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Abstract 
Industrial automation systems (IAS) need to be highly 
dependable; they should not merely function as expected 
but also do so in a reliable, safe, and secure manner. 
Formal methods are mathematical techniques that can 
greatly aid in developing dependable systems and can be 
used across all phases of the system development life cycle 
(SDLC), including requirements engineering, system 
design and implementation, verification and validation 
(testing), maintenance, and even documentation. This 
state-of-the-art survey reports existing formal approaches 
for creating more dependable IAS, focusing on static 
formal methods that are used before a system is completely 
implemented. We categorize surveyed works based on the 
phases of the SDLC, allowing us to identify research gaps 
and promising future directions for each phase. 
 
Index Terms: Formal methods, formal verification, 
IEC 61131, IEC 61499, industrial automation systems 
(IAS), industrial control.  
 

1. INTRODUCTION 
Industrial automation systems (IAS) are highly distributed 
systems containing software to control mechatronic 
components interacting with physical processes. IAS find 
use in production, logistics, and energy generation and 
distribution. IAS need to provide a high level 
of dependability, which is defined as the trustworthiness of 
a computer system's ability to reliably provide the service 
it promises to deliver [1]. A dependable system must 
be functionally correct and do what it promises, but it must 
also meet nonfunctional requirements (NFRs), such as 
reliability, safety, and security. As system sizes and 
complexity grow, the lack of systematic methods can 

significantly limit our ability to build highly dependable 
systems. Formal methods include formalisms, algorithms, 
and processes that have sound mathematical foundations 
and, therefore, provide more objective and unambiguous 
means to model and check the dependability of a given 
system. Due to factors such as difficulty in their use, expert 
skills, significant manual effort required, and scalability 
concerns, only a few formal methods have found industrial 
use. 

This paper surveys formal methods that can be used for 
dependability analysis of IAS. We restrict the scope of this 
study to only offline or static approaches for 
dependability [2], leaving out online or runtime approaches 
used for monitoring, diagnosis, and fault tolerance. A static 
approach abstracts a system or a part of a system 
specification into a model and then checks if the abstracted 
model is consistent with some notion of correctness. Such 
analysis can be automated, such as in model checking, or 
require human input, such as in guided theorem proving. 
An online approach observes the behavior of a system or a 
part of a system during execution while simultaneously 
checking if the execution so far is consistent with some 
notion of correctness. Static approaches tend to be more 
useful before a system is deployed, such as during system 
design and refinement. Runtime approaches can be used 
only when parts of the system are operational. The cost of 
finding and fixing issues in a system grows exponentially 
as its development progresses, which indicates that early 
use of static approaches can significantly reduce 
development time and costs. However, not all analyses can 
be completed before deployment, which makes the use of 
online approaches equally important. This paper focuses on 
static approaches because the body of knowledge covering 
both offline and online approaches is too expansive, and 
online approaches have been generally well studied 
elsewhere, such as in state-of-the-art surveys for fault 
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diagnosis [3], [4], and event scheduling [5]. We, therefore, 
restrict this paper to surveying formal and static fault 
prevention and fault removal techniques [1]. Furthermore, 
we do not survey a few subtopics that have been covered in 
other surveys. These topics are controller synthesis [6] and 
formal methods for addressing networking issues [7], [8]. 
Existing surveys [9]–[10][11][12][13][14] are also loosely 
related to this survey, but focus narrowly on specific 
standards or IAS subdomains. 

There are a number of well-established and widely 
understood challenges in assuring the dependability of 
IAS. Scale and complexity are the most obvious ones; 
typical IAS contain highly distributed and modularized 
software running on multiple programmable logic 
controllers (PLCs), and hundreds or even thousands of 
mechatronic components that must interact with often 
heterogeneous physical processes. Several concerns related 
to dependability exist throughout the system development 
life cycle (SDLC) for IAS. Requirements 
engineering involves eliciting and organizing requirements 
for a system, and dependability-related concerns in this 
phase include ensuring requirements are consistent, correct, 
and complete, and are managed efficiently throughout the 
subsequent SDLC phases. During design, dependability 
rests squarely on system architecture and hence key 
concerns include architecture selection, comparing design 
alternatives, and choosing a sound and scalable primary 
separation strategy. During design 
and implementation phases, ensuring consistency between 
subsequent refinements of a system is a key dependability-
related concern. The testing phase demands scalable, 
comprehensive, and easy-to-use verification and validation 
techniques to test a system's dependability. Runtime 
management and reconfiguration of IAS are key 
dependability-related concerns in the final deployment 
stage. Throughout the SDLC, a key challenge is 
systematically complying with dependability standards, 
such as IEC 61508 for functional safety, by exploiting the 
structures of design and implementation standards, such as 
IEC 61499 or IEC 61131-3. 

