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Abstract— An accurate Electricity Price Forecasting (EPF) plays a 
vital role in the deregulated energy markets and has a specific effect 
on optimal management of the power system. Considering all the 
potent factors in determining the electricity prices - some of which 
have stochastic nature - makes this a cumbersome task. In this paper, 
first, Grey Correlation Analysis (GCA) is applied to select the effective 
parameters in EPF problem and eliminate redundant factors based on 
low correlation grades. Then, a deep neural network with Stacked 
Denoising Auto-Encoders (SDAEs) has been utilized to denoise data 
sets from different sources individually. After that, to detect the main 
features of the input data and putting aside the unnecessary features, 
Dimension Reduction (DR) process is implemented. Finally, the rough 
structure Artificial Neural Network (ANN) has been executed to 
forecast the day-ahead electricity price. The proposed method is 
implemented on the data of Ontario, Canada, and the forecasted results 
are compared with different structures of ANN, Support Vector 
Machine (SVM), Long Short-Term Memory (LSTM) - benchmarking 
methods in this field- and forecasting data reported by Independent 
Electricity System Operator (IESO) to evaluate the efficiency of the 
proposed approach. Furthermore, the results of this study indicate that 
the proposed method is efficient in terms of reducing error criterion 
and improves the forecasting error about 5 to 10 percent in comparison 
with IESO. This is a remarkable achievement in EPF field. 

Index Terms—Price forecasting; Dimension reduction; Deep 
learning; Rough neuron; Denoising. 

NOMENCLATURE 
Parameters 

𝑛଴ Total number of input data components 
𝑚 Total number of input data in GCA 
𝑛 Total kind of input data parameters in GCA 

𝑁௦ Total number of neurons in layer S 
𝑁௟ Total number of hidden layers 
𝜉 Distinguishing factor in GCA 

Variables 

𝑏 Bias vector for visible layer 
𝑏ᇱ Bias vector for visible layer transposed 
𝑏௎

ௌ  Upper bound bias vector for layer S 
𝑏௅

ௌ Lower bound bias vector for layer S 
𝑏௅ோ Bias vector of Logistic Regression layer 
𝐶𝐹 Compression Factor in dimension reduction 
𝐶𝐿 Number of compression layers in dimension reduction 
𝐸 Total Sum square error 

                                                           
1     

  
   

  
   

   
  

𝐸ሺ𝑘ሻ Total Sum square error in iteration k 
𝑓 Activation function 

𝑓ௌ Activation function for layer S 
𝐻 Hidden layer vector 

𝐻ௌ Hidden layer vector for layer S 
𝑂ௌ Output of layer S 
𝑂௎

ௌ  Output of upper bound neuron for layer S 
𝑂௅

ௌ Output of lower bound neuron for layer S 
𝑊௎

ௌ Weight vector of upper bound neurons in layer S 
𝑊௅

ௌ Weight vector of lower bound neurons in layer S 
𝑊 Weight vector between visible and hidden layer 

𝑊ᇱ Weight vector between visible and hidden layer 
transposed

𝑊௅ோ Weight vector of Logistic Regression layer  
𝑋 Input data vector 
𝑋௜ Input data vector for sample i 
𝑋ᇱ Reconstructed data vector 
𝑋෠ Contaminated data vector 
𝑌௚ Output vector for sample g 
𝑌௚෡  Desired vector for sample g 

𝑌෠௚೘೐ೌ೙ Mean value of desired vector in calculating sample 
𝜆௢

∗ሺ𝑡ሻ Normalized target data for at time t for GCA  
𝜆௭ሺ𝑡ሻ Data for z-th data sample at time t for GCA  
𝜆௭

∗ሺ𝑡ሻ Normalized Data for z-th data sample at time t for GCA 
𝛼ௌ Coefficient of upper bound neuron for layer S 
𝛽ௌ Coefficient of lower bound neuron for layer S 
𝛾 Momentum coefficient 
𝜀ௌ Weight variations for fine-tuning in layer S 
𝜂 Training coefficient 
𝜓 Random noise operator 

