

1

Full citation: Sinha, R., Patil, S., Gomes, L. & Vyatkin, V. (2019) A Survey of Static Formal
Methods for Building Dependable Industrial Automation Systems, IEEE Transactions on Industrial
Informatics 15(7), pp. 3772-3783. doi: 10.1109/TII.2019.2908665.

A Survey of Static Formal Methods for Building Dependable Industrial
Automation Systems

Roopak Sinha1, Sandeep Patil2, Luis Gomes3 and Valeriy Vyatkin4
1Department of IT and Software Engineering, Auckland University of Technology, Auckland, New Zealand

2Department of Computer Science, Electrical and Space Engineering
Luleå University of Technology, Luleå, Sweden

3Electrical and Computer Engineering Department, NOVA School of Science and Technology
NOVA University of Lisbon, Portugal, & Centre of Technology and Systems,

UNINOVA, Caparica 2829-517, Portugal
4Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology,
Luleå 97187, Sweden, the Computer Technologies International Laboratory, ITMO University, Saint

Petersburg 197101, Russia, & the Department of Electrical Engineering in Automation, Aalto University,
Aalto 00076, Finland

emails: 1roopak.sinha@aut.ac.nz, 2sandeep.patil@ltu.se, 3lugo@uninova.pt, 4vyatkin@ieee.org

Abstract
Industrial automation systems (IAS) need to be highly
dependable; they should not merely function as expected
but also do so in a reliable, safe, and secure manner.
Formal methods are mathematical techniques that can
greatly aid in developing dependable systems and can be
used across all phases of the system development life cycle
(SDLC), including requirements engineering, system
design and implementation, verification and validation
(testing), maintenance, and even documentation. This
state-of-the-art survey reports existing formal approaches
for creating more dependable IAS, focusing on static
formal methods that are used before a system is completely
implemented. We categorize surveyed works based on the
phases of the SDLC, allowing us to identify research gaps
and promising future directions for each phase.

Index Terms: Formal methods, formal verification,
IEC 61131, IEC 61499, industrial automation systems
(IAS), industrial control.

1. INTRODUCTION
Industrial automation systems (IAS) are highly distributed
systems containing software to control mechatronic
components interacting with physical processes. IAS find
use in production, logistics, and energy generation and
distribution. IAS need to provide a high level
of dependability, which is defined as the trustworthiness of
a computer system's ability to reliably provide the service
it promises to deliver [1]. A dependable system must
be functionally correct and do what it promises, but it must
also meet nonfunctional requirements (NFRs), such as
reliability, safety, and security. As system sizes and
complexity grow, the lack of systematic methods can

significantly limit our ability to build highly dependable
systems. Formal methods include formalisms, algorithms,
and processes that have sound mathematical foundations
and, therefore, provide more objective and unambiguous
means to model and check the dependability of a given
system. Due to factors such as difficulty in their use, expert
skills, significant manual effort required, and scalability
concerns, only a few formal methods have found industrial
use.

This paper surveys formal methods that can be used for
dependability analysis of IAS. We restrict the scope of this
study to only offline or static approaches for
dependability [2], leaving out online or runtime approaches
used for monitoring, diagnosis, and fault tolerance. A static
approach abstracts a system or a part of a system
specification into a model and then checks if the abstracted
model is consistent with some notion of correctness. Such
analysis can be automated, such as in model checking, or
require human input, such as in guided theorem proving.
An online approach observes the behavior of a system or a
part of a system during execution while simultaneously
checking if the execution so far is consistent with some
notion of correctness. Static approaches tend to be more
useful before a system is deployed, such as during system
design and refinement. Runtime approaches can be used
only when parts of the system are operational. The cost of
finding and fixing issues in a system grows exponentially
as its development progresses, which indicates that early
use of static approaches can significantly reduce
development time and costs. However, not all analyses can
be completed before deployment, which makes the use of
online approaches equally important. This paper focuses on
static approaches because the body of knowledge covering
both offline and online approaches is too expansive, and
online approaches have been generally well studied
elsewhere, such as in state-of-the-art surveys for fault

2

diagnosis [3], [4], and event scheduling [5]. We, therefore,
restrict this paper to surveying formal and static fault
prevention and fault removal techniques [1]. Furthermore,
we do not survey a few subtopics that have been covered in
other surveys. These topics are controller synthesis [6] and
formal methods for addressing networking issues [7], [8].
Existing surveys [9]–[10][11][12][13][14] are also loosely
related to this survey, but focus narrowly on specific
standards or IAS subdomains.

There are a number of well-established and widely
understood challenges in assuring the dependability of
IAS. Scale and complexity are the most obvious ones;
typical IAS contain highly distributed and modularized
software running on multiple programmable logic
controllers (PLCs), and hundreds or even thousands of
mechatronic components that must interact with often
heterogeneous physical processes. Several concerns related
to dependability exist throughout the system development
life cycle (SDLC) for IAS. Requirements
engineering involves eliciting and organizing requirements
for a system, and dependability-related concerns in this
phase include ensuring requirements are consistent, correct,
and complete, and are managed efficiently throughout the
subsequent SDLC phases. During design, dependability
rests squarely on system architecture and hence key
concerns include architecture selection, comparing design
alternatives, and choosing a sound and scalable primary
separation strategy. During design
and implementation phases, ensuring consistency between
subsequent refinements of a system is a key dependability-
related concern. The testing phase demands scalable,
comprehensive, and easy-to-use verification and validation
techniques to test a system's dependability. Runtime
management and reconfiguration of IAS are key
dependability-related concerns in the final deployment
stage. Throughout the SDLC, a key challenge is
systematically complying with dependability standards,
such as IEC 61508 for functional safety, by exploiting the
structures of design and implementation standards, such as
IEC 61499 or IEC 61131-3.

This survey reports a systematic mapping study
(SMS) [15], as opposed to a systematic literature review, to
identify the main areas of activity within this wide research
topic. Following the SMS methodology, an initial search of
peer-reviewed research covering individual keywords such
as formal methods, industrial automation,
dependability, and model-based engineering (a typical
architecture for IAS) yielded more than 2000 works. This
initial list was pruned to about 400 after using the phases of
the SDLC and industrial automation standards such as IEC
61499 and IEC 61131-3 as additional keywords.1 We
further reduced the number of studies to 123 by focusing
on offline formal approaches and also by studying how
closely each work related to IAS by manually reading the
titles, abstracts, and the conclusions sections of the articles.
This survey is designed for industry practitioners who can
evaluate available approaches for use in their contexts, as
well as for researchers in industrial automation systems,
dependability analysis, or formal methods, who would like
to explore the intersection of these fields.

In Sections 2–4, we use the SDLC phases to categorize
surveyed works, although some approaches span multiple
phases. Focusing on individual phases allows us to see how
well existing approaches address the key dependability-
related challenges in each phase, which leads to a more
thorough analysis of the state of the art and future
directions. Section 3 combines both the design and
implementation phases as most formal approaches for
assuring dependability in one phase were found to be
applicable in the other. In Section 5, we integrate the
conclusions drawn within Sections 2–4 and provide a
discussion around overall trends, research gaps, and future
directions. Our findings include identifying SDLC phases
that have found successful use for formal methods, the
imbalance between techniques borrowed from other
domains and those developed or customized specifically for
IAS, and the challenges in making formal methods intrinsic
to the IAS SDLC. These observations lead to identifying a
number of promising research directions to accelerate the
adoption of formal methods in IAS.

A. Key Definitions
A lack of standardization around dependability in IAS
means that several terms can have ambiguous meanings,
depending on where we look. Hence, we precisely define
some key terms used in the context of this paper.

The term specification refers to either requirements
specification and/or system specification. The former is
used in Section 2, whereas the latter is used in Sections 3–
4. Formal refers to methods, models, and algorithms that
have precise syntax and semantics, allowing unambiguous
specifications and interpretations. Temporal logics are
well-known formalisms to specify
requirements. Informal refers to techniques, tools, and
methods where specifications and interpretations can
change subjectively between observers. For instance,
requirements written in natural language are inherently
informal. Semiformal tools and approaches provide some
formalism, but not enough to allow a completely objective
interpretation. Unified Modeling Language (UML), for
instance, provides a formal structure for the formation of
requirement specifications, but terms used in a UML
diagram may have different interpretations.

In the literature, the terms verification and validation are
frequently used interchangeably. We follow their distinct
definitions from the IEEE Standard Glossary of Software
Engineering Terminology [16]. Verification is the process
of determining if the artifacts produced in the current phase
of the SDLC fulfill the requirements established during a
previous phase. In other words, verification checks for
consistency or compliance between a more
detailed implementation and a more abstract specification.
Validation, on the other hand, checks if specifications
accurately capture customer needs.