This survey reports a systematic mapping study 
(SMS) [15], as opposed to a systematic literature review, to 
identify the main areas of activity within this wide research 
topic. Following the SMS methodology, an initial search of 
peer-reviewed research covering individual keywords such 
as formal methods, industrial automation, 
dependability, and model-based engineering (a typical 
architecture for IAS) yielded more than 2000 works. This 
initial list was pruned to about 400 after using the phases of 
the SDLC and industrial automation standards such as IEC 
61499 and IEC 61131-3 as additional keywords.1 We 
further reduced the number of studies to 123 by focusing 
on offline formal approaches and also by studying how 
closely each work related to IAS by manually reading the 
titles, abstracts, and the conclusions sections of the articles. 
This survey is designed for industry practitioners who can 
evaluate available approaches for use in their contexts, as 
well as for researchers in industrial automation systems, 
dependability analysis, or formal methods, who would like 
to explore the intersection of these fields. 

In Sections 2–4, we use the SDLC phases to categorize 
surveyed works, although some approaches span multiple 
phases. Focusing on individual phases allows us to see how 
well existing approaches address the key dependability-
related challenges in each phase, which leads to a more 
thorough analysis of the state of the art and future 
directions. Section 3 combines both the design and 
implementation phases as most formal approaches for 
assuring dependability in one phase were found to be 
applicable in the other. In Section 5, we integrate the 
conclusions drawn within Sections 2–4 and provide a 
discussion around overall trends, research gaps, and future 
directions. Our findings include identifying SDLC phases 
that have found successful use for formal methods, the 
imbalance between techniques borrowed from other 
domains and those developed or customized specifically for 
IAS, and the challenges in making formal methods intrinsic 
to the IAS SDLC. These observations lead to identifying a 
number of promising research directions to accelerate the 
adoption of formal methods in IAS. 
 
A. Key Definitions 
A lack of standardization around dependability in IAS 
means that several terms can have ambiguous meanings, 
depending on where we look. Hence, we precisely define 
some key terms used in the context of this paper. 

The term specification refers to either requirements 
specification and/or system specification. The former is 
used in Section 2, whereas the latter is used in Sections 3–
4. Formal refers to methods, models, and algorithms that 
have precise syntax and semantics, allowing unambiguous 
specifications and interpretations. Temporal logics are 
well-known formalisms to specify 
requirements. Informal refers to techniques, tools, and 
methods where specifications and interpretations can 
change subjectively between observers. For instance, 
requirements written in natural language are inherently 
informal. Semiformal tools and approaches provide some 
formalism, but not enough to allow a completely objective 
interpretation. Unified Modeling Language (UML), for 
instance, provides a formal structure for the formation of 
requirement specifications, but terms used in a UML 
diagram may have different interpretations. 

In the literature, the terms verification and validation are 
frequently used interchangeably. We follow their distinct 
definitions from the IEEE Standard Glossary of Software 
Engineering Terminology [16]. Verification is the process 
of determining if the artifacts produced in the current phase 
of the SDLC fulfill the requirements established during a 
previous phase. In other words, verification checks for 
consistency or compliance between a more 
detailed implementation and a more abstract specification. 
Validation, on the other hand, checks if specifications 
accurately capture customer needs. 
 

2. Requirements Engineering 
Requirements engineering is the first phase in system 
development and involves the elicitation, analysis, 
specification, and validation of requirements [17]. 
Requirements express the needs and constraints on a 
system, and in IAS, requirements can correspond to the 
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software, hardware, and/or the physical processes being 
controlled. In addition to providing a precise understanding 
of the system to be built, requirements engineering has a 
far-reaching impact on subsequent phases in system 
development via traceability of requirements to system 
artefacts, and change management [18]. Most current 
requirements engineering processes are informal or 
semiformal at best. For instance, requirements elicitation, 
where the aim is to capture as many requirements from 
stakeholders, is largely an informal process. Most formal 
approaches for requirements engineering have focused on 
requirements specification and requirements analysis [19]. 
 
A. Requirements Specification 
Requirements specification involves creating a structured 
system requirements specification (SRS) document that can 
be systematically reviewed and evaluated. SRS allows us 
to analyze requirements and to also estimate costs and risks. 
While requirements are often written informally, 
several requirements specification languages (RSLs) allow 
semiformal or even formal specification of certain classes 
of requirements. 

In the realm of semi and fully formal requirements 
specification, UML and use cases and their variants are by 
far the most common RSLs. SysML is another widely 
accepted semiformal RSL in automation systems [20] and 
can capture functional and safety requirements. Other RSLs 
include SWSpec based on Petri nets for formally specifying 
requirements in service workflow environments [21]. 

Adequate user guidance can make the writing of formal 
requirements easier. Often this is done by providing 
templates or patterns for writing requirements. Such 
patterns for possibility or fairness are proposed in [22], 
which were later extended into a formal methodology for 
specifying real-time communication requirements for 
industrial energy distribution systems [23]. Template-
based conversion of informal requirements to semiformal 
boilerplates and then to formal patterns was also proposed 
in the CESAR project [17]. 

Some approaches extract formal requirements from more 
informal sources automatically. In [18], semiformal 
engineering design process enables the conversion of 
computer aided design (CAD) documents to formal 
documents. An approach to formalizing requirements in 
natural language to formal specifications [24] uses lexical 
analysis to create a structure diagram for requirements. A 
language in which test information is extracted through the 
various stages of system development starting from the 
requirement stage is presented in [25]. 
 