𝜋௭൫𝜆௢
∗ሺ𝑡ሻ, 𝜆௭

∗ሺ𝑡ሻ൯ Grey coefficient between sequence 
𝜆௢

∗ሺ𝑡ሻ, 𝜆௭
∗ሺ𝑡ሻ 

Γ௭൫𝜆௢
∗ሺ𝑡ሻ, 𝜆௭

∗ሺ𝑡ሻ൯ Grey correlation grade between 
sequence 𝜆௢

∗ሺ𝑡ሻ, 𝜆௭
∗ሺ𝑡ሻ 

Indices 

𝑖 Index of visible layer sample 
𝑔 Index of output layer sample  
𝑘 Index of iteration number 
𝑆 Index of layer number 
𝑡 Index of input data time sample in GCA 
𝑧 Index of input data type in GCA 
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I.   INTRODUCTION 

A. Background and motivation 

eregulating energy markets in the late 1900s 
revolutionized the electricity pricing and introduced a 

sophisticated competitive market in which the Electricity Price 
(EP) changes momentarily. As a result of the EP intermittent 
behavior, the short-term EP forecasting with high precision is 
very much needed in the optimal management of the power 
system [1]. The economic benefits of an accurate Electricity 
Price Forecasting (EPF) cannot be neglected. As well, slightest 
improvement in the EPF accuracy would save millions of 
dollars for the industry. Determining the electricity price is 
contingent upon several parameters such as climate conditions 
(wind speed, temperature, precipitation, etc.) and consumption 
patterns (peak hours, weekdays, seasonal attributes, etc.) 
therefore, EPF should be seen as a “Big Data” problem [2].  
To analyze this large volume of data, a strong data mining tool 
is necessary for extracting the main features of the input data, 
and data mining approaches are noteworthy these days in 
various applications [3]. 

B. Literature survey 

Due to the critical importance of EPF, this subject has been 
under thorough studies since the deregulation of the energy 
market. These studies can be categorized into three general 
subsections: statistical methods, probabilistic methods and 
Computational Intelligence (CI) based approaches [4]. 
Generally, the statistical methods, are based on assumptions 
introduced by each algorithm which is a source of inaccuracy 
and adds deficiency to the model. Moreover, statistical methods 
perform poorly dealing with price spikes in the electricity 
markets [4]. Recently, researchers have been interested in 
hybrid approaches, combining statistical methods with other 
forecasting methods in order to limit the shortcomings of these 
procedures [5]–[7].  
The probabilistic methods are other kinds of approaches in EPF 
studies. These methods usually employ probability distribution 
functions in the forecasting procedure. Due to the high 
uncertainty of EP series, the main advantage of these techniques 
is finding optimal prediction intervals (lower and higher 
bounds) in final results [4]. In probabilistic forecasting 
methods, the combination of different approaches such as 
Wavelet function [8], spatial interpolation [9], active learning 
[10] are considered, and this improves the accuracy of the 
forecasting results [11], [12]. 
 CI gathers fundamental theories of learning, evolution, and 
fuzziness to create mechanisms that can cope with complex 
dynamic systems. Artificial Neural Networks (ANNs), Support 
Vector Machines (SVMs), fuzzy systems, and evolutionary 
computation are the main modules of CI methods. CI methods 
are flexible and able to analyze problems with complex non-
linear behaviors [13]. These features make CI a promising tool 
for solving short-term forecasting and presents an excellent 
performance in EPF [14]. ANN is one of the most popular CI 
methods that can forecast the expected outcomes solely by 
processing the known data. Besides, ANN does not require 
baseline hypotheses to generalize the validity of the models, 
and thereby additional inaccuracies are avoided [15]. 
Conventional ANNs consist of a few hidden layers that are 
defined as shallow networks [16], which got developed over the 

