints (2f) force binary variables.

IV. THE TENSORIAL MEMETIC ALGORITHM: TEMA

This section describes TeMA, the novel two-stage memetic
algorithm to solve the problem presented in Section III-C.

A. Encoding

A DS is encoded using a third-order tensor T ∈
{0, . . . , T}S×S×W , where S = b TW c. This is an evolution
of the permutation encoding—typically used in combinatorial
problems,—that encodes a chromosome as a vector of integers,
without duplicates. Given that problem (2a)-(2f) introduces
parallelism, there is not a single sequence of tasks, but
there are multiple sequences of tasks (branches) performed in
parallel. These branches are then followed by further branches
which, in turn, are performed in parallel with other branches,
and so on. A third-order tensor can easily map this situation
and can guarantee efficient indexing and manipulation. These
aspects are key to obtaining a fast recombination and a fast
vectorized fitness evaluation, which boost the evolution.

Each element tijk of T either contains a task identifier or is
empty. The non-empty element tijk contains the identifier of
the task performed as j-th in branch k of phase i. Non-empty
elements contain task identifiers, whereas empty elements
contain 0 and are key throughout the evolution in terms of
moving tasks from branch to branch, and phase to phase. This
gives the algorithm the power to explore the largest possible set
of combinations and parallelizations of the tasks. An example
of a chromosome is shown in Fig. 2, which can be written as

T = [(〈1, 2〉 , 〈6〉 , 〈11〉), (〈3〉 , 〈5, 7〉), (〈4〉 , 〈8, 9, 10〉)], (9)

where 〈·〉 denotes a branch, and (·) denotes a phase.

1

3

4

2
5 7

phase 1

branch 1

branch 2

branch 3

T =

8 9 10

11

6
horizontal slice

frontal slice

lateral slice

Figure 2. Tensor that encodes a DS with three phases: the first one has three
branches that respectively perform tasks 〈1, 2〉, 〈3〉, and 〈4〉; the second one
has three branches, performing tasks 〈6〉, 〈5, 7〉, and 〈8, 9, 10〉, respectively;
the third phase has one branch that performs task 〈11〉.

B. Decoding

In order to decode a tensor T into the corresponding DS s,
TeMA performs the steps of Algorithm 1.

Algorithm 1: Decoding tensor T into schedule s

input : T, S, T,B, P
output: s

1 s := 0T×T×B×P ;
2 for w := 1 to P do /* ∀ horizontal slice (phase) w of T */
3 for u := 1 to S do /* ∀ row fiber (branch) u of w */
4 for v := 1 to S do /*∀ column (position) v of u */
5 if tuvw 6= 0 then
6 i := tuvw; k := v; b := u; p := w;
7 sikbp := 1;
8 end if
9 v := v + 1;

10 end for
11 u := u+ 1;
12 end for
13 w := w + 1;
14 end for
15 return s

C. Tensorial genetic operators

TeMA evolves the individuals by means of tensorial genetic
operators that were purposely developed to work with the
third-order tensors explained in the previous section.

1) 3-mode Tensorial Crossover (3TX): The 3TX operates
in three modes: cut&paste, replacement and slicing. The mode
used by the 3TX is chosen randomly. The following tensors
are used in the next sections to explain the three modes:

T=

[[
1 2 0
6 0 0
11 0 0

][
3 0 0
5 7 0
0 0 0

][
4 0 0
8 9 10
0 0 0

]]
, S=

[[
1 0 0
4 6 0
0 0 0

][
2 3 5
7 0 0
8 11 0

][
0 0 0
9 10 0
0 0 0

]]
where frontal slices are in square brackets, and tijk is the
element of T in row i, column j and frontal slice k, and the
i-th row of the k-th frontal slice is denoted as ti:k.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 5

a) Cut&paste: This mode first selects one row tit:kt of
T, one row sis:ks of S, and a cut-off index h ∈ {1, . . . , S}.
Two offspring o1 and o2 are generated by exchanging the
second part of the genetic information of the rows between
the two chromosomes, so that o1itjkt = sisjks and o2isjks =

titjkt ,∀j > h. The other genes of o1 and o2 are inherited
from T and S, respectively. The genes of o1it:kt and o2is:ks with
j > h form the crossing region of o1 and o2, respectively.

For example, consider rows t2:1 and s1:2, and h = 1. The
offspring are

o1 =

[[
1 2 0
6 3 5
11 0 0

][
3 0 0
5 7 0
0 0 0

][
4 0 0
8 9 10
0 0 0

]]
, o2 =

[[
1 0 0
4 6 0
0 0 0

][
2 0 0
7 0 0
8 11 0

][
0 0 0
9 10 0
0 0 0

]]
where the genes in bold of o1 and o2 are the ones inherited
from S and T, respectively. The 3TX then builds the mapping
matrix M = [3 5

0 0], whose row m1j (m2j) contains the genes
of o1 (o2) that come from S (T). Each duplicated gene of o1

that is outside its crossing region is replaced with the value in
the other row of M. Offspring o1 has two duplicated genes,
i.e., o1112 = 3 and o1212 = 5, which are both replaced with 0,
according to M. In order to reintroduce the missing genes in
o2, the 3TX randomly selects two genes equal to 0 outside
the crossing region, and assigns 3 and 5 to them, respectively.

b) Replacement: The replacement mode selects one row
tit:kt of T and one row sis:ks of S. Two offspring o1 and o2

are generated. Offspring o1 inherits the genetic information
from T, except row o1it:kt , which is inherited by S, so o1it:kt =
sis:ks . Offspring o2 is generated in the same way, exchanging
the roles of T and S.