B. Handling Nonfunctional Requirements 
A dependable system must satisfy NFRs, such as reliability, 
availability, safety, and security [1]. In the requirements 
engineering subphase, most existing works cover only 
safety. In [26], safety requirements over individual 
components and compositions are specified and verified. 
SysML is used to capture safety requirements in a tree 
structure containing relationships between requirements 
and subrequirements. This approach also provides support 
for traceability by allowing individual requirements to be 
linked to components that implement them. When  

requirements are refined, subrequirements are 
automatically reallocated to subcomponents and their 
combined behaviors are checked. The SAPIS tool allows 
formal specification of safety requirements according to the 
CENELEC standard and is based on previous work on 
safety [27]. A classification of safety requirements for 
industrial automation appears in [28]. Classifications 
include static requirements that demand global satisfaction 
of a property or dynamic requirements that must be true in 
certain states and false in others. These requirements can be 
easily translated to temporal logic formulas using 
templates. In [29], graphical formalisms traditionally used 
for modeling fault trees in safety analysis were used for 
modeling security attacks. 
 
C. Requirements Management and Analysis 
Requirements management is concerned with maintaining 
requirements in a usable manner throughout the SDLC. 
One problem is storing requirements and associated 
artefacts such as test-cases and ensuring that they are 
reusable (concretized) as we go down the SDLC. In [25], a 
model-based methodology called test requirements model 
is used to transfer tests between various stages of the life 
cycle. It follows the behavior model for tests standardized 
by a consortium of standardization committees including 
IEEE. 

Continuous validation and analysis are required as 
requirements get refined during the development of the 
system. Requirements traceability is useful as it allows 
linking requirements as they evolve [30]. Formal methods 
can help find consistencies between requirements. In [31], 
a trace creation and recovery approach using context 
analysis enables a model-based approach to validate 
requirements using timed state machines, provide feature-
oriented requirements validation, and generate runtime 
observers for requirements. Requirements management 
requires managing changes in requirements. An approach 
based on SysML to depict and analyze change influences 
in industrial automation systems is presented in [20]. The 
focus is on modeling the impact of requirement changes on 
the mechanical, hardware, and software aspects of an IAS. 

Management and analysis require maintaining the 
knowledge within requirements, which is often done using 
ontologies to store interrelationships between concepts. 
Formal methods can help maintain a structured ontology, 
interlinking requirements, and persistently maintaining 
these links [32]. 

Table I visually compares the surveyed works by the 
requirements engineering subphase they apply to (S—
specification, A—analysis), the type of requirements 

TABLE I. COMPARISON OF WORKS SURVEYED FOR 
REQUIREMENTS ENGINEERING 
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(indicates functional requirements only), and whether each 
formalism is fully or semiformal. Additionally, we also 
show if there are available tools support and evidence of 
industry use for every technique. Overall, requirements 
specification and requirements analysis, are well covered 
by existing works. However, the lack of formalized 
requirements management frameworks is a significant gap 
in current research. Also, there is no existing framework 
covering a wide range of NFRs, which indicates that 
existing works may find only niche use. A further 
discussion of these results appears in Section 5. 
 

3. Design and Implementation 
During the design phase, the solution space described by 
requirements is increasingly constrained. During 
implementation, a finalized design is extended to build the 
system. 
 
A. Design 
The design phase can be broken down into two broad 
categories: high-level design, followed by low-
level design [17]. The key concern in high-level design is 
the creation of a system architecture. The system 
architecture captures an initial, abstract layout of the main 
subsystems or parts of a system via a primary separation 
strategy, and also contains architectural tactics to deal with 
primary quality or nonfunctional attributes of the system 
such as dependability. Existing standards such as IEC 
61499 and IEC 61131-3 provide robust software 
architectures for IAS. A few formalized extensions or 
alternatives are reusable automation components [33], 
intelligent mechatronic components, and automation 
objects [34]. These architectures provide better 
formalization, increased flexibility, and the ability to design 
software in a more hierarchical manner. Model-driven 
design is a key primary separation strategy used in IAS 
architectures, where a system is broken down into 
a controller constituting the software and PLC hardware 
and a plant representing the physical processed being 
controlled. 

In low-level design, an increasingly detailed layout of the 
system is built. Here, visual domain-specific languages 
(VDSLs) are quite common. Several works provide some 
kind of formalized modeling support. VDSLs in [35] come 
complete with syntax and behavioral semantics for 
converting designs to Petri nets while preserving timing or 
safety-related behaviors leading to early verification of 
designs. Early stage automata-based VDSLs presented 
in [36] also allow the modeling of safety but do not provide 
sufficient test data to back the theoretical basis. Continuous 
function charts [37] is a VDSL based on Statecharts that 
allows hierarchical designs of discrete-continuous 
embedded systems. It allows both control and data flow to 
be explicitly specified. These can potentially be used in IAS 
design too as models can be automatically translated into 
code that is amenable to coverage analysis. 