2. Requirements Engineering
Requirements engineering is the first phase in system
development and involves the elicitation, analysis,
specification, and validation of requirements [17].
Requirements express the needs and constraints on a
system, and in IAS, requirements can correspond to the

3

software, hardware, and/or the physical processes being
controlled. In addition to providing a precise understanding
of the system to be built, requirements engineering has a
far-reaching impact on subsequent phases in system
development via traceability of requirements to system
artefacts, and change management [18]. Most current
requirements engineering processes are informal or
semiformal at best. For instance, requirements elicitation,
where the aim is to capture as many requirements from
stakeholders, is largely an informal process. Most formal
approaches for requirements engineering have focused on
requirements specification and requirements analysis [19].

A. Requirements Specification
Requirements specification involves creating a structured
system requirements specification (SRS) document that can
be systematically reviewed and evaluated. SRS allows us
to analyze requirements and to also estimate costs and risks.
While requirements are often written informally,
several requirements specification languages (RSLs) allow
semiformal or even formal specification of certain classes
of requirements.

In the realm of semi and fully formal requirements
specification, UML and use cases and their variants are by
far the most common RSLs. SysML is another widely
accepted semiformal RSL in automation systems [20] and
can capture functional and safety requirements. Other RSLs
include SWSpec based on Petri nets for formally specifying
requirements in service workflow environments [21].

Adequate user guidance can make the writing of formal
requirements easier. Often this is done by providing
templates or patterns for writing requirements. Such
patterns for possibility or fairness are proposed in [22],
which were later extended into a formal methodology for
specifying real-time communication requirements for
industrial energy distribution systems [23]. Template-
based conversion of informal requirements to semiformal
boilerplates and then to formal patterns was also proposed
in the CESAR project [17].

Some approaches extract formal requirements from more
informal sources automatically. In [18], semiformal
engineering design process enables the conversion of
computer aided design (CAD) documents to formal
documents. An approach to formalizing requirements in
natural language to formal specifications [24] uses lexical
analysis to create a structure diagram for requirements. A
language in which test information is extracted through the
various stages of system development starting from the
requirement stage is presented in [25].

B. Handling Nonfunctional Requirements
A dependable system must satisfy NFRs, such as reliability,
availability, safety, and security [1]. In the requirements
engineering subphase, most existing works cover only
safety. In [26], safety requirements over individual
components and compositions are specified and verified.
SysML is used to capture safety requirements in a tree
structure containing relationships between requirements
and subrequirements. This approach also provides support
for traceability by allowing individual requirements to be
linked to components that implement them. When

requirements are refined, subrequirements are
automatically reallocated to subcomponents and their
combined behaviors are checked. The SAPIS tool allows
formal specification of safety requirements according to the
CENELEC standard and is based on previous work on
safety [27]. A classification of safety requirements for
industrial automation appears in [28]. Classifications
include static requirements that demand global satisfaction
of a property or dynamic requirements that must be true in
certain states and false in others. These requirements can be
easily translated to temporal logic formulas using
templates. In [29], graphical formalisms traditionally used
for modeling fault trees in safety analysis were used for
modeling security attacks.

C. Requirements Management and Analysis
Requirements management is concerned with maintaining
requirements in a usable manner throughout the SDLC.
One problem is storing requirements and associated
artefacts such as test-cases and ensuring that they are
reusable (concretized) as we go down the SDLC. In [25], a
model-based methodology called test requirements model
is used to transfer tests between various stages of the life
cycle. It follows the behavior model for tests standardized
by a consortium of standardization committees including
IEEE.

Continuous validation and analysis are required as
requirements get refined during the development of the
system. Requirements traceability is useful as it allows
linking requirements as they evolve [30]. Formal methods
can help find consistencies between requirements. In [31],
a trace creation and recovery approach using context
analysis enables a model-based approach to validate
requirements using timed state machines, provide feature-
oriented requirements validation, and generate runtime
observers for requirements. Requirements management
requires managing changes in requirements. An approach
based on SysML to depict and analyze change influences
in industrial automation systems is presented in [20]. The
focus is on modeling the impact of requirement changes on
the mechanical, hardware, and software aspects of an IAS.

Management and analysis require maintaining the
knowledge within requirements, which is often done using
ontologies to store interrelationships between concepts.
Formal methods can help maintain a structured ontology,
interlinking requirements, and persistently maintaining
these links [32].

Table I visually compares the surveyed works by the
requirements engineering subphase they apply to (S—
specification, A—analysis), the type of requirements

TABLE I. COMPARISON OF WORKS SURVEYED FOR
REQUIREMENTS ENGINEERING

4

(indicates functional requirements only), and whether each
formalism is fully or semiformal. Additionally, we also
show if there are available tools support and evidence of
industry use for every technique. Overall, requirements
specification and requirements analysis, are well covered
by existing works. However, the lack of formalized
requirements management frameworks is a significant gap
in current research. Also, there is no existing framework
covering a wide range of NFRs, which indicates that
existing works may find only niche use. A further
discussion of these results appears in Section 5.

3. Design and Implementation
During the design phase, the solution space described by
requirements is increasingly constrained. During
implementation, a finalized design is extended to build the
system.

A. Design
The design phase can be broken down into two broad
categories: high-level design, followed by low-
level design [17]. The key concern in high-level design is
the creation of a system architecture. The system
architecture captures an initial, abstract layout of the main
subsystems or parts of a system via a primary separation
strategy, and also contains architectural tactics to deal with
primary quality or nonfunctional attributes of the system
such as dependability. Existing standards such as IEC
61499 and IEC 61131-3 provide robust software
architectures for IAS. A few formalized extensions or
alternatives are reusable automation components [33],
intelligent mechatronic components, and automation
objects [34]. These architectures provide better
formalization, increased flexibility, and the ability to design
software in a more hierarchical manner. Model-driven
design is a key primary separation strategy used in IAS
architectures, where a system is broken down into
a controller constituting the software and PLC hardware
and a plant representing the physical processed being
controlled.

In low-level design, an increasingly detailed layout of the
system is built. Here, visual domain-specific languages
(VDSLs) are quite common. Several works provide some
kind of formalized modeling support. VDSLs in [35] come
complete with syntax and behavioral semantics for
converting designs to Petri nets while preserving timing or
safety-related behaviors leading to early verification of
designs. Early stage automata-based VDSLs presented
in [36] also allow the modeling of safety but do not provide
sufficient test data to back the theoretical basis. Continuous
function charts [37] is a VDSL based on Statecharts that
allows hierarchical designs of discrete-continuous
embedded systems. It allows both control and data flow to
be explicitly specified. These can potentially be used in IAS
design too as models can be automatically translated into
code that is amenable to coverage analysis.

Standards such as IEC 61499 and IEC 61131-3 are the most
popular design languages for IAS. Both provide VDSL-like
features for creating component interfaces and networks
with an ability to embed code into components during
implementation. A plethora of works exists in the

formalization of these standards, such as formalizing the
syntax and semantics of IEC 61499 presented in [38]. IEC
61499 suffered ambiguities in its execution semantics
resulting in several works that formalize the execution
model differently [39]. Subsequently, several further works
focus on transforming IEC 61499 programs from one
execution model to another [40]. A few works extend the
semiformal SysML industry standard for modeling, such as
the Manufacturing Execution Systems Modeling Language
MES-ML [41] and extensions of SysML for modeling
activities to enable safety analysis [42]. A comprehensive
perspective on the whole analysis and design process
during system development is presented. Works focusing
on interoperability include [43] for re-engineering IEC
61131-3 programs into other paradigms such as IEC 61499
programs.

UML is used in several domains and we find several works
on formalizing and adapting UML for designing IAS [44].
UML enables modeling of control logic [45], often leading
to automatic code generation of standard PLC languages
such as function blocks [46]. In [47], the IEC 61499
standard is extended to include UML-Statecharts features
to reduce software complexity while ensuring automatic
generation of standard-compliant code.

Some works use formal languages or a combination of
formal languages and industry standards for specifying
system designs. A specification language for control
programs based on linear temporal logic and structured text
called ST-LTL is presented in [48], to make it easier for
control engineers familiar with structured text to formally
specify their designs. Similarly, a B language based design
specification can allow formally proving that a design
provides completeness, consistency, precision, and
correctness guarantees [49]. Other languages combine
several formal languages, such as Petri nets and Object-
Z [50], Specification and Description Language, and
languages underpinning formal tools such as NuSMV and
SIPN.