For example, consider rows t1:3 and s1:2. The following
offspring are generated

o1 =

[[
1 2 0
6 0 0
11 0 0

][
3 0 0
5 7 0
0 0 0

][
2 3 5
8 9 10
0 0 0

]]
, o2 =

[[
1 0 0
4 6 0
0 0 0

][
4 0 0
7 0 0
8 11 0

][
0 0 0
9 10 0
0 0 0

]]
where the genes in bold in o1 and o2 are the ones inherited
from S and T, respectively. Duplicated and missing genes are
repaired using the mapping matrix M = [4 0 0

2 3 5], as explained
for the cut-paste mode.

c) Slicing: In this mode, the 3TX selects one horizontal,
lateral or frontal slice of T, and one slice (of the same type)
of S. The first offspring o1 inherits the genetic information
from T, except the selected slice, which is inherited from S.
Offspring o2 is generated by exchanging the role of T with
the role of S.

As an example, consider lateral slices t:2: and s:1:. The two
offspring generated are

o1 =

[[
1 1 0
6 4 0
11 0 0

][
3 2 0
5 7 0
0 8 0

][
4 0 0
8 9 10
0 0 0

]]
, o2 =

[[
2 0 0
0 6 0
0 0 0

][
0 3 5
7 0 0
0 11 0

][
0 0 0
9 10 0
0 0 0

]]
and the mapping matrix to repair the duplicates and missing
genes is M = [1 4 0 2 7 8 0 9 0

2 0 0 0 7 0 0 9 0].
2) Mutation: Given a mutation probability pm, each gene

tijk of a chromosome T is assigned a random number σijk
with uniform probability distribution in [0, 1]. The genes with
σijk ≤ pm are exchanged with one gene that is randomly
selected from T, which may be the gene that is mutating.

Pr
im

ar
y

ob
je

ct
ive

 2

Primary objective 1

Exploratory
population
of seed 1

PRIMARY
OBJECTIVE SPACE

seed 1Se
co

nd
ar

y
ob

je
ct

ive

I
II

III
IV

Figure 3. Seeds and projection of the exploratory population of one of them on
the primary objective space (left-hand side). The roman numerals indicate the
zone rank. The right-hand side shows the exploratory population of the same
seed in the full objective space (considering a problem with three objectives).

D. Description of TeMA

Consider an MaO problem with five objectives mea-
sured by a vector of tensorial fitness functions g(T) =
[g1(T), g2(T), g3(T), g4(T), g5(T)] that evaluate (3), (4), and
(6)-(8) by representing a disassembly schedule s as a third-
order tensor T.

TeMA first splits the objectives into primary and secondary,
according to a vector of weights w = (w1, w2, w3, w4, w5),
with wi ∈ (0, 1), derived from a decision-maker’s preferences.
The two stages of TeMA are explained in the next sections.

1) First stage: The first stage only takes the primary
objectives into account. In this stage, the aim of TeMA is to
look for a set of solutions that are Pareto-optimal with respect
to these objectives (primary front).

TeMA creates an initial population of n tensorial individuals
by generating permutations of the tasks that are then encoded
as third-order tensors, as described in Section IV-A. This
population evolves via the genetic operators explained in
Sections IV-C1 and IV-C2, and achieves the primary front.
Each solution T of the primary front is called seed.

2) Second stage:
a) Generating the exploratory populations: The second

stage begins generating a set ET of E solutions to associate
with each seed T. These solutions ET

i ∈ ET are called
explorers and form the exploratory population of the seed.
The exploratory population ET of seed T is generated by
performing a local search that explores the neighborhood of
T. The idea is to try to improve the secondary objectives
by slightly degrading the primary objectives. The local search
considers each seed T and performs permutations of its genes,
so that the projection g⊥(ET

i) of the fitness vector g(ET
i) of

each generated explorer ET
i on the primary objective space

falls close to the seed. The maximum distance from the seed
derives from the preferences in w.

b) Ranking explorers: Once all the exploratory popu-
lations have been created, each explorer is assigned a first-
order rank whose performance increases in inverse proportion
to the number of explorers that dominate it. The top-ranked
explorers are thus non-dominated. Those explorers (infeasible)
that violate some constraints are assigned the worst rank, and
are sorted in ascending order of average constraint violation.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

The top-ranked explorers are then further ranked by assign-
ing each of them a zone rank. The zone rank is designed to
increase the selection pressure, and makes it possible to prune
the exploratory population, by only retaining those explorers
that are closest to the seeds, in the primary objective space.

Without loss of generality, consider a set of primary ob-
jectives made up of two objectives, and a seed T. In order
to determine the zone rank of each non-dominated explorer,
TeMA places C concentric circles centered in the seed, in the
primary objective space. This generates C rings around the
seed. These are the zones where the zone rank works. In more
detail, the zone rank of an explorer ET

i is better the closer
to the seed the ring is where the projection g⊥(ET

i) of the
objective vector g(ET

i) of the explorer falls. The closer a non-
dominated explorer is to the seed, the greater the chances of
survival and reproduction. If the number of primary objectives
is higher than two, the concentric circles become concentric
(hyper)spheres, and the rings become (hyper)spherical shells.
But nothing changes in the procedure. The stages of TeMA are
shown in Fig. 3. Fig. 4 shows the overall flowchart of TeMA.

c) Local search performed by the explorers: The top-
ranked explorers of each exploratory population have the
highest probability of being selected for reproduction, thus
enabling the search to concentrate in the immediate vicinity
of the seeds, in the primary objective space.

