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Abstract—Manufacturing of composites using Automated Fi-
bre Placement (AFP) is a complex process which involves large
number of processing conditions and variables. Improper selec-
tion of these parameters adversely affect the quality and integrity
of the manufactured laminates. Thus, it is important to develop
a predictive model which can assess how changes in critical
process conditions alter the outputs of the manufacturing process.
The goal of this investigation is to learn the complex behaviour
of composites by developing an intelligent model which can
subsequently be used for the prediction of various characteristics
of the composites. However, manufacturing of AFP composites is
both expensive and time-consuming and therefore the available
data samples are less, from the prospective of machine learning,
which leads to the small data learning problem. This study first
solves this problem through Virtual Sample Generation (VSG),
then a Neural Network based predictive model is developed
to accurately learn the complex relationships between various
processing parameters in AFP.

Index Terms—Virtual Sample Generation (VSG), Machine
Learning (ML), Automated Fibre Placement.

I. INTRODUCTION

In recent years, the Carbon/Glass Fibre Reinforced Polymer
(CFRP/GFRP) based composites are increasingly being used
in a wide range of both consumer and industrial applica-
tions, including manufacturing of components in automotive
and spacecraft due to their lightweight and high strength.
Thus, automated manufacturing using robots is critical for
mass production [1]. This has created considerable interest
within industry groups to adapt AFP based manufacturing
to their manufacturing processes considering its high level
of productivity, accuracy and reliability. However, AFP is a
complicated process where the quality and integrity of the
structure depend critically on the proper selection of a large
number of variables which are extracted by conducting several
coupon level experiments [2], [3], [4].

Proper selection of these processing parameters is essential
and has been highlighted by several researchers [5], [6]. Chen
and Yousefpour [5] studied the influence of process parameters
on the void content and its effects on microstructures. Nixon-
Pearson et al. [6] analysed the compaction behaviour of
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toughened prepregs by studying the void content, both at room
temperature debulking and at the elevated temperatures. They
reported the void content within the samples consolidated at
the room temperature is at the highest level. However, this can
be decreased with increase in temperature under compaction
which is consistent with hot debulking.

A good understanding of the process parameters and their
influences will improve the quality of the manufactured com-
posites. The tuning of these parameters to achieve the desired
result is a complex nonlinear optimisation problem and is
a significant research concern. In this study, this complex
problem has been solved by developing a machine learning
(ML) based predictive model for AFP. Note that several param-
eters (> 50) influence the quality of AFP made composites.
These parameters can be categorized into three main groups
which include processing conditions, material variables and
processing defects as shown in Figure-1. Some of these param-
eters include, but not limited to, curing/melting temperature,
consolidation force, feed rate, heat flow rate, lay-up speed,
material type and defect types. In this investigation, one of
the objectives is to obtain a more reliable correlation between
the Hot Gas Torch (HGT) temperature and consolidation force
by keeping the lay-up speed constant.

In recent years, ML tools have been applied to solve several
engineering problems [7], [8], [9], [10], [11]. However, their
application to manufacturing is very limited [12], [13], [14].
This is because the success of ML-based algorithms depends
on the availability of a large number of data. But due to
the high cost of running pilot experiments, the available data
samples are often very less [15]. This fails to capture the
physics of the manufacturing process. Further, most of the
manufacturing processes are continuous and with a small num-
ber of experimental data, there exist information gaps. This
leads to the small data learning problem which needs to be
addressed in the first stage of model development. One of the
approaches to solving this problem is through Virtual Sample
Generation (VSG). Niyogi et al. [16] proved that the process
of creating virtual samples (VS) is mathematically equivalent
to incorporating prior knowledge. Several researchers have
developed various methods for generating VS and used them
for the development of models for manufacturing applications.
e.g. manufacturing of TFT-LCD [17] and Multi-Layer Ceramic
Capacitor (MLCC) [18]. But, the accuracy of these models is
dependent on both the techniques of VSG and the ML tools.