Standards such as IEC 61499 and IEC 61131-3 are the most 
popular design languages for IAS. Both provide VDSL-like 
features for creating component interfaces and networks 
with an ability to embed code into components during 
implementation. A plethora of works exists in the 

formalization of these standards, such as formalizing the 
syntax and semantics of IEC 61499 presented in [38]. IEC 
61499 suffered ambiguities in its execution semantics 
resulting in several works that formalize the execution 
model differently [39]. Subsequently, several further works 
focus on transforming IEC 61499 programs from one 
execution model to another [40]. A few works extend the 
semiformal SysML industry standard for modeling, such as 
the Manufacturing Execution Systems Modeling Language 
MES-ML [41] and extensions of SysML for modeling 
activities to enable safety analysis [42]. A comprehensive 
perspective on the whole analysis and design process 
during system development is presented. Works focusing 
on interoperability include [43] for re-engineering IEC 
61131-3 programs into other paradigms such as IEC 61499 
programs. 

UML is used in several domains and we find several works 
on formalizing and adapting UML for designing IAS [44]. 
UML enables modeling of control logic [45], often leading 
to automatic code generation of standard PLC languages 
such as function blocks [46]. In [47], the IEC 61499 
standard is extended to include UML-Statecharts features 
to reduce software complexity while ensuring automatic 
generation of standard-compliant code. 

Some works use formal languages or a combination of 
formal languages and industry standards for specifying 
system designs. A specification language for control 
programs based on linear temporal logic and structured text 
called ST-LTL is presented in [48], to make it easier for 
control engineers familiar with structured text to formally 
specify their designs. Similarly, a B language based design 
specification can allow formally proving that a design 
provides completeness, consistency, precision, and 
correctness guarantees [49]. Other languages combine 
several formal languages, such as Petri nets and Object-
Z [50], Specification and Description Language, and 
languages underpinning formal tools such as NuSMV and 
SIPN. 

A large body of work exists in IAS design using Petri nets 
and their extensions. Petri net extensions 
include Hierarchical Colored Petri nets, Timed Petri nets, 
and High-level Petri nets. Some works combine Petri nets 
with other techniques such as supervisory control 
approaches [51] for design-level analysis, validation, and 
simulation of IAS. Several formal frameworks are based on 
Petri nets, such as timed net/condition event 
systems [52] for modeling PLC behavior, or signal net 
systems for modeling and verification of distributed control 
systems. Some drawbacks of these initial works, such as a 
lack of formalized semantics, have been addressed in later 
works [53]. Some works extend existing implementation 
approaches using Petri nets, such as [54] where the 
GHENeSYS modeling environment is extended by adding 
a function of process actions association with places and 
transitions. Some works study Petri nets based modeling 
patterns [55] for enabling model to code generations. 

Plant modeling is an integral part of model-driven design. 
Current works using formal or semiformal frameworks for 
this purpose include using SysML variants to model 
changes in mechatronic production systems [20], closed-
loop modeling of plant and controller using net  
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condition/event systems (NCES) leading to formal 
verification [56] or code generation. In [57], an approach to 
synthesize discrete-state plant models from behavior traces 
and temporal properties is proposed. The problem is posed 
as a Boolean satisfiability problem (SAT) and is solved by 
running a SAT solver. The generated models are intended 
to be applied in closed-loop model checking. 
 
B. Implementation 
A small number of formal methods directly target IAS 
implementation. Several formal controller 
synthesis approaches have been proposed from formalized 
system models [58] and differ mainly in the kinds of 
formalized system models they require as inputs. Some 
other works convert formal specifications to standard-
compliant code [59], [60], differing again in input 
specification and output language types. The method 
presented in [61] uses Petri net models for controller 
synthesis in commercial PLCs using IEC 61131-3 function 
blocks enhanced with object-oriented programming 
techniques to achieve event driven semantics for the target 
PLC hardware. 

Some approaches infer executable models of off-the-shelf 
components with black-box interfaces through black-box 
testing data. The technique presented in [62] infers the 
behavior of components as IEC 61499 programs, but 
cannot guarantee completeness due to nonexhaustive 
exploration. In [63], an automated people mover system is 
developed and tested using both verification and 
simulation. Formal verification was used to check only for 
deadlocks, whereas timed models in UPPAAL were used 
for simulation purposes. In [64], implementation artefacts 
are specified using formal languages such as variants of 
process algebra. 

Table II provides a summary of the most works surveyed in 
this section. Each technique targets a specific standard and 
relies on an underlying formal model. Petri nets are the 
most commonly used formal model. Some works have tool-
support available and only a few have found use in industry. 
Very few works span both IEC 61131-3 and IEC 61499 
standards and subsequently do not exploit the highly 
structured nature of these standards. Semiformal 
approaches, such as those based on UML or Statecharts 
have found more use in the industry due to better usability. 

A deeper discussion of these results appears later 
in Section 5. 
 