When the time comes for selecting explorers to evolve,
TeMA uses a binary tournament. Given two explorers ET

i and
ET
j that take part in the tournament, there may be three cases.

If both explorers are feasible, the better one is selected on the
basis of their rank. If only one explorer is feasible, that one
is selected. If both explorers are infeasible, then the one with
the lower average constraint violation is selected. The selected
explorers evolve within parallel genetic loops, undergoing the
tensorial operators in Section IV-C. After recombination, the
explorers to retain are chosen on the basis of the rank. The
number of explorers in each exploratory population is limited
to E by discarding the worst explorers, i.e. the ones furthest
from the seeds (bad zone rank). Each seed T has a spam
archive where it throws away the discarded explorers.

The parallel genetic loops synchronize whenever a certain
number of generations have passed. Synchronization stops all
loops before the phase where they select the explorers to
retain. When this time comes, the two closest seeds to each
seed T (neighboring seeds) are given a chance to pick some
explorers from the spam archive of T. The closer an explorer
in the spam archive is to one of the neighboring seeds, the
more likely this seed selects the explorer, and brings it to
its exploratory population. The exploratory populations thus
cooperate thereby enabling the algorithm to increasingly refine
the search in the immediate vicinities of the seeds.

After collaborating, if a stop condition is met, e.g. a
maximum number of generations is achieved or exceeded, the
various exploratory populations are merged and the algorithm
terminates. Otherwise, the genetic loops resume working in
parallel, until the next synchronization.

Start

Generate n
individuals

Evaluate primary
objectives + non-
dominated sorting

Select parents

Recombine via
3TX and mutation

Select survivors
w.r.t. primary

objectives

Select the seeds
S1,...,Sm

Generate
exploratory

population of S

. . .

Stop
condition

met

Compute 1st order
and zone rank of

explorers

Evolve explorers
via 3TX and

mutation

Get the zone rank
of new exploratory

population

Put the worst
explorers into the

spam

Spam 1

Synch

Pick explorers
from the spam of
the neighboring

seeds

Generate
exploratory

population of S

Compute 1st order
and zone rank of

explorers

Evolve explorers
via 3TX and

mutation

Get the zone rank
of new exploratory

population

Put the worst
explorers into the

spam

Spam m

Synch

. . .

. . .

Stop
condition

met
End

YESNO

NO

YES YES

NO

YES

NO

Seeds

1 m

Figure 4. Flowchart of TeMA. The left-hand side and the right-hand side
contain the first and second stages, respectively.

V. EXPERIMENTS

TeMA was developed in MATLAB, and was tested on the
refurbishment of two products: a smartphone and a washing
machine. The experiments were carried out using a virtual
machine running Linux Debian OS, with four quad-core CPUs
and 64 GB of RAM. This section presents the results.

A. Parameters

To find the best values for the crossover rate PX and mu-
tation probability PM , an initial sampling phase was carried
out to get a uniformly-distributed subset of all the infinite
combinations of the parameter values. Crossover rates from
0.5 up to 1 (with step 0.1), and mutation probabilities equal to
PM = 0.01PX were considered. Lower crossover rates were

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

12

3 15121613142021

17

18

11

9

10 4 5 768

13

2219

Figure 5. Exploded view drawing of the Samsung Galaxy A5.

Table I
REMOVED PART, TIME, FACE AND PRECEDING TASKS OF EACH TASK ID

ID Part Time Face Prec ID Part Time Face Prec

1 Display 10” T - 12 Antenna cable 5” T 11
2 Screws 2’30” T 1 13 Screw 10” B 11
3 Bracket 5” T 2 14 Wire 30” B 13
4 Coax cable 30” B 5 15 Button 2” T 2
5 Volume key 10” B 3 16 PBA-FPCB module 10” B 14,15
6 Speaker 5” B 5 17 Rear speaker 5” B 9,10,16
7 Aux receiver 15” B 3 18 Key volume 5” T 17
8 Logic board 5” B 4,6,7 19 Key power 5” T 17
9 Camera 10” T 8 20 Sim slot 3” T 17
10 Camera 8” T 8 21 Sim slot 3” T 17
11 Battery 15” B 8 22 Power key module 5” T 20,21

ignored as they are well-known to be insufficient, whereas
mutation probabilities generally have to be one/two orders of
magnitude lower than the crossover rate to make it less likely
that good solutions are perturbed [18].

A total of 36 parameter vectors were obtained. The racing
technique [26] was then used as a tuner, with 100 as the max-
imum number of tests per parameter vector. This meant that
PX ∈ {0.6, 0.7, 0.8} were retained. A total of 30 executions
of TeMA were then run for each parameter vector retained.
The performance of each run was measured by calculating
the hypervolume (HV) of the Pareto front. The (PX , PM)
pair with the highest mean HV was chosen. Student’s t-test
with a 95% confidence interval was used for validation.