The optimum combination of the VSG technique and the
ML tool, which gives better accuracy, has recently been
investigated by the authors in [19] where they compared the
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Fig. 1. The parameters that influence the quality of AFP composites.

performance of three VSG methods such as Box-Whisker
(BWM-PMCC) method [20], Trend Similarity Assessment
(TSA) method [21] and Mega-Trend Diffusion (MTD) method
[22] using five well known ML tools such as Back Propagation
Neural Network (BPNN), Support Vector Machines (SVM),
Multiple Polynomial Regression (MPR), Multiple Linear Re-
gression (MLR) and Regression Tree (RT). It is shown that
the combination of the TSA method with BPNN gives the
best results [19]. In this study, i) It is established that BPNN
based ML gives highest learning accuracy compared to other
ML tools when it is trained using VS generated by the TSA
method, ii) A predictive model is developed which could
successfully predict the complex relationships in AFP based
composites.

For the first time, a machine learning based predictive model
is developed for AFP manufacturing. However, there is another
team of researchers (EC ZAero) working on developing a
machine learning tool for metal machining [23]. The focus
of this study is on learning the effects of various process-
ing conditions such as disposition rate, HGT Temperature,
Nip-Point Temperature and consolidation force on different
characteristics of composites, which include elastic modulus,
inter laminar shear strength, bending strength and maximum
stress using a machine learning based predictive model. The
proposed model is generic (scalable) and can easily include the
effects of many other processing conditions and parameters on
composites characteristics.

The organisation of the paper is as follows: Section-
II describes the experimental procedure for collecting AFP
data. The method of generating VS is briefly described in
Section-III. The efficacy of the proposed predictive model is
demonstrated, and the results are presented in Section-IV with
conclusions in Section-V.

II. EXPERIMENTS

The experimental data were collected following several
manufacturing stages which include preparation of composite

laminates and the extraction of properties of these laminates.
Figure-2 shows the schematic of an AFP machine with a
Thermoplastic (TP) head in an inset. The machine includes a
compaction roller, a heating system and a computer controlled
robotic arm [24], [25], [26], [27], [28]. In this process, an
incoming tape (A) is bonded to the previously laid and
consolidated layer (B) under pressure and temperature which
is provided using the compaction roller (C) and the heat source
(D), respectively [29]. An HGT based heat source was utilised
which delivers high temperature (up to 950 °C) nitrogen (E)
through a nozzle around the tape to initiate the polymerisation.
The prepreg tapes consist of a bunch of fibres impregnated
with resins and are commonly used materials for AFP based
manufacturing.

Fig. 2. AFP machine with the TP head. Inset: (A) Incoming tape; (B)
Previously laid layer (substrate); (C) Compaction roller; (D) Heat source
(HGT); (E) Hot gas; (F) Nip-point.

A. Coupon preparation
For the laboratory based experimental program, 16 samples

were manufactured using AFP with individual processing con-
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ditions shown in Table-I. In these experiments, the deposition
rate was kept constant at 76 mm/s while the temperature
and consolidation force were varied. The prepreg tapes were
processed by a heating and cooling cycle. Each sample consists
of 21 plies of unidirectional thermoplastic prepreg tapes,
CF/PEEK (AS4/APC2), supplied by Cytec. The prepreg tapes
are 1/4′′ (6.35 mm) wide and 0.15 mm thick, with a fibre
volume fraction of 0.6. The overall dimension of each laminate
is 200 mm×6.35 mm×3.15 mm. The samples were then cut
to test coupon samples (19 mm×6.35 mm×3.15 mm) using
a diamond saw. Further details of material properties can be
found in [30].

B. Coupon Characterisation

The coupons were loaded into a three-point bend test
fixture, specially designed to perform the Short-Beam Strength
(SBS)/Interlaminar Shear Strength (ILSS) tests using a uniax-
ial test machine (Instron-3369-50KN). The test setup used to
conduct the SBS/ILSS tests is shown in Figure-3. In these
tests, the ratio of the span length to the thickness is kept at
4.0, and the coupon was tested at a constant loading rate of 1
mm/min. Following ASTM D2344 [31], the strength of each
coupon was calculated and is expressed as:

Fig. 3. Experimental set-up for the SBS/ILSS.

F sbs = 0.75
Pm

bh
(1)

where F sbs is the short beam strength ; Pm is the maximum
flexure load; b is the coupon width and h is the coupon
thickness. In addition, the maximum flexural stress and the
maximum strain were calculated based on their geometry and
are expressed as:

σ =
3PL

2bh2
(2)

ε =
6δh

L2
(3)

where σ denotes the stress at the outer surface in the mid-span;
L is the support span; P is the applied force; h is the thickness
of coupon; b is the width of coupon; ε is the maximum strain
at the outer surface and δ is the mid-span deflection.