4. Testing 
The testing phase checks if a system meets its intended 
requirements. Conventional testing involves stimulating 
the implemented system through varying inputs and 
observing its outputs and other qualities (such as timing). 
However, as exhaustive testing is very expensive, a 
significant part of testing is carried out through simulation. 
Here, test vectors are used to stimulate and verify the 
behavior of a system model, but not the implemented 
system. Simulation is usually faster than conventional 
testing but is more useful where abstract simulation results 
are guaranteed over the actual implementation. The third 
category of testing involves formal verification techniques 
where formal methods are used to prove the correctness of 
a formal model or specification of a system. Formal 
verification techniques can guarantee correctness of the 
formal specification due to full coverage, but are often 
limited to small to medium system models. Formal 
methods, which have traditionally found use in formal 
verification, also hold promise in accelerating conventional 
testing and simulation [65]. For instance, formal methods 
can be used to select right stimuli for conventional testing 
and simulation for better coverage and reducing testing 
times. However, a large gap exists between the potential of 
formal methods in testing, as evidenced by research, and 
their actual use in industry; in fact, only a few solutions find 
direct industry use [66]. 
 
A. Formal Methods in Conventional Testing 
Conventional testing involves stimulating a part or whole 
of a system implementation using a carefully chosen, 
automatically generated, or randomly selected sequence of 
stimuli or system inputs, called a test case. Formal 
techniques such as symbolic execution, model-based 
testing, combinatorial, random, and search based 
testing [66] can help automatically generate test cases. 
Other techniques can help with executing tests and 
providing tool support [67]. 

In model-based testing, incomplete system models are used 
to generate test cases to be tested on implemented control 
software. In [68], a system software specification in 
sequential function charts is translated into labeled 
transition systems and then traversed by a custom test tool 
to derive test cases. In [69], a hybrid system model is 
converted into a target discrete diagnostic model in Ludia, 
a language for modeling complex systems for fault 
diagnosis. This technique lacks a proof of correctness. At 
the component level, function blocks in both IEC 61131-3 
and IEC 61499 provide modules that can be seen as black 
boxes amenable for test-case generation. In [70], a 
symbolic execution based approach is presented where an 
intermediate model from Arcade.PLC [71] is used to 
autogenerate test cases for IEC 61131-3 programs. This 
paper can test for unreachable code, a rarely encountered 
feature in other works. In [72], IEC 61131-3 function 
blocks are converted into timed automata models. Tailored 
unit tests and coverage requirements are generated in the 
UPPAAL modeling environment. A framework for 

TABLE II. COMPARISON OF DESIGN AND IMPLEMENTATION 
WORKS 
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verifying IEC 61131-3 instruction list programs is 
presented in [73]. It proposes a formal semantics for a 
significant fragment of the instruction list language, and a 
direct mapping of the semantics into a model checking tool. 
A requirements-based test-generation and tracking 
simulation based execution technique for systems built 
using IEC 61131-3 appears in [74]. 

Some works, such as [75], target test-case generation for 
complete systems. Here, a system under test (SuT) is 
described using executable networks of either IEC 61131-
3 or IEC 61499 function blocks. A UML description of the 
system is used to generate tests in UML, and the test-case 
generation strategy traverses branches in the networks to 
ensure that each branch is visited once. Then, through 
model-to-model transformation or model viewing, the SuT, 
as well as generated test-cases, are transformed into IEC 
61499 or IEC 61131-3 systems. A test-case generation 
strategy presented in [76] extracts test cases from IEC 
61499 programs specified as state and activity diagrams 
using the round-trip path coverage strategy, where every 
defined sequence of transitions that begin and end in the 
same state is taken. Future directions in system testing 
include developing formal testing platforms to decide 
which components to test together, how they should be 
tested, and when to stop testing. 

There are a number of tools for test-case generation and 
execution. Some tools specialize in generating and 
executing test cases for specific platforms, such as testing 
the timing of controller area network (CAN) bus based 
control applications [77], and the safety of software 
deployed on FPGAs [78]. 
 
B. Simulation 
Simulation involves using test data to stimulate a system 
model, not an actual implementation, in an attempt to 
expedite testing. Some approaches, such as [79], model 
communication tasks within an IAS using a semiformal 
language such as SysML out of which timed Petri net 
models can be extracted and simulated to estimate the 
performance of a distributed system. In such approaches, 
networks are replaced by models, and simulation 
parameters such as packet drops can be easily controlled. 

Other simulation frameworks provide testing systems for 
NFRs and attributes. In [80], a random testing framework 
for safety-critical embedded systems is presented where 
constrained random testing enables larger coverage through 
random input variations, random fault injections, and 
automatic output comparisons. Functional safety standards, 
such as EC 60812, 61580, MIL-STD-1629A, etc., apply to 
many IAS [81]. Current approaches use safety PLCs for 
mission critical applications and formal failure mode and 
effects analysis approaches to analyze system hardware, 
but no existing formal technique can assess complete 
systems for functional safety. The need for a theoretical 
basis for formally modeling and assessing IAS for security 
requirements such as availability, integrity, confidentiality, 
graceful degradation, and detection is highlighted in [82]. 
The authors note the high modeling overheads that prevent 
the widespread use of formal modeling for this purpose. 
 