B. Case study I: smartphone

The smartphone considered is the Samsung Galaxy A5.
This device was chosen because it is in high demand. People
change their smartphones frequently, just because they go out
of fashion. Refurbished smartphones have started to be sold
by the most famous brands.

1) Dataset: The device is made up of 22 parts, its exploded
view drawing is shown in Fig. 5. Table I contains the entire
dataset. This product has two faces, top (T) and bottom (B).

2) Results: The refurbishment policy considered in the
experiments entails replacing the battery and testing the screen,
logic board and antenna.

Disassembly time and the degree of parallelism were con-
sidered as the primary objectives. A smartphone is a thin
and light device, which is quick and easy to rotate. There
are no ergonomics issues when disassembling a device like
this. The weights that were assigned to the objectives were
w = (0.05, 0.4, 0.05, 0.4, 0.1).

80
90

82

6.3

P
ar

al
le

liz
at

io
n

84

Rotations = 2

Ergonomics

80 6.25

Disassembly Time

86

6.2
70 6.15

3.5

4

4.5

5

5.5

6

B
ra

nc
h

sm
oo

th
ne

ss

Rotations D. Time Ergonomics Parall. Smooth.
2

3

4

5

6

7

8

9

F
itn

es
s

V
al

ue

(a) (b)

Figure 6. Scatter plot (a) and parallel coordinates plot (b) of the solutions
obtained in the experiments involving the smartphone. In (b), the values of the
third and fourth objectives have been divided by 10 to make the plot clearer.
“D. time”, “Parall.” and “Smooth.” are abbreviations for “Disassembly time”,
“Degree of parallelism” and “Branch smoothness”.

The first stage was run for 500 generations, considering 2
workers and B as the ground face. The crossover rate and
mutation probability were set to 0.6 and 0.06, respectively.
TeMA found 11 seeds. The second stage was run for 1000
generations with 20 explorers per seed. TeMA took 5’38” to
converge.

Fig. 6 shows a scatter plot and a parallel coordinates plot
of the solutions found. The number of rotations is constant
(it is the only one found) and the smoothness is represented
with color. The parallel coordinates plot highlights that TeMA
accurately explored the regions close to the seeds. The values
of the primary objectives are very close to each other, whereas
those of the secondary objectives are spread around the region,
over a wider range of values.

In accordance with the relative importance of each
objective, the decision maker chose solution S =
[(〈1, 2〉), (〈3, 5, 7〉 , 〈15〉), (〈4〉 , 〈6〉), (〈8〉), (〈11, 13〉 , 〈9〉),
(〈14, 16〉 , 〈10〉), (〈17〉 , 〈12〉), (〈19, 20〉 , 〈21〉), (〈22, 18〉)],
whose fitness is g(S) = (−2,−6.63, 72.92, 88.89,−3.99).
This solution was chosen because it takes the best values of
the secondary objectives. It is thus the Pareto-optimal solution
that achieves the best compromise between primary and
secondary objectives. The degree of parallelism is high, as
required, since almost all branches of each phase have another
branch in parallel. The total duration of all tasks performed
in sequence would normally be 7’76”. The chosen solution
completes the disassembly in 6’63”, which corresponds to a
time saving of 14.6%. The sequence entails only two rotations
of the smartphone.

C. Case study II: washing machine

This case study considers the refurbishment of the
Whirlpool WFW87HEDW0 washing machine, which was cho-
sen to test TeMA on a highly complex product that involves
almost five times more components than the smartphone.

1) Dataset: The washer is made up of 103 parts. Its
exploded view drawing is in Fig. 7. In order to prevent damage,
the manufacturer recommends that the washer should lie on
only four of its six faces: top (T), bottom (B), front (F) and rear
(R). The dataset is in Table II. Each row is associated with a
part, which belongs to one of the subassemblies (A, B, C, D or

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 8

A2

A3
A4

A8

A5

A6

A7

A9

A10

A11

A12A13A14

A15

A15

A16A15

A15r

A17

A18

A19

A20
A21

A15

A7

A22 A23

A24
A25

A26

A27

A28
A29A30

A31

A32

B1
B5B4

B3
B2

B6

B7

B8

B9

B10
B11

B12

B13

B14
B15

B20

B21

B22

B23

B24
B25

B26

B27

B28

B29

B30

B31 B32
B33

B34
B35

B36

B37

B24 B16

B17s

B19 B17
B18

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C2

D1

D2

D3
D4

D5

D6

D7

D8
D10
D9

D11
E1

E2 E3

E3
E4

E5

E6 E7
E8

E9

E10

E11

E12 E13

E14

E6

Figure 7. Exploded view drawing of the Whirlpool WFW87HEDW0 washing machine. The letter that precedes the task identifier indicates the subassembly:
‘A’ is the cabinet, ‘B’ is the basket, ‘C’ is the door, ‘D’ is the control panel and ‘E’ is the dispenser.

E) shown in Fig. 7. The preceding tasks are listed starting from
those involving the same subassembly as the part associated
with the row, omitting the letter. The remaining tasks are
grouped according to the subassembly that they belong to. The
letter is only reported before the first task in each subassembly.

2) Results: The refurbishment process tests the water
pump, resistance, motor, cables, grounding, bearings and bas-
ket. These are key parts of a washing machine, and were
chosen as they are typically included in refurbishment policies.