The summary of the results for mechanical characterisation,
which is obtained through the experiments, is illustrated in
Figure-4 and the experimental values are shown in Table-II.
The failure modes observed during the test were a mixture

of inter-laminar shear and plastic deformation including local
damages such as delamination and micro-crack between the
plies. It is worth to emphasise that the HGT temperature and
nip-point temperature are different. The nip-point temperature
is the temperature of heated nitrogen at the interface of
incoming tape and the substrate, as shown in Figure-2. A
nitrogen line supplies nitrogen on the back of the torch, and
the nozzle directs the heated nitrogen onto the material. Once
the hot gas comes out of the nozzle, temperature drops. The
HGT temperature is set on the AFP controller and measured
at the tip of the HGT nozzle via a thermocouple.

Further from Table-I and Figure-4, it is observed that for all
test conditions, 850 °C HGT processing yield superior elastic
modulus, SBS and flexural stress. This observation is consis-
tent with the fact that the actual temperature in this condition
is much closer to the process temperature of tape material (382
°C - 400 °C). Consequently, better consolidation takes place
under these loading conditions. Higher temperatures, greater
than the existing processing temperatures, result in thermal
degradation of the polymer (at least above a certain point)
which will consequently decrease the SBS/ILSS. Out of all
the conditions investigated in this experimental program, it
was found that conditions C10 and C12 can provide higher
SBS/ILSS compared to others. One of the possible ways to
increase SBS/ILSS at lower temperatures is to decrease the
deposition rate of the material. This can provide a longer time
for the resin to flow and interact with the fibres across the
interface.

III. VIRTUAL SAMPLE GENERATION

Researchers have proposed various methods of virtual sam-
ple generation (VSG) from a small number of data samples to
solve the small data learning problems which are reported in
[15], [17], [18], [20], [21], [22], [32], [33], [34], [35]. Among
all these methods, the VSG using triangular membership
functions have been very popular due to several advantages
[20], [21], [22], [32], [34]. Further, in [19] it has been
demonstrated that learning performance of various ML tools is
jointly dependent on the VSG method and ML algorithm. The
authors in [19] have shown that by combining BPNN with the
TSA method, outperforms others. This observation is further
established in this study considering three VSG techniques
and five popular ML tools. This method is therefore briefly
described here for the sake of completeness.

Step 1: For all the attributes ( i.e. for all the inputs
and outputs), compute the first quartile (Q1), median (Q2),
third quartile (Q3) and find the Inter Quartile Range (IQR)
from Box-Whisker plots. Let Q1,i, Q2,i and Q3,i and denote
the first, second and third quartile respectively and IQRi

represents interquartile range of the the ith attribute xi.
Step 2: Define the triangular membership function of the

ith attribute xi(refer [19]).

Li =

{
Q1,i − 1.5IQRi, if Li ≤ min;
min, if Q1,i − 1.5IQRi > min.

(4)
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TABLE I
THE PROCESSING CONDITIONS OF MANUFACTURED THERMOPLASTIC LAMINATES.

Processing Condition Deposition Rate (mm/s) HGT Temp. (°C) Nip-point Temp. (°C) Consolidation Force (N)
C1

76

650 215

180
C2 250
C3 350
C4 450
C5

750 315

180
C6 250
C7 350
C8 450
C9

76

850 415

180
C10 250
C11 350
C12 450
C13

950 515

180
C14 250
C15 350
C16 450

(a) (b)

(c) (d)

Fig. 4. The mechanical test results: (a) Elastic Modulus; (b) Short-Beam Strength (SBS); (c) Maximum flexural stress; (d) Maximum flexural strain.

Ui =

{
Q3,i + 1.5IQRi, if Ui ≥ max;
max, if Q3,i + 1.5IQRi < max.

(5)

In this equation ′min′ and ′max′ corresponds respectively the
minimum and the maximum values of the original (experimen-
tal) data.

It is worth to note that when the sample size is small, the
parametric average may not be considered as a good statistical
measure. The parameter Q2,i is therefore selected as the centre
of the distribution; since it is insensitive to the average [21].
Calculate the value of the membership function of the ith

attribute xi for a particular data point from,

µ(xi) =


xi−Li

Q2,i−Li
, if Li ≤ xi < Q2,i;

Ui−xi

Ui−Q2,i
, if Q2,i ≤ xi ≤ Ui;

0, otherwise.
(6)

Step 3: Compute the strength between the different attributes
and formulate the TSA matrix as:

S =

s1,1 s1,2 . . . s1,n
...