years from simple feed-forward to recurrent and radial base 
structures with multi-layers of neurons. Most of the studies in 
EPF applied conventional shallow structures of ANNs with low 
hidden layers [17]. In recent years, the concept of multilayer 
ANNs and Deep Learning (DL) with Stacked Auto-Encoders 
(SAEs) gave rise to novel studies with more sophisticated, 
better performing ANNs [8], [14]. The effects of a DL approach 
in EPF is elaborated in [18]. The main shortcoming of these 
approaches is that they are trained by the raw data and no 
deliberation is done on the input data; thus, ignoring the input 
noise results in defective forecasts. Stacked Denoising Auto-
Encoders (SDAEs) became handy in this matter because they 
can efface the noise of the input data [14], [19].  
According to the large dimension of input data, feature 
extraction methods have been considered in CI studies. The 
Principal Component Analysis (PCA) is the most common 
method for feature extraction task which omits the redundant 
features with mapping data in linear space [20]. Kernel PCA is 
a newer feature extracting method which works in non-linear 
space and has better accuracy [21]. As stated by Hinton [22], 
the feature extraction methods based on deep auto-encoders 
outperform the PCA based approaches. 
 To sum up this discussion, the CI-based approaches and data-
driven techniques are the most effective methods in EPF 
problems with large dimension input data [18]. 
As far as the authors know, some developments are missing 
from the studies in the field of ANN-based EPF which can be 
categorized as follows: 
 
 Data mining methods which have acceptable performance 

in feature extraction of input data have been rarely applied.  
 ANNs with the rough structure which have high ability in 

handling uncertainties is not employed. 

C. Paper contribution 

As mentioned, EPF studies involve high dimensional inputs, 
and the SAEs are primarily used for data de-noising. On the 
other hand, SAEs can be employed for reducing the volume of 
data to extract the main features of the input data, as well as to 
reduce the deficiencies caused by the noise. In the feature 
extraction task, the input data has been mapped with a nonlinear 
operator to a new space with a lower dimension which consists 
of the main features. In this study, firstly, a large number of 
different input data variables are considered, to select the 
effective parameters, the Grey Correlation Analysis (GCA) is 
employed. Then, SDAEs are applied to reduce input data noise, 
and after that, a Dimension Reduction (DR) strategy with 
optimal compression rate is applied to extract crucial features 
of the input data. Indeed, the GCA and DR methods are 
employed for feature selection and extraction, respectively. The 
main scope of this study is an hourly day-ahead EPF which is 
required in electricity market studies, but this methodology can 
be extended for EPF studies with wider time spans as well. The 
main objective of data reduction in this study is to provide a 
forecasting method with better accuracy. According to high 
fluctuations in EP profile, and to verify the spike points in a 
better way, a Sinusoidal Rough Artificial Neural Network (SR-
ANN) is implemented which is more responsive to rapid 
variations [23]. Rough neurons, by employing interval weights 
handle the EP uncertainty with more precision than 
conventional neurons.  

D 



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2933009, IEEE
Transactions on Industrial Informatics

TII-19-1608 3

In this study, implementing GCA for selecting important input 
data parameters and optimal DR strategy for feature extraction 
approach with rough neurons to address the uncertainty are 
utilized altogether in EPF problem for the first time. In fact, in 
this paper, the potential of the feature selection, feature 
extraction and forecasting procedure with rough neuron-based 
ANN are employed together to develop the robust forecasting 
method in EPF task. Indeed, in this study, we introduce hybrid 
method with high precision in electricity price forecasting 
based on various techniques, which are effective in forecasting 
task for a specific goal. The following is the list of applied 
techniques and their application in this study. 
 

 GCA: preprocessing feature selection.  
 Rough neurons: handling uncertainty. 
 DR: robust feature extraction task with optimal 

extraction rate. 
 
The main contributions of this study can be enumerated as 
follows: 
 
 The DR method based on deep auto-encoders is 

implemented to improve the forecasting results effectively 
by extracting the superfluous features of input data. 

 The optimal structure of the DR method is determined 
according to the data from the case study. 

 The EPF is considered as a “big data” problem with different 
kinds of parameters as input data, and effective parameters 
are selected based on the GCA method.   

 A deep rough structure ANN is employed in order to reach 
more accurate modeling of the EP with its uncertainties. 

D. Organization of the paper 

The main body of this paper is defined as follows: Section II 
gives a brief review of the implemented methods in this paper. 
In Section III, a comprehensive description of the proposed 
method is provided. In Section IV, numerical results and case 
study details are presented. Finally, Section V summarizes the 
findings of this study. 