The primary objectives chosen were the degree of paral-
lelism and the number of rotations. A washing machine is
heavy, rotating it takes time and physical effort: limiting the
rotations is thus crucial. On the other hand, the volume of
the product lends itself well to performing many tasks in
parallel. The weights assigned to the objectives were thus

w = (0.35, 0.1, 0.1, 0.35, 0.1).

TeMA was run for 1000 generations, considering 2 workers.
The crossover rate and mutation probability were 0.7 and 0.07,
respectively. A total of 10 seeds were found. In the second
stage, 40 explorers were associated with each seed. The total
running time was 21’43”. The algorithm might seem slow, but
problem (2a)-(2f) is extremely complex here, with over two
million variables and it has to meet many more constraints
due to the larger set of precedences of Table II.

Fig. 8 shows two scatter plots and two radar plots of the
solutions found. Scatter plots 8a and 8b show that the solutions
are spread over the objective space and are characterized by
good values of the primary objectives. The DSs only require
two or three rotations, which minimizes the workers’ effort and
shortens the disassembly time. The sequential disassembly of

S = [(〈A28, A2〉, 〈A15r,A14〉), (〈D6, B17s,B7, B16, B21, B33〉〈A7〉), (〈B11〉, 〈B32, B31, B13, B23, A22, A23, D1〉), (〈D8〉,
〈〉), (〈〉, 〈D10, E3, E2〉), (〈E7〉, 〈E14〉), (〈E1, E8〉, 〈〉), (〈〉, 〈E6, B19〉), (〈A15〉, 〈〉), (〈D9〉, 〈A21〉), (〈A24〉, 〈A20〉), (〈〉, 〈E5〉),

(〈A4〉, 〈E11〉), (〈A5〉, 〈〉), (〈A6〉, 〈〉), (〈A16〉, 〈E4〉), (〈A33〉, 〈D11〉), (〈A34〉, 〈D3〉), (〈A35〉, 〈B18〉), (〈B15〉, 〈〉), (〈B14〉,
〈〉), (〈〉, A26), (〈B26〉, 〈D4〉), (〈B6〉, 〈B22〉), (〈B35, B28, B17〉, 〈〉), (〈B4〉, 〈C7〉), (〈〉, 〈B24, B5〉), (〈A11, B27,

B29〉, 〈〉), (〈B25〉, 〈B3〉), (〈B37, B36〉, 〈〉), (〈B2〉, 〈D5, B10〉), (〈B1, B30, B9〉, 〈〉), (〈〉, 〈B8, PL,E12, E10, E9〉), (〈A19, A18〉,
〈〉), (〈C10〉, 〈E13〉), (〈〉, 〈C8, C4〉), (〈C6〉, 〈B34〉), (〈C11, C13, C5〉, 〈〉), (〈C2〉, 〈A10〉), (〈〉, 〈C1〉), (〈C8〉, 〈D2〉), (〈C3〉, 〈〉)]

(10)

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 9

Table II
REMOVED PART, TIME, FACE AND PRECEDING TASKS OF EACH TASK ID

ID Part Time FacePrec. ID Part Time FacePrec.

A2Top panel 10” T - 22 Push nut 10” T 31
3 Cabinet - - - 23 Clamp 5” R 13
4 Front panel 20” F 7,15 24 Screw 25” B A35

B11
5 Clamp 10” F 4 25 Cover 5” B 24
6 Lock 20” T 4 26 Drain pump 1’15”B A26
7 Screw 1’10”R - 27 Screw 55” R 5
8 Leveling leg 1’30”B - 28 Shock absorber 8” B A35
9 Cable tie 20” T 1 29 Housing 15” R 27
10 Main harness 15” F 18,20 30 Shield 5” R 1

21
11 Spacer washer 35” F 4 31 Pump drain hose 15” T 32
12 Shipping bolt kit 32 Dryer clip 8” T 33
13 Bracket 33 Hose clamp 5” T 16,21
14 Panel 20” R 15r 34 O-ring cap 5” B 35
15 Screw 32” F 2 35 Fluid element 15” B 6
16 Bracket 15” T 7 36 Heater assembly 20” B 37
17 Leg lock nut 37 Temp. sensor 20” B 25
18 Clip 9” R 23 C1Door hinge 25” F 2
19 Noise filter 10” R 16 2 Hinge pin cap 20” F 5
20 Water switch 8” T 23 3 Hinge support 10” F 8
21 Water switch hose8” R 23 4 Bumper 15” F A4
22 Retainer 12” R 2 5 Screw 20” F 4
24 Hose clamp 5” R - 7 Screw 20” F A4
25 U-bend bracket 8 Screw 15” F A4
26 Drain hose 12” R B14 9 Door inner panel 10” F A4
27 Power cord 10 Glass retainer 10” F 7
28 Screw 1’20”R - 11 Glass 10” F 8,10
29 Cover 5” R - 12 Outer door 15” F -
30 Power cord cover 5” R - 13 Clamp 5” F -
31 Top panel screw 20” T 2 D1Control panel 10” F A2
32 Cover 5” R - 2 Interface 15” F 5
B1Motor stator 45” R 2 3 Screw 20” R A2
2 Screw 1’18”R 3 4 Logic board 1’10”T 6
3 Rotor 15” R 4 5 Control knob 2” F -
4 Screw 1’20”R A14 6 Main harness 1’30”T A2
5 Vent pipe 13” R 24 7 Bracket 10” F 9
6 Filter cap 20” B 26 8 Screw 1’05”T 1
7 Counterweight 45” T 17s 9 Water channel 5” T 10
8 Tub and basket 25” T 9,18,2110 Dryer clip 15” T 8