. . .
sn,1 sn,2 . . . sn,n

 (7)
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where si,k, i, k = 1, 2, ...., n, is the strength between ith and
kth attribute. This is calculated as follows:

si,k =
1

m

m∑
j=1

gi,k(j) (8)

where,

gi,k(j) =

 1, if (xi(j)−Q2,i)(xk(j)−Q2,j) > 0;
0, if (xi(j)−Q2,i)(xk(j)−Q2,j) = 0;
−1, if(xi(j)−Q2,i)(xk(j)−Q2,j) < 0.

(9)

and number of data samples equals to ′m′. Note that small
values of si,k implies that there exists weak correlation be-
tween the attributes xi and xk, where as large values of si,k
shows strong correlation.

Step 4: For all the attributes the VS are generated as follows.
For the 1st attribute v1, generate N number of VS i.e.

v1(j), j = 1, 2, ..., N using Plausibility Assessment Mecha-
nism (PAM) which ensures,

L1 ≤ v1(j) ≤ U1, j = 1, ..., N.

The VS for other attributes are calculated progressively from
k = 2, 3, ....., n. VS of the kth attribute is dependent on the
VS of the previous attributes, i.e:

vk = f(vk−1, vk−2, ....., v1) (10)

The virtual value (vk) of the kth attribute xk is calculated
from:

vk(j) =



Lk + µ(vi(j))(Q2,k − Lk), if si,k < 0, and
Q2,i < vi(j) ≤ Ui

or
if si,k > 0, and
Li ≤ vi(j) < Q2,i;

Uk − µ(vi(j))(Uk −Q2,k), if si,k < 0, and
Li ≤ vi(j) ≤ Q2,i

or
if si,k > 0, and
Q2,i ≤ vi(j) ≤ Ui;

0, otherwise.
(11)

Note that due to various practical reasons, a slight deviation
may occur. In [21], a method has been proposed to account for
this probable deviation. For each of the attributes and for every
virtual sample, a range of values is defined. The diffusion
coefficient θi,k between ith and kth attribute is defined as,

θi,k = −a|si,k|+ b; a, b ∈ IR (12)

When si,k is small, the possibility vk to be located on the
other end of the median (with respect to vi) is higher. Further,
when si,k = 0,the information between xi and xk can not be
extracted from observations [21]. The virtual value vk of kth

attribute xk is therefore generated randomly; since this can lie
between Lk and Uk with respect to vi.

The virtual sample deviation of the ith attribute considering

kth attribute can be computed as:

v−i,k(j) =

 Li, if vi(j)− θi,k(Ui − Li)
< Li;

vi(j)− θi,k(Ui − Li), otherwise.
(13)

v+i,k(j) =

 Ui, if vi(j) + θi,k(Ui − Li)
> Ui;

vi(j) + θi,k(Ui − Li), otherwise.
(14)

In the next step, the virtual sample deviation range of the
kth attribute is computed considering ith attribute [v−k,i(j),
v+k,i(j)] as follows:

It is worth to note that the following condition should be
satisfied,

µ(v+k,i(j)) = µ(v+i,k(j))

(15)
µ(v−k,i(j)) = µ(v−i,k(j))

(16)
For the kth attribute, its virtual value vk is calculated from

the range [v−k (j), v
+
k (j)] as:

[v−k (j), v
+
k (j)] = [v−k,1(j), v

+
k,1(j)] ∩ ... ∩ [v−k,k−1(j), v

+
k,k−1(j)]

(17)

Note that the generation of vi(j) is done randomly in the
range [v−i (j), v

+
i (j)]. where,

[v−i (j), v
+
i (j)] = [v−i,1(j), v

+
i,1(j)] ∩ ... ∩ [v−i,i−1(j), v

+
i,i−1(j)]

(18)

IV. RESULTS

The experimental data in Table-II were collected following
the procedure mentioned in Section-II and using the processing
conditions (parameters) given in Table-I. The goal of this
investigation is to find an intelligent model which will ac-
curately encode the learning behaviour of AFP composites
and predict the output for different processing conditions.
As discussed before, this is essentially a small data learning
problem. This is addressed in 2-stages. In this study virtual
sample generation is carried out first. For that three VSG
methods are considered (TSA, BWM-PMCC, and MTD). Then
a comprehensive investigation is carried out to find whether
VSG technique or ML tool or combination of the both (VSG
and ML) would yield higher accuracy.