A large body of work exists in IAS design using Petri nets
and their extensions. Petri net extensions
include Hierarchical Colored Petri nets, Timed Petri nets,
and High-level Petri nets. Some works combine Petri nets
with other techniques such as supervisory control
approaches [51] for design-level analysis, validation, and
simulation of IAS. Several formal frameworks are based on
Petri nets, such as timed net/condition event
systems [52] for modeling PLC behavior, or signal net
systems for modeling and verification of distributed control
systems. Some drawbacks of these initial works, such as a
lack of formalized semantics, have been addressed in later
works [53]. Some works extend existing implementation
approaches using Petri nets, such as [54] where the
GHENeSYS modeling environment is extended by adding
a function of process actions association with places and
transitions. Some works study Petri nets based modeling
patterns [55] for enabling model to code generations.

Plant modeling is an integral part of model-driven design.
Current works using formal or semiformal frameworks for
this purpose include using SysML variants to model
changes in mechatronic production systems [20], closed-
loop modeling of plant and controller using net

5

condition/event systems (NCES) leading to formal
verification [56] or code generation. In [57], an approach to
synthesize discrete-state plant models from behavior traces
and temporal properties is proposed. The problem is posed
as a Boolean satisfiability problem (SAT) and is solved by
running a SAT solver. The generated models are intended
to be applied in closed-loop model checking.

B. Implementation
A small number of formal methods directly target IAS
implementation. Several formal controller
synthesis approaches have been proposed from formalized
system models [58] and differ mainly in the kinds of
formalized system models they require as inputs. Some
other works convert formal specifications to standard-
compliant code [59], [60], differing again in input
specification and output language types. The method
presented in [61] uses Petri net models for controller
synthesis in commercial PLCs using IEC 61131-3 function
blocks enhanced with object-oriented programming
techniques to achieve event driven semantics for the target
PLC hardware.

Some approaches infer executable models of off-the-shelf
components with black-box interfaces through black-box
testing data. The technique presented in [62] infers the
behavior of components as IEC 61499 programs, but
cannot guarantee completeness due to nonexhaustive
exploration. In [63], an automated people mover system is
developed and tested using both verification and
simulation. Formal verification was used to check only for
deadlocks, whereas timed models in UPPAAL were used
for simulation purposes. In [64], implementation artefacts
are specified using formal languages such as variants of
process algebra.

Table II provides a summary of the most works surveyed in
this section. Each technique targets a specific standard and
relies on an underlying formal model. Petri nets are the
most commonly used formal model. Some works have tool-
support available and only a few have found use in industry.
Very few works span both IEC 61131-3 and IEC 61499
standards and subsequently do not exploit the highly
structured nature of these standards. Semiformal
approaches, such as those based on UML or Statecharts
have found more use in the industry due to better usability.

A deeper discussion of these results appears later
in Section 5.

4. Testing
The testing phase checks if a system meets its intended
requirements. Conventional testing involves stimulating
the implemented system through varying inputs and
observing its outputs and other qualities (such as timing).
However, as exhaustive testing is very expensive, a
significant part of testing is carried out through simulation.
Here, test vectors are used to stimulate and verify the
behavior of a system model, but not the implemented
system. Simulation is usually faster than conventional
testing but is more useful where abstract simulation results
are guaranteed over the actual implementation. The third
category of testing involves formal verification techniques
where formal methods are used to prove the correctness of
a formal model or specification of a system. Formal
verification techniques can guarantee correctness of the
formal specification due to full coverage, but are often
limited to small to medium system models. Formal
methods, which have traditionally found use in formal
verification, also hold promise in accelerating conventional
testing and simulation [65]. For instance, formal methods
can be used to select right stimuli for conventional testing
and simulation for better coverage and reducing testing
times. However, a large gap exists between the potential of
formal methods in testing, as evidenced by research, and
their actual use in industry; in fact, only a few solutions find
direct industry use [66].

A. Formal Methods in Conventional Testing
Conventional testing involves stimulating a part or whole
of a system implementation using a carefully chosen,
automatically generated, or randomly selected sequence of
stimuli or system inputs, called a test case. Formal
techniques such as symbolic execution, model-based
testing, combinatorial, random, and search based
testing [66] can help automatically generate test cases.
Other techniques can help with executing tests and
providing tool support [67].

In model-based testing, incomplete system models are used
to generate test cases to be tested on implemented control
software. In [68], a system software specification in
sequential function charts is translated into labeled
transition systems and then traversed by a custom test tool
to derive test cases. In [69], a hybrid system model is
converted into a target discrete diagnostic model in Ludia,
a language for modeling complex systems for fault
diagnosis. This technique lacks a proof of correctness. At
the component level, function blocks in both IEC 61131-3
and IEC 61499 provide modules that can be seen as black
boxes amenable for test-case generation. In [70], a
symbolic execution based approach is presented where an
intermediate model from Arcade.PLC [71] is used to
autogenerate test cases for IEC 61131-3 programs. This
paper can test for unreachable code, a rarely encountered
feature in other works. In [72], IEC 61131-3 function
blocks are converted into timed automata models. Tailored
unit tests and coverage requirements are generated in the
UPPAAL modeling environment. A framework for

TABLE II. COMPARISON OF DESIGN AND IMPLEMENTATION
WORKS

6

verifying IEC 61131-3 instruction list programs is
presented in [73]. It proposes a formal semantics for a
significant fragment of the instruction list language, and a
direct mapping of the semantics into a model checking tool.
A requirements-based test-generation and tracking
simulation based execution technique for systems built
using IEC 61131-3 appears in [74].

Some works, such as [75], target test-case generation for
complete systems. Here, a system under test (SuT) is
described using executable networks of either IEC 61131-
3 or IEC 61499 function blocks. A UML description of the
system is used to generate tests in UML, and the test-case
generation strategy traverses branches in the networks to
ensure that each branch is visited once. Then, through
model-to-model transformation or model viewing, the SuT,
as well as generated test-cases, are transformed into IEC
61499 or IEC 61131-3 systems. A test-case generation
strategy presented in [76] extracts test cases from IEC
61499 programs specified as state and activity diagrams
using the round-trip path coverage strategy, where every
defined sequence of transitions that begin and end in the
same state is taken. Future directions in system testing
include developing formal testing platforms to decide
which components to test together, how they should be
tested, and when to stop testing.

There are a number of tools for test-case generation and
execution. Some tools specialize in generating and
executing test cases for specific platforms, such as testing
the timing of controller area network (CAN) bus based
control applications [77], and the safety of software
deployed on FPGAs [78].

B. Simulation
Simulation involves using test data to stimulate a system
model, not an actual implementation, in an attempt to
expedite testing. Some approaches, such as [79], model
communication tasks within an IAS using a semiformal
language such as SysML out of which timed Petri net
models can be extracted and simulated to estimate the
performance of a distributed system. In such approaches,
networks are replaced by models, and simulation
parameters such as packet drops can be easily controlled.

Other simulation frameworks provide testing systems for
NFRs and attributes. In [80], a random testing framework
for safety-critical embedded systems is presented where
constrained random testing enables larger coverage through
random input variations, random fault injections, and
automatic output comparisons. Functional safety standards,
such as EC 60812, 61580, MIL-STD-1629A, etc., apply to
many IAS [81]. Current approaches use safety PLCs for
mission critical applications and formal failure mode and
effects analysis approaches to analyze system hardware,
but no existing formal technique can assess complete
systems for functional safety. The need for a theoretical
basis for formally modeling and assessing IAS for security
requirements such as availability, integrity, confidentiality,
graceful degradation, and detection is highlighted in [82].
The authors note the high modeling overheads that prevent
the widespread use of formal modeling for this purpose.

C. Formal Verification
Existing surveys such as [12] and [13] look at the use of
specific formal verification techniques such as model
checking in industrial automation systems. Distinctions
between formal verification techniques arise from
differences in system and requirements modeling,
algorithms used, user effort required, and outputs produced.
For instance, Xia et al. [83] propose an automatic
verification tool for PLC systems, which includes formal
modeling, static syntax checking, code generation and
optimization, and visual representation of
counterexamples.

Some works extract formal models of systems or
requirements automatically. A syntactic and semantic
analysis for IEC 61499 systems appears in [43]. A semantic
checker carries out rule-based checking of software
modules, constrained via a hard coding of correctness
criteria to reduce user effort. In [84], timed models of plants
and closed-loop automation systems are built as
constrained timed discrete event systems and timed
controller models, respectively. These implementation-
independent models are subsequently transformed into
timed automata for verifying timing requirements such as
urgency. Other automatic modeling approaches, such
as [85], target the conversion of software modules written
in different languages to timed automata. A static code
analysis tool is presented in [86] to parse and convert IEC
61131-3 control applications into control flow graphs. This
model can then be assessed for type constraints,
reachability, and liveness using a hybrid algorithm based
on abstract interpretation and data flow analysis. A good
summary of IEC 61499 modeling and verification can be
found in [9]. A semantic characterization of PLC programs
based on extended λ-calculus appears in [87], leading
toward theorem proving and model checking.