 

C. Formal Verification 
Existing surveys such as [12] and [13] look at the use of 
specific formal verification techniques such as model 
checking in industrial automation systems. Distinctions 
between formal verification techniques arise from 
differences in system and requirements modeling, 
algorithms used, user effort required, and outputs produced. 
For instance, Xia et al. [83] propose an automatic 
verification tool for PLC systems, which includes formal 
modeling, static syntax checking, code generation and 
optimization, and visual representation of 
counterexamples. 

Some works extract formal models of systems or 
requirements automatically. A syntactic and semantic 
analysis for IEC 61499 systems appears in [43]. A semantic 
checker carries out rule-based checking of software 
modules, constrained via a hard coding of correctness 
criteria to reduce user effort. In [84], timed models of plants 
and closed-loop automation systems are built as 
constrained timed discrete event systems and timed 
controller models, respectively. These implementation-
independent models are subsequently transformed into 
timed automata for verifying timing requirements such as 
urgency. Other automatic modeling approaches, such 
as [85], target the conversion of software modules written 
in different languages to timed automata. A static code 
analysis tool is presented in [86] to parse and convert IEC 
61131-3 control applications into control flow graphs. This 
model can then be assessed for type constraints, 
reachability, and liveness using a hybrid algorithm based 
on abstract interpretation and data flow analysis. A good 
summary of IEC 61499 modeling and verification can be 
found in [9]. A semantic characterization of PLC programs 
based on extended λ-calculus appears in [87], leading 
toward theorem proving and model checking. 

Some works deal with graphical, intuitive, and more user-
friendly front-end specification languages that are aimed at 
making formal methods more accessible. In [88], 
requirements specified using symbolic timing diagrams and 
safety-oriented technical language are translated to 
temporal logic leading to a model checking of closed-loop 
system models. Other works include specification patterns 
for the nuclear automation sector [89] and user-friendly 
visualization and handling of counterexamples generated 
by model checkers [90]. 

Formal verification algorithms face the well-known state 
explosion problem, where system model sizes explode 
when component compositions or data variables are taken 
into account. Typically, these details are either abstracted 
out or verification is focused on individual components to 
verify requirements. Several modeling languages such 
synchronous/asynchronous composition of finite-state 
machines and automata, networks of timed automata [91], 
and Petri nets [92] are being used in IAS to address state 
explosion. 

Formal plant modeling has been a recent focus area for 
several works. It helps reduce the size of the formal model 
to be verified through closing an IAS system through a 
constrained plant model [93]. A good overview of plant 
modeling in formal verification can be found in [94]. 
In [95], a workflow to specify safety-critical systems, 
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plants, and requirements as sequential function charts is 
proposed. These models are automatically translated into 
controller code, plant models (via library matching of 
modules), and requirements in temporal logic. These can 
then be simulated and verified using UPPAAL. A 
framework for modeling complete IAS, including plants as  

hierarchical and compositional NCES, presented 
in [96] provides support for model editing, visualization, 
and verification. 

Some works target the formalizing of IAS standards. 
In [97], the Coq theorem prover is used to formalize the 
semantics of the Instruction List (IL) and Sequential 
Function Charts (SFC) languages from IEC 61131-3. Such 
frameworks enable automatic generation of code from 
graphical system specifications. 

Several works transform system artifacts into format 
accepted by formal tools. In [98], IEC 61499 systems are 
modeled as finite-state machines, contracts, or modules in 
synchronous languages, subsequently allowing the use of 
model checkers. A few IAS-only model checkers exist, 
such as ViVe/SESA, VEDA [99], and Arcade.PLC [71]. 
Some works focus on converting deployable code (or 
block-based application design) into languages accepted by 
model checkers such as symbolic model checking (SMV) 
and UPPAAL, to enable automatic verification. The 
PLCverif [100] tool converts IEC 61131-3 programs to 
target model checking languages (NuSMV/NuXmv, 
UPPAAL). PLCverif has been subsequently extended to 
provide support for all five programming languages of the 
IEC 61131-3 standard [101], [102]. A transformation of 
IEC 61131-3 programs into PVS specifications to allow 
theorem proving is presented in [103]. This was done to 
mandated requirement of applying formal verification to 
such safety systems. In [104], rule-based model 
transformations help convert IEC 61499 programs into 
SMV models for NuSMV/nuXmv-based model checking. 

Many algorithms use the UPPAAL model checker to verify 
timeliness. In [105], IEC 61499 systems are transformed 
into timed automata using set translation rules for verifying 
timing requirements. However, hardware configurations 
that affect a system's timing characteristics are not 
considered. Other works include using hybrid automata to 
analyze the worst case execution times in component 
networks [106], and timed automata to elevate existing IEC 
61131-3 systems for compliance with newer safety 
standards such as IEC 61508 [107]. Such approaches 
feature rule-based model transformations. In [108], formal 
dependability analysis is carried out by manually modeling 
input/output modules both qualitatively as point systems 

and quantitatively using probabilistic to compute metrics 
such as system reliability. In [109], client-server networked 
automation systems are evaluated by using timed event 
graph models that are analyzed using deterministic and 
probabilistic analyses. Mazzolini et al. [110] show an early 
stage verification strategy for IAS using model checking 
algorithms and model coverage. 