The investigation procedure followed in this study is shown
in the flowchart of Figure-5 which shows two distinctive cases.
This is based on how we select the training and validation data.
For case 1, the whole VS are used to train the ML tools and
the experimental data is used to validate the model. For case
2, the whole VS plus a percentage (say 50%) of experimental
data is used for training and rest of the experimental samples
are used for validation. Further, since the processing conditions
in Table-I are sparse, original data used for training has been
chosen carefully. Random selection of original data might
result in poor performance of the predictive models. Careful
selection of a higher percentage of original data will improve
the training accuracy. However, validation performance could
be poor. To carry out a comprehensive comparison, five
popular ML tools (BPNN, MPR, SVM, MLR and RT) are
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used. More details about the investigation procedure can be
found in [19].

Fig. 5. Investigation procedure.

The comparative performance is assessed using the perfor-
mance index J ,

J =
MSEOriginal −MSEV SG

MSEOriginal
× 100% (19)

where MSEOriginal and MSEV SG respectively denote the
Mean Square Error (MSE) of the models that are fitted
only using experimental data and the models that are fitted
using VS. Note that the combination of ML tool and the
VSG technique that would give higher values of J is better
compared to other combinations. The MSE for a particular set
of data is calculated as follows:

MSE =
1

M

M∑
i=1

(xi − x̂i)2 (20)

where M is the number of samples and xi is the actual value
of the sample and x̂i is the predicted value of the sample.

Considering several synthetic examples, the authors in [19],
have shown that the combination of the TSA method of VSG
and BPNN gives highest learning accuracy. This is further
established with the experimental data. In this study only
4-input variables, dented as, x1 (HGT Temperature (°C)),
x2 ( Consolidation Force (N)), x3 (Nip-point Temperature
(°C)), x4 (Deposition Rate (mm/s)) and 4-output variables,
denoted as, y1 (Elastic Modulus), y2 (Short-Beam Strength
(SBS)), y3 (Maximum Flexural Stress), y4 (Maximum Flexural
Strain) are explicitly included. Further, since the Deposition
Rate (x4) is fixed at all times, as it can be seen in Table-
I, it is not a persistently exciting input. Also Nip-point
Temperature(x3) follows the same trend as HGT Temperature
(x1) (refer Table-I). Hence HGT Temperature (x1) can be
considered to represent both the inputs HGT Temperature (x1)
and Nip-point Temperature (x3). Thus, from the perspective

of system identification, modelling of AFP can be considered
as identification of a 2-input, 4-output process (refer Table-I
and Table-II).

Following the procedure outlined in Figure-5, the perfor-
mance of various VSG methods and ML tools were inves-
tigated and the complete predictive model is constructed by
cascading the outputs in parallel. The results of this investiga-
tion are shown in Tables-III, IV, V, VI, VII, VIII, IX, X for
y1, y2, y3 and y4 (for both cases) respectively.

From the results, it is evident that the learning accuracy for
case 2 is higher than case 1. Thus, it is important to use part
of the experimental data when the model training is carried
out using VS which is demonstrated in Table-IV, Table-VI,
Table-VIII and Table-X respectively.

There are significant improvements in the performance of
y2, y3 and y4 for case 1. However, all the outputs showed
significant improvements in case 2 when compared with
MSEOriginal. y3 recorded the highest improvement showing
81% in case 2 (refer Table-VIII). The performance of the pro-
posed model is validated by comparing the data predicted from
the model with the experimental data and are shown for both
cases in Table-XI and Table-XII where yi, i = 1, 2, 3, 4 and
ŷi, i = 1, 2, 3, 4 denote respectively the measured experimental
and predicted outputs.

Note that this predictive model can only estimate outputs
with a maximum error of 6.3%, 9.1%, 7.6% and 16% for y1,
y2, y3 and y4 respectively as shown in Table-XII. However,
the accuracy can be further increased by including the effects
of more number of processing conditions and parameters.