Some works deal with graphical, intuitive, and more user-
friendly front-end specification languages that are aimed at
making formal methods more accessible. In [88],
requirements specified using symbolic timing diagrams and
safety-oriented technical language are translated to
temporal logic leading to a model checking of closed-loop
system models. Other works include specification patterns
for the nuclear automation sector [89] and user-friendly
visualization and handling of counterexamples generated
by model checkers [90].

Formal verification algorithms face the well-known state
explosion problem, where system model sizes explode
when component compositions or data variables are taken
into account. Typically, these details are either abstracted
out or verification is focused on individual components to
verify requirements. Several modeling languages such
synchronous/asynchronous composition of finite-state
machines and automata, networks of timed automata [91],
and Petri nets [92] are being used in IAS to address state
explosion.

Formal plant modeling has been a recent focus area for
several works. It helps reduce the size of the formal model
to be verified through closing an IAS system through a
constrained plant model [93]. A good overview of plant
modeling in formal verification can be found in [94].
In [95], a workflow to specify safety-critical systems,

7

plants, and requirements as sequential function charts is
proposed. These models are automatically translated into
controller code, plant models (via library matching of
modules), and requirements in temporal logic. These can
then be simulated and verified using UPPAAL. A
framework for modeling complete IAS, including plants as

hierarchical and compositional NCES, presented
in [96] provides support for model editing, visualization,
and verification.

Some works target the formalizing of IAS standards.
In [97], the Coq theorem prover is used to formalize the
semantics of the Instruction List (IL) and Sequential
Function Charts (SFC) languages from IEC 61131-3. Such
frameworks enable automatic generation of code from
graphical system specifications.

Several works transform system artifacts into format
accepted by formal tools. In [98], IEC 61499 systems are
modeled as finite-state machines, contracts, or modules in
synchronous languages, subsequently allowing the use of
model checkers. A few IAS-only model checkers exist,
such as ViVe/SESA, VEDA [99], and Arcade.PLC [71].
Some works focus on converting deployable code (or
block-based application design) into languages accepted by
model checkers such as symbolic model checking (SMV)
and UPPAAL, to enable automatic verification. The
PLCverif [100] tool converts IEC 61131-3 programs to
target model checking languages (NuSMV/NuXmv,
UPPAAL). PLCverif has been subsequently extended to
provide support for all five programming languages of the
IEC 61131-3 standard [101], [102]. A transformation of
IEC 61131-3 programs into PVS specifications to allow
theorem proving is presented in [103]. This was done to
mandated requirement of applying formal verification to
such safety systems. In [104], rule-based model
transformations help convert IEC 61499 programs into
SMV models for NuSMV/nuXmv-based model checking.

Many algorithms use the UPPAAL model checker to verify
timeliness. In [105], IEC 61499 systems are transformed
into timed automata using set translation rules for verifying
timing requirements. However, hardware configurations
that affect a system's timing characteristics are not
considered. Other works include using hybrid automata to
analyze the worst case execution times in component
networks [106], and timed automata to elevate existing IEC
61131-3 systems for compliance with newer safety
standards such as IEC 61508 [107]. Such approaches
feature rule-based model transformations. In [108], formal
dependability analysis is carried out by manually modeling
input/output modules both qualitatively as point systems

and quantitatively using probabilistic to compute metrics
such as system reliability. In [109], client-server networked
automation systems are evaluated by using timed event
graph models that are analyzed using deterministic and
probabilistic analyses. Mazzolini et al. [110] show an early
stage verification strategy for IAS using model checking
algorithms and model coverage.

Some approaches focus on specific subproblems such as
scheduling of flexible manufacturing systems by using
formal analysis to assign schedules to a system divided into
subnets [111]. Some works, such as [112], formalize the
execution semantics of flexible manufacturing systems
modeled using stateflow diagrams and can reason about
undesirable execution sequences that ambiguities in the
specification language can induce. The formal analysis of a
listen-before-talk protocol for interacting components over
congested wireless networks is presented in [113].
Assuring network performance is a significant problem in
general. In [114], several model checkers are used for the
security analysis of industrial wireless protocols.

A few approaches look at formally verifying NFRs. Online
reconfiguration of IAS is an important topic addressed in
works such as [115]. The work in [116] looks at formally
specifying buffered sequential execution model of the
Fuber IEC61499 runtime. It also presents extended finite
automata models that are suitable for formal verification of
the proposed execution semantics. In [117], industrial
controllers, modeled as finite-state machines can be
verified for fault tolerance using SMV. Techniques such
as [118] explore the use of formal methods to verify the
security of networks used in industrial settings. In this
particular work, π calculus is extended with security
features allowing system and requirements modeling,
which enables automatic verification of vulnerabilities. A
fault-tolerance analysis of control algorithms using signal
interpreted Petri nets from [119] uses formal modeling and
SMV to check for determinism.

Table III shows a comparison of some of the works covered
in this section based on the types of testing, formalisms
used, and the target IAS standards. We also list whether a
technique is semi or fully formal, has tool support available
and if it is used in industry. Semiformal techniques do not
directly use mathematical formal models, for example,
most transition systems such as Petri nets are classified as
semiformal due to lack of formal analysis of transition
rules. Most techniques have robust tool support, unlike
techniques that target earlier SDLC phases. We also note
that several works propose transforming one model type to
another to enable the use of additional analysis tools. Often,

TABLE III. COMPARISON OF SURVEYED WORKS FOR TESTING

8

these approaches lack rigor in the transformation process.
The most successful formal methods target conventional
testing and aim to make it easier, more comprehensive,
and/or faster. A more detailed analysis of our findings
appears in Section 5.

5. Discussion
This survey reveals some key insights into the current use
of formal methods for dependability in IAS. Fig. 1 shows
the number of formal methods surveyed for each subphase
of the SDLC. These numbers provide a clear picture of the
subphases, such as design and testing, that have found more
use for formal methods. Fig. 1 also shows the technology
readiness level [120] (TRL) for each approach we studied.
We use the TRL definitions [121] adopted by the European
Commission since 2014 to derive and classify the articles
into different TRL levels. TRL provides a scale to assess
the maturity of a technology. Lower levels, such as TRL1–
3 indicate that a work is more conceptual, whereas higher
levels TRL8–9 indicate robust, industry-ready technologies
that have sufficient process and tool support available.
Overall, most surveyed works were in the TRL3–5 range,
indicating the relatively low maturity of formal methods in
IAS. This also corroborates with the split between early-
stage works and established works. We cite 47 (38% or all
citations) early-stage papers that are mostly conference
papers proposing techniques at lower TRLs. The remaining
62% are established works at higher TRLs and published
mostly in established journals, as well as a few high impact
conferences, white papers, and patents. In the following
paragraphs, we unpack the information contained
within Fig. 1 and derive critical information about the state
of the art in the use of formal methods for each SDLC
phase.

Requirements engineering, the first phase of the SDLC,
involves eliciting, organizing, specifying, analyzing, and
managing requirements. Some aspects of this phase, such
as elicitation, are inherently informal and do not utilize
formal methods at present. However, there is immense

value in the early use of formal methods for requirements
specification, management, and analysis. The earlier we
can unambiguously capture the knowledge base a system is
built on, the easier and cheaper it becomes to build the
system. Several existing formal and semi-formal methods
provide sufficient support to model requirements, the
knowledge these requirements is built on (ontologies), and
for automatic or guided analysis. However, their use is
sporadic due to the high learning curves and expert skill
sets needed. While the lack of tool-support is an important
issue, standardization of the use of formal methods for
various specification, analysis, and management of
requirements can go a long way in addressing this problem.
Both tool-support and standardization can help build a
critical mass of repeatable and feasible tools, processes and
skills in the domain. Standardization will involve
formalizing common domain-specific knowledge in IAS,
as well as lay out a roadmap for incorporating new formal
methods into the requirements engineering phase. We also
find inadequate formal support for NFRs. Again, the
application of standardized formal models, templates, and
analysis methods for IAS-specific NFRs, such as safety,
dependability, and timing, can help with wider adoption
and use of formal methods. The most robust technology in
this area is the semiformal SysML, which is an industry-
wide standard for modeling behavioral and some safety
requirements. Other technologies lie more in the proof-of-
concept or early validation stages and require more
experimentation with real-life systems.

In the design phase, primary functional requirements and
primary NFRs are converted into a structured solution
space that is then concretized in the implementation phase.
This phase is a crowded field, with most formal methods
providing support for modeling techniques. However, only
a few provide a seamless transition from the requirements
engineering phase, making them more useful than other,
more disjointed or stand-alone modeling techniques.
Similarly, modeling techniques are more useful when they
can also be used in the implementation phase such as
several works that support automatic code generation. As

Fig. 1. Proliferation and technology readiness of surveyed works, categorized by SDLC subphases.