22,29
30,36

9 Counterweight 5” B 17 11 Wire harness 10” F 1
10 Boot 40” F A5 E1Water inlet valve 15” F 2,7,A2
11 Boot spring clamp1’03”F - 2 Hose 5” T 3
12 Baffle 30” F - 3 Drain hose clamp15” F D10
13 Hose clamp 5” T A14 4 Hose 3” F 6
14 Trap 8” R 15 5 Hose 5” F 14
15 Trap hose clamp 5” R A35 6 Drain hose clamp10” F 1
16 Suspension spring 15” T 7 7 Hose 5” T 3
17 Screw 40” B 28 8 Drawer assembly 20” T 14
18 Vent bellows 15” T 19 9 Drawer divider 5” F 10
19 Vent pipe 10” R 23 10 Housing cover 3” F 12
20 Clip 10” T 7 11 Drawer assembly 2” F 8
21 Clamp 10 T 31

the washer would normally require 46.18 minutes. Fig. 8c and
8d highlight that the disassembly time can be almost halved.
In fact, with TeMA it averages 28.54 minutes. The level of
ergonomics is also very high. Fig. 8c and 8d show that it ranges
from 75 to 85. This means that most of the tasks performed in
parallel are on parallel or adjacent faces, thus minimizing the
presence of tasks simultaneously performed on the same face
of the product, with a lower chance of workers getting in each
other’s way. Finally, both the scatter and radar plots in Fig.
8 show that the degree of parallelism of the solutions found
averages 62.58, which means that just under two thirds of the
branches are performed in parallel with another branch. This
is a very promising result because disassembling a washing
machine entails dealing with a huge number of precedence
constraints [see Table 2].

62
82

62.5

30

Pa
ra

lle
liz

at
io

n

Rotations 2

Ergonomics Disassembly Time

2980

63

2878

0.5

1

1.5

Br
an

ch
 s

m
oo

th
ne

ss

62

62.5

Pa
ra

lle
liz

at
io

n

80 30

Rotations 3

Ergonomics
29

63

2878
0.5

1

1.5

2

Br
an

ch
 s

m
oo

th
ne

ss

Rotations
 [2]

Disassembly time
 [26min, 30min]Ergonomics

 [75, 85]

Degree of parallelization
 [60, 65] Branch smoothness

 [0, 2]

Rotations
 [3]

Branch smoothness
 [0, 2.5]

Ergonomics
 [75, 85]

Degree of parallelization
 [60, 65]

Disassembly time
 [26min, 30min]

(a) (b)
Disassembly Time

Figure 8. Scatter plots (a)-(b), and radar plots (c)-(d) of the solutions obtained
by the experiments involving the washing machine.

62 63 64 6575 80 8527 28 29 30
0

0.5
1

1.5
2

2.5
62

63

64

65

74
76
78
80
82
84

27

28

29

30

2
2.5
3

3.5
4

4.5
5 Rotations

D. time

Ergonomics

Parallelization

 Smoothness

2 3 4 5 0 1 2

Figure 9. Scatter plot matrix of the solutions obtained by the experiments on
the washing machine.

In accordance with the preferences, the final solution
chosen was the one in (10), whose fitness is g(S) =
[−2,−27.45, 82.39, 64.38,−1.56]. This solution achieves an
excellent compromise between the primary objectives, as it
disassembles all the parts to test with only two rotations of
the machine, with a degree of parallelism—higher than the
average—that guarantees that just under 65% of the tasks are
performed in parallel. Higher values could not be obtained
due to the precedence constraints. Thanks to TeMA and the
proposed parallel DSP formulation, the washing machine is
disassembled in just 27.45 minutes, i.e. just over half of the
46.18 minutes required by sequential disassembly procedures,
which represent the vast majority of the current literature. This

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 10

time saving could be used to disassemble another machine,
thus almost doubling productivity.

Finally, a pairwise comparison of the objectives was made
to assess the ability of TeMA to accurately search the objective
space. Fig. 9 shows a scatter plot matrix that summarizes
the results and highlights that TeMA efficiently searches the
objective space in the decision maker’s area of preference.
Each row i (column j) is made up of five cells, and relates
to the objective reported in cell (i, i) (cell (j, j)). Each cell
(i, j) with i 6= j, contains a scatter plot of the solutions
obtained, whose x-axis and y-axis relate to objectives i and j,
respectively. The cells in the diagonal show the histogram
distribution of the solutions for each objective. The numerical
values on the left of each row i (below each column j) refers
to cells (i, j) with i 6= j (i.e, all cells in column j).

VI. PERFORMANCE EVALUATION

The performance of TeMA was compared to the perfor-
mances of MOEA/D [27], NSGA-III [28], SPEA2+SDE [29],
PICEA-g [30], and HypE [31]. These algorithms were chosen
as they are among the best ones for MaO optimization [32].