Some approaches focus on specific subproblems such as 
scheduling of flexible manufacturing systems by using 
formal analysis to assign schedules to a system divided into 
subnets [111]. Some works, such as [112], formalize the 
execution semantics of flexible manufacturing systems 
modeled using stateflow diagrams and can reason about 
undesirable execution sequences that ambiguities in the 
specification language can induce. The formal analysis of a 
listen-before-talk protocol for interacting components over 
congested wireless networks is presented in [113]. 
Assuring network performance is a significant problem in 
general. In [114], several model checkers are used for the 
security analysis of industrial wireless protocols. 

A few approaches look at formally verifying NFRs. Online 
reconfiguration of IAS is an important topic addressed in 
works such as [115]. The work in [116] looks at formally 
specifying buffered sequential execution model of the 
Fuber IEC61499 runtime. It also presents extended finite 
automata models that are suitable for formal verification of 
the proposed execution semantics. In [117], industrial 
controllers, modeled as finite-state machines can be 
verified for fault tolerance using SMV. Techniques such 
as [118] explore the use of formal methods to verify the 
security of networks used in industrial settings. In this 
particular work, π calculus is extended with security 
features allowing system and requirements modeling, 
which enables automatic verification of vulnerabilities. A 
fault-tolerance analysis of control algorithms using signal 
interpreted Petri nets from [119] uses formal modeling and 
SMV to check for determinism. 

Table III shows a comparison of some of the works covered 
in this section based on the types of testing, formalisms 
used, and the target IAS standards. We also list whether a 
technique is semi or fully formal, has tool support available 
and if it is used in industry. Semiformal techniques do not 
directly use mathematical formal models, for example, 
most transition systems such as Petri nets are classified as 
semiformal due to lack of formal analysis of transition 
rules. Most techniques have robust tool support, unlike 
techniques that target earlier SDLC phases. We also note 
that several works propose transforming one model type to 
another to enable the use of additional analysis tools. Often, 

TABLE III. COMPARISON OF SURVEYED WORKS FOR TESTING  
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these approaches lack rigor in the transformation process. 
The most successful formal methods target conventional 
testing and aim to make it easier, more comprehensive, 
and/or faster. A more detailed analysis of our findings 
appears in Section 5. 
 

5. Discussion 
This survey reveals some key insights into the current use 
of formal methods for dependability in IAS. Fig. 1 shows 
the number of formal methods surveyed for each subphase 
of the SDLC. These numbers provide a clear picture of the 
subphases, such as design and testing, that have found more 
use for formal methods. Fig. 1 also shows the technology 
readiness level [120] (TRL) for each approach we studied. 
We use the TRL definitions [121] adopted by the European 
Commission since 2014 to derive and classify the articles 
into different TRL levels. TRL provides a scale to assess 
the maturity of a technology. Lower levels, such as TRL1–
3 indicate that a work is more conceptual, whereas higher 
levels TRL8–9 indicate robust, industry-ready technologies 
that have sufficient process and tool support available. 
Overall, most surveyed works were in the TRL3–5 range, 
indicating the relatively low maturity of formal methods in 
IAS. This also corroborates with the split between early-
stage works and established works. We cite 47 (38% or all 
citations) early-stage papers that are mostly conference 
papers proposing techniques at lower TRLs. The remaining 
62% are established works at higher TRLs and published 
mostly in established journals, as well as a few high impact 
conferences, white papers, and patents. In the following 
paragraphs, we unpack the information contained 
within Fig. 1 and derive critical information about the state 
of the art in the use of formal methods for each SDLC 
phase. 

Requirements engineering, the first phase of the SDLC, 
involves eliciting, organizing, specifying, analyzing, and 
managing requirements. Some aspects of this phase, such 
as elicitation, are inherently informal and do not utilize 
formal methods at present. However, there is immense 

value in the early use of formal methods for requirements 
specification, management, and analysis. The earlier we 
can unambiguously capture the knowledge base a system is 
built on, the easier and cheaper it becomes to build the 
system. Several existing formal and semi-formal methods 
provide sufficient support to model requirements, the 
knowledge these requirements is built on (ontologies), and 
for automatic or guided analysis. However, their use is 
sporadic due to the high learning curves and expert skill 
sets needed. While the lack of tool-support is an important 
issue, standardization of the use of formal methods for 
various specification, analysis, and management of 
requirements can go a long way in addressing this problem. 
Both tool-support and standardization can help build a 
critical mass of repeatable and feasible tools, processes and 
skills in the domain. Standardization will involve 
formalizing common domain-specific knowledge in IAS, 
as well as lay out a roadmap for incorporating new formal 
methods into the requirements engineering phase. We also 
find inadequate formal support for NFRs. Again, the 
application of standardized formal models, templates, and 
analysis methods for IAS-specific NFRs, such as safety, 
dependability, and timing, can help with wider adoption 
and use of formal methods. The most robust technology in 
this area is the semiformal SysML, which is an industry-
wide standard for modeling behavioral and some safety 
requirements. Other technologies lie more in the proof-of-
concept or early validation stages and require more 
experimentation with real-life systems. 