9

the system gradually crystallizes during these phases,
frameworks to formally trace and map requirements
through these phases can be extremely useful for ensuring
consistency between subsequent system models or
implementations. Given that, currently, requirements,
design, and implementation aspects are typically specified
using different formal tools and techniques, integrating
these into the SDLC is both an existing problem and an
exciting direction for future research. It is infeasible to
expect a single modeling framework for all these stages.
Hence, we hypothesize that it is more important to focus on
formal model transformations, such as in model-driven
design to bring in much needed compatibility between
different frameworks. Mature design and implementation
standards such as IEC 61499 in IAS provide a structured
foundation on which to build such model transformations.
Further formalization of these standards is, therefore,
another interesting direction to improve the uptake of
formal methods. Formal methods targeting requirements
standards such as IEC 61508 will also help improve support
for building dependable IAS. From a technology readiness
perspective, VDSLs based on semiformal SysML and
UML are used widely in industry in the design phase. Some
formal methods such as Petri nets and those involving plant
modeling have also grown in popularity and have found
wider use in both design and implementation.

The testing phase of the SDLC has found the most use for
formal methods. Conventional testing is aided by formal
methods through comprehensive test-case generation,
selection, and execution. For test generation, we find that
most frameworks are semiformal, and there is need to
formalize them more to derive coverage guarantees. A few
approaches help with testing implementations against
NFRs such as fault tolerance and functional safety.
Considerably more work is needed to test for other
important NFRs, such as reliability, availability, and most
importantly, security. Security is a growing concern in this
area since IAS have moved on from being contained within
factory walls to being large, cloud-based solutions. In
simulation-based testing, some formal tools and
frameworks such as UPPAAL has found more popularity
in timing-related verification of system models in IAS.
Otherwise, the landscape remains fairly fragmented as
often models and tools are selected for very specific
problems and hence are not generalizable. In a similar vein,
we also found several formal verification-based testing
tools, differing mostly in requirement types and models,
and the format of systems supported. A bulk of the work in
this area has focused on plant modeling and verifying both
plants and controllers together, highlighting the domain's
focus on formally capturing the physical processes
controlled by IAS. In general, though, formal verification
based testing techniques have found limited industrial
adoption due to well-known limitations such as state
explosion and required user-expertise. Fig. 1 clearly shows
that most formal verification techniques in the testing phase
are at low TRL levels.

6. Conclusion
This paper presents a survey of static, formal techniques for
building dependable IAS. Static approaches are more

useful during the earlier stages of the SDLC; bugs and
inconsistencies are cheaper to find and correct during these
stages. Online approaches are equally useful but are used to
analyze system executions and have been surveyed
elsewhere. Using the phases of the SDLC for categorizing
the approaches we surveyed, we find that most works apply
to the design and testing phases. On the other hand, other
SDLC phases such as requirements engineering contain
wide gaps and provide interesting opportunities for future
investigation. A closer look at the surveyed works reveals
that most works do not seamlessly integrate with current
industry practice, and have not matured sufficiently for use
in system development. However, the picture is not
universally bleak. IAS standards for requirements, design,
and implementation, provide inherent support for formal
approaches through their structure. Additionally,
semiformal approaches provide a balance between rigor
and usability, and some of these have matured enough for
industry-driven use during the various SDLC phases.

Going forward, there is a need to carry out
substantial evaluative research, where the effectiveness of
available formal methods must be tested empirically in
industrial scenarios. This is contrary to the more
prevalent propositional approach, where new models,
algorithms, and formalisms are being proposed rapidly,
resulting in a sparse landscape with little to no industry
adoption. The evaluative approach will help ensure that
more robust formal methods for the IAS domain
incorporate domain-specific knowledge and context,
allowing for more repeatable use.

REFERENCES
[1] J.-C. Laprie, Dependability: Basic Concepts and Terminology. New

York, NY, USA: Springer, 1992.
[2] J.-M. Faure and J.-J. Lesage, “Methods for safe control systems design

and implementation,” in Proc. 10th IFAC Symp. Inf. Control
Problems Manuf., 2001, pp. 171–176.

[3] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and
fault-tolerant techniques-part i: Fault diagnosis with model-based and
signal-based approaches,” IEEE Trans. Ind. Electron., vol. 62, no. 6,
pp. 3757–3767, Jun. 2015.

[4] J. Zaytoon and S. Lafortune, “Overview of fault diagnosis methods for
discrete event systems,” Annu. Rev. Control, vol. 37, no. 2, pp. 308–
320, 2013.

[5] A. R. Kan, Machine Scheduling Problems: Classification, Complexity
and Computations. New York, NY, USA: Springer
Science+Business Media, 2012.

[6] J. Zaytoon and B. Riera, “Synthesis and implementation of logic con-
trollers - A review,” Annu. Rev. Control, vol. 43, pp. 152–168, 2017.

[7] J. Qadirand O. Hasan, “Applying formal methods to networking:
Theory, techniques, and applications,” IEEE Commun. Surveys Tut.,
vol. 17, no. 1, pp. 256–291, Jan.–Mar. 2015.

[8] M. Avalle, A. Pironti, and R. Sisto, “Formal verification of security
protocol implementations: a survey,” Formal Aspects Comput., vol.
26, no. 1, p. 99, 2014.

[9] H.-M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C. Gerber, “One
decade of IEC 61499 modeling and verification-results and open
issues,” in Proc. 13th IFAC Symp. Inf. Control Problems Manuf.,
2009, pp. 211– 216.

[10] G. Frey and L. Litz, “Formal methods in PLC programming,” in
Proc. Int. Conf. Syst., Man, Cybern., 2000, vol. 4, pp. 2431–2436.

[11] S. Rösch, S. Ulewicz, J. Provost, and B. Vogel-Heuser, “Review of
model-based testing approaches in production automation and
adjacent domains-current challenges and research gaps,” J. Softw.
Eng. Appl., vol. 8, no. 9, pp. 499–519, 2015.

[12] T. Ovatman, A. Aral, D. Polat, and A. O. Ünver, “An overview of
model checking practices on verification of PLC software,” Softw.
Syst. Model., vol. 15, pp. 937–960, 2016.

10

[13] S. Lampérière-Couffin, O. Rossi, J.-M. Roussel, and J.-J. Lesage,
“Formal validation of PLC programs: A survey,” in Proc. Eur.
Control Conf., 1999, pp. 2170–2175.

[14] F. Siavashi and D. Truscan, “A systematic literature review on
environment modeling techniques in model-based testing,” Turku
Centre Comput. Sci., Turku, Finland, Tech. Rep. 1129, 2015.

[15] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
map- ping studies in software engineering,” in Proc. 12th Int. Conf.
Eval. Assessment Softw. Eng., vol. 8, pp. 68–77, 2008.

[16] IEEE, IEEE Standard Glossary of Software Engineering
Terminology, ANSI/IEEE Std 729-1983, pp. 1–40, Feb. 1983.

[17] A. Rajan and T. Wahl, CESAR: Cost-Efficient Methods and
Processes for Safety-Relevant Embedded Systems. New York, NY,
USA: Springer, 2013.

[18] M. Kohlhase, J. Lemburg, L. Schröder, and E. Schulz, “Formal man-
agement of CAD/CAM processes,” in Formal Methods. New York,
NY, USA: Springer, 2009, pp. 223–238.

[19] C. Martell et al., “Innovations for requirements engineering,” Naval
Postgraduate School, Monterey, CA, USA, NPS Rep. NPS-CS-08-
001, 2008.

[20] S. Feldmann, K. Kernschmidt, and B. Vogel-Heuser, “Combining a
SysML-based modeling approach and semantic technologies for
analyz-ing change influences in manufacturing plant models,”
Procedia CIRP, vol. 17, pp. 451–456, 2014.

[21] W. Viriyasitavat, L. da Xu, and A. Martin, “SWSpec: the
requirements specification language in service workflow
environments,” IEEE Trans. Ind. Inform., vol. 8, no. 3, pp. 631–638,
Aug. 2012.

[22] J. C. Campos and J. M. Machado, “A specification patterns system
for discrete event systems analysis,” Int. J. Adv. Robot. Syst., vol. 10,
no. 8, 2013, Art. no. 315.

[23] G. Kunz, J. Machado, E. Perondi, and V. Vyatkin, “A formal
methodology for accomplishing IEC61850 real-time communication
requirements,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6582–
6590, Aug. 2017.

[24] Z. Y. Chen, S. Yao, J. Q. Lin, and Y. Zeng, “Formalisation of
product requirements: From natural language descriptions to formal
specifications,” Int. J. Manuf. Res., vol. 2, no. 3, pp. 362–387, 2007.

[25] E. Bukata, D. C. Davis, and L. Shombert, “The use of model-based
test requirements throughout the product life cycle,” IEEE Aerosp.
Electron. Syst. Mag., vol. 15, no. 2, pp. 39–44, Feb. 2000.