V. CONCLUSIONS

In this study, an ML-based predictive model has been
developed to predict the manufacturing of composites using
the AFP process accurately. Carbon-fibre composite laminates
were manufactured using different processing conditions. The
mechanical characterisation of AFP fabricated samples was
investigated through the laboratory-based mechanical tests. In
the predictive model, the processing conditions (lay up speed,
HGT temperature, consolidation force) are used as inputs, and
the results obtained from the mechanical tests (SBS/ILSS,
elastic modulus, etc.) are defined as outputs. To overcome the
limitations with small number of experimental data (small data
learning problem), VS are generated using various methods,
and their effectiveness for learning are first studied through
comparative investigation using different established ML tools.
Among all the VSG methods, the TSA method of VSG,
when combined with BPNN, gives the highest learning ac-
curacy. From experimental comparisons, it is evident that
the developed predictive model can successfully learn the
characteristics of the complex, high-dimensional nonlinear
AFP process with a maximum error less than 18% for case-1
and 16% for case-2. Future research will focus on improving
the accuracy of the predictive model by incorporating the
effects of other processing conditions and parameters. Further,
we would explore the possibilities of fitting inverse models
using similar procedures used for direct modelling for the AFP
manufacturing process.
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TABLE II
PARAMETRIC OUTPUTS FOR MANUFACTURING THE THERMOPLASTIC LAMINATES.

Processing Condition Modulus (MPa) SBS (MPa) Max Bending Stress (MPa) Max Strain
C1 8054.74 37.49 299.93 0.13
C2 8856.14 41.75 334.01 0.12
C3 8831.73 41.94 335.56 0.11
C4 9541.92 41.78 334.27 0.09
C5 8850.71 44.60 356.77 0.14
C6 8615.53 46.38 371.08 0.15
C7 8765.24 45.52 364.16 0.14
C8 9453.16 47.46 379.66 0.14
C9 9551.67 49.30 394.37 0.12

C10 9548.57 51.76 420.69 0.12
C11 8803.02 49.72 398.53 0.13
C12 8799.61 51.51 407.78 0.13
C13 8373.25 49.40 393.18 0.14
C14 8390.93 47.92 383.38 0.11
C15 9038.45 49.32 395.35 0.12
C16 8818.78 45.67 366.50 0.11

TABLE III
PERFORMANCE INDEX J FOR y1 UNDER DIFFERENT COMBINATIONS OF

VSG METHODS AND ML TOOLS-CASE 1

J- AFP y1 TSA BWM-PMCC MTD
BPNN -1.5% -79% -45%
SVM -37% -66% -93%
MLR -41% -56% -81%
RT -57% -77% -139%

MPR -132% -214% -297%

TABLE IV
PERFORMANCE INDEX J FOR y1 UNDER DIFFERENT COMBINATIONS OF

VSG METHODS AND ML TOOLS-CASE 2

J- AFP y1 TSA BWM-PMCC MTD
BPNN 35% 8.7% -4.2%
SVM 4.8% -21% -37%
MLR 3.9% -23% -31%
RT -4.2% -51% -59%

MPR -52% -196% -232%

TABLE V
PERFORMANCE INDEX J FOR y2 UNDER DIFFERENT COMBINATIONS OF

VSG METHODS AND ML TOOLS-CASE 1

J- AFP y2 TSA BWM-PMCC MTD
BPNN 48% 13% 3.3%
SVM 11% 9.2% 6.6%
MLR 11% 5.5% -2.1%
RT 5.1% -4.9% -27%

MPR -8.7% -53% -135%

TABLE VI
PERFORMANCE INDEX J FOR y2 UNDER DIFFERENT COMBINATIONS OF

VSG METHODS AND ML TOOLS-CASE 2

J- AFP y2 TSA BWM-PMCC MTD
BPNN 60% 45% 12%
SVM 13% 11% 8.6%
MLR 12% 2.8% -8.2%
RT 8.9% -1.2% -9.6%

MPR -7.3% -41% -103%

TABLE VII
PERFORMANCE INDEX J FOR y3 UNDER DIFFERENT COMBINATIONS OF

VSG METHODS AND ML TOOLS-CASE 1

J- AFP y3 TSA BWM-PMCC MTD
BPNN 57% 42% 20%
SVM 34% 17% 7.8%
MLR 20% -2.6% -11%
RT 16% -9.0% -15%

MPR 10% -22% -98%

TABLE VIII
PERFORMANCE INDEX J FOR y3 UNDER DIFFERENT COMBINATIONS OF

VSG METHODS AND ML TOOLS-CASE 2

J- AFP y3 TSA BWM-PMCC MTD
BPNN 81% 45% 14%
SVM 52% 28% 14%
MLR 41% 16% -5.2%
RT 23% -4.1% -5.9%

MPR 14% -26% -72%
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