A. Performance evaluation procedure

A total of 30 executions of TeMA were first run. At the end
of each execution k, the solutions of the Pareto front obtained
were normalized in [0,1] in order to obtain the normalized
front Pk. The ideal objective vector zideal,ki was calcu-
lated, whose elements are zideal,ki = supx∈Pk fi(x),∀i =
1, . . . , 5. The centroid of the ideal objective vectors is r =∑
k z

ideal,k/30.
As the true Pareto front is unknown, the performance of

TeMA was evaluated using the hypervolume (HV) and spacing
(SP) measures. For each run, the HV was estimated using a
Monte Carlo method using reference point r. The average of
all HVs (SPs) was calculated: the higher (lower) the average,
the better the performance. The same procedure was carried
out for the algorithms compared. These algorithms—which
are problem-independent MaO algorithms—were set up as
recommended in the original papers and in [33], considering
the values suggested for problem instances that are similar to
those tested in this work. In particular: MOEA-D considers
a population size n = 210 and T = d n10e; SPEA2+SDE
considers a population size n = 200; PICEA-g considers
Ngoal = 100; HypE considers 10,000 poits for HV estimation.
NSGA-III uses the genetic parameters of TeMA, and this also
holds for the previous algorithms that are based on genetic
evolution.

The distribution of the HVs and SPs of the executions of
TeMA and the other algorithms are shown in Fig. 10. As can
be seen, TeMA is more efficient than the compared algorithms,
as it averages a wider (lower) HV (SP).

The results were validated by using Student’s t-test with
a 95% confidence, considering that the difference in mean
is due to chance, as the null hypothesis. With the exception
of the comparisons relating to SP that were made between
TeMA and PICEA-g, and between TeMA and HypE, for all the
other comparisons it was possible to reject the null hypothesis.

 0.1

 0.2

 0.3

 0.4

 0.5

TeMA MOEA/D NSGA-III SPEA2+SDE PICEA-g HypE

 0.1

 0.2

 0.3

 0.4

 0.5

TeMA MOEA/D NSGA-III SPEA2+SDE PICEA-g HypE

Spacing

Figure 10. Box plot of HV (top) and SP (bottom) values obtained by TeMA
and the other algorithms. The two boxes of each algorithm relate to the
smartphone and washing machine refurbishments, from left to right.

The comparisons relating to SP confirmed that TeMA can find
solutions that are spread around a wider or equally wide region
of the objective space. The comparisons relating to HV showed
that the solutions found by TeMA are better in any case: TeMA
is thus more accurate than the other algorithms in the decision
maker’s area of preference.

VII. CONCLUSIONS

This paper has presented a novel MaO parallel DSP for-
mulation and TeMA, a tensorial MaO memetic algorithm for
highly efficient refurbishment-oriented DSP. TeMA guarantees
quick and convenient parallelized DSs, outperforming other
commonly-used MaO algorithms.

Companies can thus design more efficient industrial pro-
cesses to refurbish complex consumer electronics up to two
times faster, so as to enter the very profitable refurbishment
market.

ACKNOWLEDGMENT

The authors wish to thank Andrea Stevanato for developing
part of the MATLAB code.

REFERENCES

[1] https://www.usa.gov/statistics.
[2] N. Resmi and K. Fasila, “E-waste management and refurbishment

prediction (EMARP) model for refurbishment industries,” J. of Envi-
ronmental Manag., vol. 201, pp. 303 – 308, 2017.

[3] R. M. Difrancesco et al., “Optimizing the return window for online
fashion retailers with closed-loop refurbishment,” Omega, vol. 78, pp.
205 – 221, 2018.

[4] S. McGovern and S. Gupta, The disassembly line: balancing and
modeling. New York, USA: McGraw-Hill, 2011.

[5] S. M. McGovern and S. M. Gupta, “Ant colony optimization for
disassembly sequencing with multiple objectives,” The Int. J. of Adv.
Manuf. Technol., vol. 30, no. 5, pp. 481–496, Sep 2006.

[6] M. Alshibli et al., “Disassembly sequencing using tabu search,” J. of
Intell. & Robot. Syst., vol. 82, no. 1, pp. 69–79, Apr 2016.

[7] J. L. Rickli and J. A. Camelio, “Multi-objective partial disassembly
optimization based on sequence feasibility,” J. of Manuf. Syst., vol. 32,
no. 1, pp. 281 – 293, 2013.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 11

[8] F. Pistolesi et al., “EMOGA: A hybrid genetic algorithm with extremal
optimization core for multiobjective disassembly line balancing,” IEEE
Trans. Ind. Informat., vol. 14, no. 3, pp. 1089–1098, 2018.

[9] X. Guo et al., “Disassembly sequence optimization for large-scale
products with multiresource constraints using scatter search and petri
nets,” IEEE Trans. Cybern., vol. 46, no. 11, pp. 2435–2446, 2016.

[10] X. Guo et al., “Dual-objective program and scatter search for the opti-
mization of disassembly sequences subject to multiresource constraints,”
IEEE Trans. Autom. Sci. and Eng., vol. 15, no. 3, pp. 1091–1103, 2018.

[11] G. Tian et al., “Disassembly sequence planning considering fuzzy
component quality and varying operational cost,” IEEE Trans. Autom.
Sci. Eng., vol. 15, no. 2, pp. 748–760, 2018.

[12] Y. Ren et al., “Selective cooperative disassembly planning based on
multi-objective discrete artificial bee colony algorithm,” Eng. Appl. of
AI, vol. 64, pp. 415 – 431, 2017.

[13] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Struct. Multidisc. Optim., vol. 26, no. 6, pp.
369–395, 2004.