[26] J.-F. Pétin, D. Evrot, G. Morel, and P. Lamy, “Combining SysML
and formal methods for safety requirements verification,” in Proc.
22nd Int. Conf. Softw. Syst. Eng. Appl., 2010, pp. 1–10.

[27] F. Bitsch, “A way for applicable formal specification of safety
requirements by tool-support,” in Proc. FORMS, pp. 175–185, 2003.

[28] F. Bitsch, “Classification of safety requirements for formal
verification of software models of industrial automation systems,” in
Proc. Int. Conf. SW Syst. Eng. Appl., 2000, pp. 1–10.

[29] L. Piètre-Cambacédès and M. Bouissou, “Cross-fertilization
between safety and security engineering,” Rel. Eng. Syst. Safety, vol.
110, pp. 110– 126, 2013.

[30] R. Sinha, B. Dowdeswell, G. Zhabelova, and V. Vyatkin, “TORUS:
Scalable requirements traceability for industrial CPS,” ACM Trans.
CyberPhys. Syst., vol. 3, no. 1, 2018, Art. no. 15.

[31] J. Zhou, “An observer-based technique with trace links for
requirements validation in embedded real-time systems,” Master’s
thesis, Sch. Innov., Des. Eng., Mälardalen Univ., Väster’s, Sweden,
2014.

[32] C.-W. Yang, V. Dubinin, and V. Vyatkin, “Ontology driven
approach to generate distributed automation control from substation
automation design,” IEEE Trans. Ind. Inform., vol. 13, no. 2, pp. 668–
679, Apr. 2017.

[33] O. Ljungkrantz, K. Akesson, M. Fabian, and C. Yuan, “Formal
specification and verification of industrial control logic components,”
IEEE Trans. Autom. Sci. Eng., vol. 7, no. 3, pp. 538–548, Jul. 2010.

[34] D. Missal, M. Hirsch, and H.-M. Hanisch, “Hierarchical distributed
controllers-design and verification,” in Proc. IEEE Conf. Emerg.
Technol. Factory Autom., 2007, pp. 657–664.

[35] C. Seidner and O. H. Roux, “Formal methods for systems
engineering behavior models,” IEEE Trans. Ind. Inform., vol. 4, no.
4, pp. 280–291, Nov. 2008.

[36] E. Dincel, O. Eris, and S. Kurtulan, “Automata-based railway
signaling and interlocking system design [testing ourselves],” IEEE
Antennas Propag. Mag., vol. 55, no. 4, pp. 308–319, Aug. 2013.

[37] V. Alyokhin, B. Elbel, M. Rothfelder, and A. Pretschner, “Coverage
metrics for continuous function charts,” in Proc. 15th Int. Symp.
Softw. Rel. Eng., 2004, pp. 257–268.

[38]G. Cengicand K. Åkesson, “On formal analysis of IEC61499

applications, part b: Execution semantics,” IEEE Trans. Ind. Inform.,
vol. 6, no. 2, pp. 145–154, May 2010.

[39] S. Patil, V. Dubinin, and V. Vyatkin, “Formal modelling and
verification of IEC61499 function blocks with abstract state
machines and SMV-execution semantics,” in Dependable Software
Engineering: Theories, Tools, and Applications. New York, NY,
USA: Springer, 2015, pp. 300– 315.

[40] V. Dubinin and V. Vyatkin, “Semantics-robust design patterns for
IEC 61499,” IEEE Trans. Ind. Inform., vol. 8, no. 2, pp. 279–290,
May 2012.

 [41] M. Witsch and B. Vogel-Heuser, “Towards a formal specification
framework for manufacturing execution systems,” IEEE Trans. Ind.
Inform., vol. 8, no. 2, pp. 311–320, May 2012.

[42] S. Scholz and K. Thramboulidis, “Integration of model-based
engineering with system safety analysis,” Int. J. Ind. Syst. Eng., vol.
15, no. 2, pp. 193–215, 2013.

[43] W. Dai, V. N. Dubinin, and V. Vyatkin, “Automatically generated
layered ontological models for semantic analysis of component-
based control systems,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp.
2124–2136, Nov. 2013.

[44] F. Valles-Barajas, “A survey of UML applications in mechatronic
systems,” Innovations Syst. Softw. Eng., vol. 7, no. 1, pp. 43–51,
2011.

[45] H. Panetto and J.-F. Pétin, “Metamodelling of production systems
process models using UML stereotypes,” Int. J. Internet Enterprise
Manage., vol. 3, no. 2, pp. 155–169, 2005.

[46] R. S. Moura and L. A. Guedes, “Basic statechart: A formalism to
model industrial applications,” J. Model. Simul. Syst., vol. 1, pp. 22–
33, 2010.

[47] R. Sinha, P. S. Roop, G. Shaw, Z. Salcic, and M. M. Y. Kuo,
“Hierarchical and concurrent ECCS for IEC 61499 function blocks,”
IEEE Trans. Ind. Inform., vol. 12, no. 1, pp. 59–68, Feb. 2016.

 [48]O. Ljungkrantz, K. Åkesson, C. Yuan, and M. Fabian, “Towards
indusments,” IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6582–
6590, Aug. 2017.

[49] J.-F. Pétin, G. Morel, and H. Panetto, “Formal specification method
for systems automation,” Eur. J. Control, vol. 12, no. 2, pp. 115–130,
2006. [50] B. Mazigh, “Multi-formalism based specification
language: Syntax, semantics, verification and simulation,” Int. J.
Softw. Eng. Res. Pract., vol. 4, no. 2, pp. 1–11, 2014.

[51] G. Mušic and D. Matko, “Combined synthesis/verification approach
to programmable logic control of a production line,” in Proc. 16th
IFAC World Congr., 2005, pp. 98–103.

[52] H.-M. Hanisch, J. Thieme, A. Luder, and O. Wienhold, “Modeling
of PLC behavior by means of timed net condition/event systems,” in
Proc. Int. Conf. Emerg. Technol. Factory Autom., 1997, pp. 391–396.

[53] C. Gerber, I. Ivanova-Vasileva, and H.-M. Hanisch, “Formal
modelling of IEC 61499 function blocks with integer-valued data
types,” Control Cybern., vol. 39, no. 1, pp. 197–231, 2010.

[54] J. R. Silva, I. Beńıtez, L. Villafruela, O. Gomis, and A. Sudrià,
“Modeling extended Petri nets compatible with GHENeSys
IEC61131 for industrial automation,” Int. J. Adv. Manuf. Technol.,
vol. 36, no. 11–12, pp. 1180– 1190, 2008.

[55] L. Gomes and J. P. Barros, “Structuring and composability issues in
Petri nets modeling,” IEEE Trans. Ind. Inform., vol. 1, no. 2, pp. 112–
123, May 2005.

[56] S. Preuße, C. Gerber, and H.-M. Hanisch, “Virtual start–up of plants
using formal methods,” Int. J. Comput. Appl. Technol., vol. 42, no.
2, pp. 108–126, 2011.

[57] I. Buzhinsky and V. Vyatkin, “Automatic inference of finite-state
plant models from traces and temporal properties,” IEEE Trans. Ind.
Inform., vol. 13, no. 4, pp. 1521–1530, Aug. 2017.

[58] V. Vyatkin and V. Dubinin, “Refactoring of execution control charts
in basic function blocks of the IEC 61499 standard,” IEEE Trans. Ind.
Inform., vol. 6, no. 2, pp. 155–165, May 2010.

[59] M. V. Moreira and J. C. Basilio, “Bridging the gap between design
and implementation of discrete-event controllers,” IEEE Trans.
Autom. Sci. Eng., vol. 11, no. 1, pp. 48–65, 2014.

[60] F. Schumacher and A. Fay, “Formal representation of Grafcet to
automatically generate control code,” Control Eng. Pract., vol. 33,
pp. 84–93, 2014.

[61] F. Basile, P. Chiacchio, and D. Gerbasio, “On the implementation of
industrial automation systems based on PLC,” IEEE Trans. Autom.
Sci. Eng., vol. 10, no. 4, pp. 990–1003, Oct. 2013.

[62] D. Chivilikhin, A. Shalyto, S. Patil, and V. Vyatkin, “Reconstruction
of function block logic using metaheuristic algorithm,” IEEE Trans.
Ind. Inform., vol. 13, no. 4, pp. 1763–1771, Aug. 2017. Rel. Eng.,
2004, pp. 257–268.

[63]G. Kunz, J. M. Machado, and E. Perondi, “Modeling and simulation

11

cations, part b: Execution semantics,” IEEE Trans. Ind. Inform., vol.
6, no. 2, pp. 145–154, May 2010.