In the design phase, primary functional requirements and 
primary NFRs are converted into a structured solution 
space that is then concretized in the implementation phase. 
This phase is a crowded field, with most formal methods 
providing support for modeling techniques. However, only 
a few provide a seamless transition from the requirements 
engineering phase, making them more useful than other, 
more disjointed or stand-alone modeling techniques. 
Similarly, modeling techniques are more useful when they 
can also be used in the implementation phase such as 
several works that support automatic code generation. As 

 
Fig. 1. Proliferation and technology readiness of surveyed works, categorized by SDLC subphases. 
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the system gradually crystallizes during these phases, 
frameworks to formally trace and map requirements 
through these phases can be extremely useful for ensuring 
consistency between subsequent system models or 
implementations. Given that, currently, requirements, 
design, and implementation aspects are typically specified 
using different formal tools and techniques, integrating 
these into the SDLC is both an existing problem and an 
exciting direction for future research. It is infeasible to 
expect a single modeling framework for all these stages. 
Hence, we hypothesize that it is more important to focus on 
formal model transformations, such as in model-driven 
design to bring in much needed compatibility between 
different frameworks. Mature design and implementation 
standards such as IEC 61499 in IAS provide a structured 
foundation on which to build such model transformations. 
Further formalization of these standards is, therefore, 
another interesting direction to improve the uptake of 
formal methods. Formal methods targeting requirements 
standards such as IEC 61508 will also help improve support 
for building dependable IAS. From a technology readiness 
perspective, VDSLs based on semiformal SysML and 
UML are used widely in industry in the design phase. Some 
formal methods such as Petri nets and those involving plant 
modeling have also grown in popularity and have found 
wider use in both design and implementation. 

The testing phase of the SDLC has found the most use for 
formal methods. Conventional testing is aided by formal 
methods through comprehensive test-case generation, 
selection, and execution. For test generation, we find that 
most frameworks are semiformal, and there is need to 
formalize them more to derive coverage guarantees. A few 
approaches help with testing implementations against 
NFRs such as fault tolerance and functional safety. 
Considerably more work is needed to test for other 
important NFRs, such as reliability, availability, and most 
importantly, security. Security is a growing concern in this 
area since IAS have moved on from being contained within 
factory walls to being large, cloud-based solutions. In 
simulation-based testing, some formal tools and 
frameworks such as UPPAAL has found more popularity 
in timing-related verification of system models in IAS. 
Otherwise, the landscape remains fairly fragmented as 
often models and tools are selected for very specific 
problems and hence are not generalizable. In a similar vein, 
we also found several formal verification-based testing 
tools, differing mostly in requirement types and models, 
and the format of systems supported. A bulk of the work in 
this area has focused on plant modeling and verifying both 
plants and controllers together, highlighting the domain's 
focus on formally capturing the physical processes 
controlled by IAS. In general, though, formal verification 
based testing techniques have found limited industrial 
adoption due to well-known limitations such as state 
explosion and required user-expertise. Fig. 1 clearly shows 
that most formal verification techniques in the testing phase 
are at low TRL levels. 
 

6. Conclusion 
This paper presents a survey of static, formal techniques for 
building dependable IAS. Static approaches are more 

useful during the earlier stages of the SDLC; bugs and 
inconsistencies are cheaper to find and correct during these 
stages. Online approaches are equally useful but are used to 
analyze system executions and have been surveyed 
elsewhere. Using the phases of the SDLC for categorizing 
the approaches we surveyed, we find that most works apply 
to the design and testing phases. On the other hand, other 
SDLC phases such as requirements engineering contain 
wide gaps and provide interesting opportunities for future 
investigation. A closer look at the surveyed works reveals 
that most works do not seamlessly integrate with current 
industry practice, and have not matured sufficiently for use 
in system development. However, the picture is not 
universally bleak. IAS standards for requirements, design, 
and implementation, provide inherent support for formal 
approaches through their structure. Additionally, 
semiformal approaches provide a balance between rigor 
and usability, and some of these have matured enough for 
industry-driven use during the various SDLC phases. 

Going forward, there is a need to carry out 
substantial evaluative research, where the effectiveness of 
available formal methods must be tested empirically in 
industrial scenarios. This is contrary to the more 
prevalent propositional approach, where new models, 
algorithms, and formalisms are being proposed rapidly, 
resulting in a sparse landscape with little to no industry 
adoption. The evaluative approach will help ensure that 
more robust formal methods for the IAS domain 
incorporate domain-specific knowledge and context, 
allowing for more repeatable use. 
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