[14] Y. Ren et al., “An asynchronous parallel disassembly planning based
on genetic algorithm,” European J. of Operational Research, vol. 269,
no. 2, pp. 647 – 660, 2018.

[15] Y. Tian et al., “Effectiveness and efficiency of non-dominated sorting for
evolutionary multi- and many-objective optimization,” Complex Intell.
Syst., vol. 3, pp. 247–263, 2017.

[16] S. Bechikh et al., Many-objective Optimization Using Evolutionary
Algorithms: A Survey. Cham: Springer, 2017, pp. 105–137.

[17] K. Li et al., “Evolutionary many-objective optimization: A comparative
study of the state-of-the-art,” IEEE Access, vol. 6, pp. 26 194–26 214,
2018.

[18] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[19] X. Chen et al., “A multi-facet survey on memetic computation,” IEEE
Trans. Evol. Comput., vol. 15, no. 5, pp. 591–607, 2011.

[20] P. Moscato, “On evolution, search, optimization, gas and martial arts:
toward memetic algorithms,” California Inst. Technol., Pasadena, CA,
Tech. Rep. Caltech Concurrent Comput. Prog. Rep. 826, 1989.

[21] N. Krasnogor and J. Smith, “A tutorial for competent memetic al-
gorithms: model, taxonomy, and design issues,” IEEE Trans. Evol.
Comput., vol. 9, no. 5, pp. 474–488, 2005.

[22] S. Wang and L. Wang, “An estimation of distribution algorithm-based
memetic algorithm for the distributed assembly permutation flow-shop
scheduling problem,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46,
no. 1, pp. 139–149, 2016.

[23] J. Wang et al., “A hybrid multiobjective memetic algorithm for multi-
objective periodic vehicle routing problem with time windows,” IEEE
Trans. Syst., Man, Cybern., Syst., p. IN PRESS, 2018.

[24] X. Gong et al., “Energy and labor aware production scheduling for
industrial demand response using adaptive multi-objective memetic
algorithm,” IEEE Trans. Ind. Informat., p. IN PRESS, 2018.

[25] C. Liao and C. Ting, “A novel integer-coded memetic algorithm for the
setk-cover problem in wireless sensor networks,” IEEE Trans. Cybern.,
vol. 48, no. 8, pp. 2245–2258, 2018.

[26] O. Maron and A. W. Moore, “The racing algorithm: Model selection for
lazy learners,” Artificial Intell. Rev., vol. 11, no. 1, pp. 193–225, 1997.

[27] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, 2007.

[28] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints,” IEEE Trans. Evol.
Comput., vol. 18, no. 4, pp. 577–601, 2014.

[29] M. Li et al., “Shift-based density estimation for Pareto-based algorithms
in many-objective optimization,” IEEE Trans. on Evol. Comput., vol. 18,
no. 3, pp. 348–365, 2014.

[30] R. Wang et al., “Preference-inspired co-evolutionary algorithm using
adaptively generated goal vectors,” in IEEE Congr. Evol. Comput., 2013,
pp. 916–923.

[31] J. Bader and E. Zitzler, “Hype: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
2011.

[32] K. Li et al., “Evolutionary many-objective optimization: A comparative
study of the state-of-the-art,” IEEE Access, vol. 6, pp. 26 194–26 214,
2018.

[33] H. Ishibuchi et al., “Many-objective test problems to visually examine
the behavior of multiobjective evolution in a decision space,” in Parallel
Problem Solving from Nature, 2010, pp. 91–100.

PLACE
PHOTO
HERE

Francesco Pistolesi is a Postdoctoral Researcher
with the Department of Information Engineering,
University of Pisa, Pisa, Italy. He received a Master
of Science degree, summa cum laude, in computer
engineering (enterprise curriculum) and a Ph.D. de-
gree in information engineering (computer system
architectures curriculum), both from the University
of Pisa. His research interests are in artificial intelli-
gence and data mining, with applications to decision
support and multiobjective optimization. Francesco
is currently working on innovative solutions for the

smart industry that range from the optimization of industrial processes to the
enhancement of the workers’ safety and health.

PLACE
PHOTO
HERE

Beatrice Lazzerini (M’98) is a Full Professor of
computer engineering with the Department of Infor-
mation Engineering, University of Pisa, Pisa, Italy.
She has coauthored seven books and has contributed
to more than 210 papers in international journals and
conferences. She is coeditor of two books. She was
involved and had roles of responsibility in several
national and international research projects and sci-
entific events. Her research interests include com-
putational intelligence, with a particular emphasis
on fuzzy systems, neural networks, and evolutionary

computation, and their applications to pattern classification, risk analysis and
management, diagnosis, forecasting, and multicriteria decision making.

	Introduction
	Background
	Many-objective optimization (MaOO)
	Genetic algorithms (GAs)
	Memetic algorithms (MAs)

	Problem formulation
	Basic concepts
	Notation
	Model
	Objective functions
	Constraints

	The Tensorial Memetic Algorithm: TeMA
	Encoding
	Decoding
	Tensorial genetic operators
	3-mode Tensorial Crossover (3TX)
	Mutation

	Description of TeMA
	First stage
	Second stage

	Experiments
	Parameters
	Case study I: smartphone
	Dataset
	Results

	Case study II: washing machine
	Dataset
	Results

	Performance evaluation
	Performance evaluation procedure

	Conclusions
	References
	Biographies
	Francesco Pistolesi
	Beatrice Lazzerini