[64] P. Falkman, B. Lennartson, and K. Andersson, “Specification of
production systems using PPN and sequential operation charts,” in
Proc. IEEE Int. Conf. Autom. Sci. Eng., 2007, pp. 20–25.

[65] I. Buzhinsky, C. Pang, and V. Vyatkin, “Formal modeling of testing
software for cyber-physical automation systems,” in Proc. Trust-
com/BigDataSE/ISPA, 2015, vol. 3, pp. 301–306.

[66] S. Anand et al., “An orchestrated survey of methodologies for
automated software test case generation,” J. Syst. Softw., vol. 86, no.
8, pp. 1978– 2001, 2013.

[67] R. M. Hierons et al., “Using formal specifications to support
testing,” ACM Comput. Surv., vol. 41, no. 2, 2009, Art. no. 9.

[68] S. von Styp, L. Yu, and G. Quiros, “Automatic test-case derivation
and execution in industrial control,” in Proc. Workshop Ind. Autom.
Tool Integr. Eng. Project Autom., 2011, pp. 7–12.

[69] M. Behrens, G. Provan, M. Boubekeur, and A. Mady, “Model-driven
diagnostics generation for industrial automation,” in Proc. IEEE Int.
Conf. Ind. Inform., 2009, pp. 708–714.

[70] D. Bohlender, H. Simon, N. Friedrich, S. Kowalewski, and S.
Hauck-Stattelmann, “Concolic test generation for PLC programs
using coverage metrics,” in Proc. 13th Int. Workshop Discr. Event
Syst., May 2016, pp. 432–437.

[71] S. Biallas, J. Brauer, and S. Kowalewski, “Arcade. PLC: A
verification platform for programmable logic controllers,” in Proc.
27th IEEE/ACM Int. Conf. Automated Softw. Eng., 2012, pp. 338–
341.

[72] E. P. Enoiu, D. Sundmark, and P. Pettersson, “Model-based test suite
gen- eration for function block diagrams using the UPPAAL model
checker,” in Proc. IEEE Int. Conf. Softw. Testing, Verification
Validation Work- shops, 2013, pp. 158–167.

[73] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and P. Schnoebelen,
“Towards the automatic verification of PLC programs written in
Instruction List,” in Proc. IEEE Conf. Syst., Man, Cybern., 2000, vol.
4, pp. 2449–2454.

[74] R. Sinha, C. Pang, G. Santillan, J. Kuronen, and V. V yatkin,
“Requirements-aided automatic test-case generation for industrial
control software,” in Proc. Int. Conf. Eng. Complex Comput. Syst.,
2015, pp. 198–201.

[75] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A.
Zoitl, “Test case generation approach for industrial automation
systems,” in Proc. 5th Int. Conf. Autom., Robot. Appl., 2011, pp. 57–
62.

[76] T. Hussain and G. Frey, “UML-based development process for IEC
61499 with automatic test-case generation,” in Proc. IEEE Conf.
Emerg. Technol. Factory Autom., 2006, pp. 1277–1284.

[77] M. S. AbouTrab, S. Counsell, and R. M. Hierons, “Getex: A tool for
testing real-time embedded systems using can applications,” in Proc.
18th IEEE Int. Conf. Eng. Comput. Based Syst., 2011, pp. 61–70.

[78] P. Conmy and I. Bate, “Component-based safety analysis of
FPGAs,” IEEE Trans. Ind. Inform., vol. 6, no. 2, pp. 195–205, May
2010.

[79] M. Jamro, D. Rzonca, and W. Rza ̨sa, “Testing communication tasks
in distributed control systems with SysML and Timed Colored Petri
Nets model,” Comput. Ind., vol. 71, pp. 77–87, 2015.

[80] D. You, I. Amundson, S. A. Hareland, and S. Rayadurgam,
“Practical aspects of building a constrained random test framework
for safety- critical embedded systems,” in Proc. 1st Int. Workshop
Modern Softw. Eng. Methods Ind. Autom., 2014, pp. 17–25.

[81] H. Pentti and H. Atte, “Failure mode and effects analysis of
software- based automation systems,” VTT Ind. Syst., STUK-YTO-
TR–190, 2002t.

[82] M. Krotofil and D. Gollmann, “Industrial control systems security:
What is happening?” in Proc. 11th IEEE Int. Conf. Ind. Inform.,
2013, pp. 670– 675.

[83] M. Xia, M. Sun, G. Luo, and X. Zhao, “Design and implementation
of automatic verification for PLC systems,” in Proc. 12th IEEE Int.
Conf. Cogn. Inform. Cogn. Comput., 2013, pp. 374–379.

[84] M. Perin and J.-M. Faure, “Building meaningful timed models of
closed- loop DES for verification purposes,” Control Eng. Pract., vol.
21, no. 11, pp. 1620–1639, 2013.

[85] D. Soliman, K. Thramboulidis, and G. Frey, “Function block
diagram to UPPAAL timed automata transformation based on formal
models,” Inf. Control Probl. Manuf., vol. 14, no. 1, pp. 1653–1659,
2012.

[86] S. Nair, R. Jetley, A. Nair, and S. Hauck-Stattelmann, “A static code
analysis tool for control system software,” in Proc. IEEE 22nd Int.
Conf. Softw. Anal., Evol. Reeng., 2015, pp. 459–463.

[87] L. Xiao, R. Wang, M. Gu, and J. Sun, “Semantic characterization of

programmable logic controller programs,” Math. Comput. Model.,
vol. 55, no. 5, pp. 1819–1824, 2012.

[88] S. Preuße and H.-M. Hanisch, “Verifying functional and non-
functional properties of manufacturing control systems,” in Proc. Int.
Workshop Dependable Control Discr. Syst., 2011, pp. 41–46.

[89] A. Pakonen, C. Pang, I. Buzhinsky, and V. Vyatkin, “User-friendly
formal specification languages-conclusions drawn from industrial
experience on model checking,” in Proc. IEEE 21st Int. Conf. Emerg.
Technol. Factory Autom., 2016, pp. 1–8.

[90] S. Patil, V. Vyatkin, and C. Pang, “Counterexample-guided
simulation framework for formal verification of flexible automation
systems,” in Proc. IEEE 13th Int. Conf. Ind. Inform., 2015, pp. 1192–
1197.

[91] K. G. Larsen, P. Pettersson, and W. Yi, “Compositional and symbolic
model-checking of real-time systems,” in Proc. 16th IEEE Real-Time
Syst. Symp., 1995, pp. 76–87.

[92] M. Antoni, “Formal validation method for computerized railway in-
terlocking systems,” in Proc. IEEE Conf. Comput. Ind. Eng., 2009,
pp. 1532–1541.

[93] J. M. Machado, B. Denis, J.-J. Lesage, J.-M. Faure, and J. C. F. Da
Silva, “Logic controllers dependability verification using a plant
model,” IFAC Proc. Vol., vol. 39, no. 17, pp. 37–42, 2006.

[94] J. Galvão, C. Oliveira, H. Lopes, and L. Tiainen, “Formal
verification: Focused on the verification using a plant model,” in
Proc. Int. Conf. Innov., Eng. Entrepreneurship, 2018, pp. 124–131.

[95] P. Borges, J. Machado, E. Seabra, and M. Lima, “A formal approach
for safe controllers analysis,” Romanian Rev. Precision Mech., Opt.
Mechatronics, vol. 20, no. 37, pp. 7–12, 2010.

[96] H.-M. Hanisch, A. Lobov, J. L. M. Lastra, R. Tuokko, and V.
Vyatkin, “Formal validation of intelligent-automated production
systems: Towards industrial applications,” Int. J. Manuf. Technol.
Manage., vol. 8, no. 1, pp. 75–106, 2006.

[97] J. O. Blech and S. O. Biha, “Verification of PLC properties based on
for- mal semantics in COQ,” in Software Engineering and Formal
Methods. New York, NY, USA: Springer, 2011, pp. 58–73.

[98] H. Prahofer and A. Zoitl, “Verification of hierarchical IEC 61499
component systems with behavioral event contracts,” in Proc. IEEE
Int. Conf. Ind. Inform., 2013, pp. 578–585.

[99] V. Vyatkin and H. M. Hanisch, “Formal modeling and verification
in the software engineering framework of IEC 61499: A way to self-
verifying systems,” in Proc. 8th Int. Conf. Emerg. Technol. Factory
Autom., Oct. 2001, vol. 2, pp. 113–118.

[100] D. Darvas, I. Majzik, and E. B. Viñuela, “PLCverif: A tool to verify
PLC programs based on model checking techniques,” in Proc. 15th
Int. Conf. Accelerator Large Exp. Phys. Control Syst., 2015, pp. 911–
914.

[101] B. F. Adiego et al., “Applying model checking to industrial-sized
PLC programs,” IEEE Trans. Ind. Inform., vol. 11, no. 6, pp. 1400–
1410, Dec. 2015.

[102] D. Darvas, I. Majzik, and E. B. Viñuela, “Formal verification of
safety PLC based control software,” in Proc. Int. Conf. Integr. Formal
Methods, 2016, pp. 508–522.

[103] J. Newell, L. Pang, D. Tremaine, A. Wassyng, and M. Lawford,
“Translation of IEC 61131-3 function block diagrams to PVS for
formal verification with real-time nuclear application,” J. Autom.
Reasoning, vol. 60, no. 1, pp. 63–84, 2018.

[104] S. Patil, V. Dubinin, and V. Vyatkin, “Formal verification of
IEC61499 function blocks with abstract state machines and SMV–
modelling,” in Proc. IEEE Trustcom/BigDataSE/ISPA, 2015, vol. 3,
pp. 313–320.

[105] M. Stanica and H. Guéguen, “Using timed automata for the
verification of IEC 61499 applications,” in Proc. Discr. Event Syst.,
2005, paper 375.

[106] P. Kumar, D. Goswami, S. Chakraborty, A. Annaswamy, K.
Lampka, and L. Thiele, “A hybrid approach to cyber-physical
systems verification,” in Proc. 49th Annu. Des. Autom. Conf., 2012,
pp. 688–696.

[107] K. Thramboulidis, D. Soliman, and G. Frey, “Towards an
automated verification process for industrial safety applications,” in
Proc. IEEE Proc. Autom. Sci. Eng., 2011, pp. 482–487.

[108] E. I. Gergely, L. Coroiu, and H. M. Silaghi, “Dependability analysis
of PLC I/O systems used in critical industrial applications,” in New
Concepts and Applications in Soft Computing. New York, NY, USA:
Springer, 2013, pp. 201–217.

[109] B. Addad, S. Amari, and J.-J. Lesage, “Client-server networked
automation systems reactivity: Deterministic and probabilistic
analysis,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 3, pp. 540–548,
Jul. 2011.

[110] M. Mazzolini, A. Brusaferri, and E. Carpanzano, “Model-checking

12

based verification approach for advanced industrial automation
solutions,” in Proc. IEEE Conf. Emerg. Technol. Factory Autom.,
2010, pp. 1–8.

[111] J.-K. Lee and O. Korbaa, “Scheduling analysis of FMS: An
unfolding timed Petri nets approach,” Math. Comput. Simul., vol. 70,
no. 5, pp. 419– 432, 2006.

[112] E. Carpanzano, L. Ferrucci, D. Mandrioli, M. Mazzolini, A.
Morzenti, and M. Rossi, “Automated formal verification for flexible
manufacturing systems,” J. Intell. Manuf., vol. 25, no. 5, pp. 1181–
1195, 2014.

[113] D. Soliman, G. Frey, and K. Thramboulidis, “On formal verification
of function block applications in safety-related software
development,” in Proc. 4th Dependable Control Discr. Syst. 2013,
vol. 4, pp. 109–114.

[114] M. Cheminod, I. C. Bertolotti, L. Durante, R. Sisto, and A.
Valenzano, “On the use of automatic tools for the formal analysis of
IEEE 802.11 key-exchange protocols,” in Proc. IEEE Workshop
Factory Commun. Syst., 2006, pp. 273–282.

[115] R. Sinha, K. Johnson, and R. Calinescu, “A scalable approach for
reconfiguring evolving industrial control systems,” in Proc. IEEE
Emerg. Technol. Factory Autom., Sep. 2014, pp. 1–8.

[116] G. Cengic and K. Akesson, “Definition of the execution model used
in the fuber IEC 61499 runtime environment,” in Proc. IEEE Int.
Conf. Ind. Inform., 2008, pp. 301–306.

[117] M. Bonfe, C. Fantuzzi, and C. Secchi, “Verification of fault
tolerance of discrete-event object-oriented models using model
checking,” in Proc. IFAC World Congr., 2008, pp. 5095–5100.

[118] I. C. Bertolotti, L. Durante, P. Maggi, R. Sisto, and A. Valenzano,
“Improving the security of industrial networks by means of formal
verification,” Comput. Standards Interfaces, vol. 29, no. 3, pp. 387–
397, 2007.

[119] S. Klein, G. Frey, and L. Litz, “Designing fault-tolerant controllers
using SIPN and model-checking,” in Proc. Fault Detection,
Supervision Safety Techn. Processes, 2004, vol. 1, paper 113.

[120] J. C. Mankins, “Technology readiness levels,” White Paper, vol. 6,
Apr. 1995.

[121] Int. Org. Standardization, Space Systems - Definition of the
Technology Readiness Levels (TRLs) and Their Criteria of
Assessment, ISO 16290:2013, 2013.

Roopak Sinha (S’03–M’13) received the
Ph.D. degree in electrical and electronic
engineering from The University of
Auckland, Auckland, New Zealand, in
2009.

He is currently a Senior Lecturer with the
School of Engineering, Computer and
Mathematical Sciences, The Auckland

University of Technology. He has previously held academic
positions with The University of Auckland, and INRIA, France.
His research interests include “Systematic, Standards-First
Design of Complex, Next-Generation Embedded Software Âİ
applied to domains such as Internet of Things, edge computing,
cyber-physical systems, home and industrial automation, and
intelligent transportation systems.

Dr. Sinha has served on several IEEE/IEC standardization
projects, was an invite coeditor of a Special Section on
“Dependability in Industrial Informatics” of the IEEE
Transactions on Industrial Informatics, and works with several
New Zealand companies to systematically reduce standards-
compliance costs in IoT/embedded products.

Sandeep Patil (S’11–M’19) received the
Ph.D. degree in computer science
engineering from Luleå University of
Technology, Luleå, Sweden, in 2018.

He is currently a Postdoctoral Researcher
with the Dependable Communication and
Computation Systems Group, Luleå
University of Technology, Luleå, Sweden.

His research interests include programming distributed industrial
automation software systems using IEC 61499 standard. He is an
accomplished software engineering professional with more than
10 years of research and development experience in systems and
application software, including four years at Motorola India Pvt.,
Ltd., India, as a Senior Software Engineer.

Luis Gomes (SM’06) received the
Electrotech. Eng. degree from Technical
University of Lisbon, Lisbon, Portugal, in
1981, and the Ph.D. degree in digital
systems from NOVA University of Lisbon,
Lisbon, Portugal, in 1997.

He is currently a Professor with the
Electrical and Computer Engineering

Department, NOVA School of Science and Technology, NOVA
University of Lisbon, Portugal, and a Researcher with the Centre
of Technology and Systems, UNINOVA Institute, Portugal. From
1984 to 1987, he was with EID, a Portuguese medium enterprise,
in the area of electronic system design, in the R&D engineering
department. His main interests include the usage of Petri nets and
other models of concurrency, applied to reconfigurable and
embedded systems codesign and cyber-physical systems. He has
authored and coauthored of more than 200 papers and chapters
published in journals, books, and conference proceedings and one
book and has coedited three books.

Prof. Gomes was made Honorary Professor by Transilvania
University of Brasov, Brasov, Romania, in 2007, as well as
Honorary Professor of Óbuda University, Budapest, Hungary, in
2014. He was a recipient of the IEEE Industrial Electronics
Society Anthony J Hornfeck Service Award in 2016.

Valeriy Vyatkin (M’03–SM’04) received
Ph.D. degree in applied computer science
from Taganrog State University of Radio
Engineering (TSURE), Russia, in 1992, the
Dr.Eng. degree in electrical engineering
from Nagoya Institute of Technology,
Nagoya, Japan, in 1999, the Dr.Sc. (Eng.)
degree in information and control systems
from TSURE, in 1999, and the Habilitation

degree from the Ministry of Science and Technology of Sachsen-
Anhalt, Germany, in 2002.

He is on joint appointment as the Chair of Dependable
Computations and Communications, Luleå University of
Technology, Luleå, Sweden, and a Professor of information
technology in automation, Aalto University, Aalto, Finland. He is
also the Co-Director of the International Research Laboratory
“Computer Technologies,” ITMO University, Saint-Petersburg,
Russia. Previously, he was a visiting scholar with Cambridge
University, Cambridge, U.K., and had permanent appointments
with the University of Auckland, New Zealand, Martin Luther
University, Germany, as well as in Japan and Russia. His research
interests include dependable distributed automation and industrial
informatics; software engineering for industrial automation
systems; artificial intelligence, distributed architectures and
multiagent systems in various industries: smart grid, material
handling, building management systems, datacentres and
reconfigurable manufacturing.

Dr. Vyatkin was a recipient of the Andrew P. Sage Award for the
best IEEE Transactions paper in 2012. He is the Chair of the IEEE
Industrial Electronics Technical Committee on Industrial
Informatics.