II. A BRIEF REVIEW OF THE BASIC METHODOLOGIES 

A. Deep Learning Method 

  DL is basically an ANN with multi hidden layers in which 
the input data is assessed more thoroughly -compared to the 
shallow structures of ANNs- in order to perform better in 
feature extraction of the data. In rudimentary ANNs, all the 
features are expected to be dug out in a single layer of artificial 
neurons, while in a deep structure, each layer detects different 
features of the input data. Indeed, DL allows the ANNs, which 
are constructed with multi hidden layers, to learn the 
representation of the features with multifarious level of 
extractions. DL has proved its superiority in large dimension 
studies such as image and speech recognition, diverse 
forecasting studies, etc. In this study, DL method is employed 
in EPF which is a large dimension study and has a high dynamic 
and intermittent behavior. Therefore, a strong feature extraction 
tool is needed to find the accurate forecasting result. More 
details about implementing the deep network training procedure 
are expressed by pseudo-code in Appendix section, part A. 

B. Dimension Reduction 

Nowadays, the availability of data in large scales provides the 
opportunity of accessing a myriad of useful information for 
researchers. This seemingly beneficial advantage makes every 
database study overwhelming and is the main impediment for 
time sufficient simulations. DR is presented as a solution to 
curtail the size of data into a smaller set. Reducing data using 
deep ANNs was introduced by Hinton [22] utilizing SAEs. 
SAEs have a high potential in feature extraction task and 
present an acceptable performance in various forecasting tasks. 
In DR method, the main goal is to eliminate the redundant 
features of input data, which have low efficiency in forecasting 
the target data. In this procedure, first, all AEs are trained 
separately, then, stacked together, and finally, the fine-tuning 
procedure is applied to the holistic network. The core objective 
of this method is to produce a low dimension data, containing 
the main features of the data set. As a matter of fact, reducing 
data is shown to have better accuracy in the results to a certain 
extent. This feature will be discussed thoroughly in the 
upcoming sections.  

C. Stacked Denoising Auto-encoders 

AEs are known to be the simple models of ANNs that get 
input data, rebuild them by encoding and decoding, and convert 
them to the output with the minimum discrepancy [22]. In this 
approach, SAE is engendered by fixing AEs and deep ANN. 
Discriminating significant features of the input data is the main 
duty of SAEs. Concerning the robustness of SAEs, the Stacked 
Denoising Auto-encoder (SDAE) adds noise to the data in the 
midst of the procedure. Input data should be regained by 
SDAEs from the contaminated data which enhances the ability 
of feature extraction in this technique. In this study, various 
parameters from different sources are considered as input data; 
denoising task is necessary work in these situations. In fact, the 
denoising process helps us to make a robust approach in 
confronting different kinds of input data which may have noise 
or bad data. 

D.  ANN-based on the Rough Structure 

A simple definition of a rough neuron is a neuron created by 
pairing a couple of neurons called the upper bound and lower 
bound. Prior works confirm that the rough ANNs (R-ANNs) 
which are used to consider the uncertainties of input data, 
perform better than any other structures. G. Ahmadi et al. in 
[23] indicate that in many fields such as traffic volume 
prediction, reducing image noise and medical diagnostic 
support system, R-ANN is highly effective. In this research, an 
ANN with a rough structure has been applied accordingly to 
consider the uncertainty of input data. The rough neurons, with 
their interval weights configuration, handle the uncertainty in 
an acceptable way and affect the results significantly. This 
effect will be illustrated in the numerical results. 

III. PROPOSED METHODOLOGY 

The proposed method consists of four parts, which are 
described in the following sections. 

A. Selecting Input Data with GCA 

The GCA is a tool for determining the correlation grade 
between different input and target data which has an acceptable 
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performance in EPF problem [21]. In this study, the input data 
structure for EPF is determined based on GCA results, and the 
parameters with low grey correlation grades are neglected. 

 Matrix D is defined based on the input data as follows:  

𝐷 ൌ

⎣
⎢
⎢
⎢
⎡

𝜆ଵሺ1ሻ ⋯ 𝜆௭ሺ1ሻ   ⋯ 𝜆௡ሺ1ሻ
⋮

𝜆ଵሺ𝑡ሻ
⋮

⋮
𝜆௭ሺ𝑡ሻ

⋮

⋮
𝜆௡ሺ𝑡ሻ

⋮
𝜆ଵ ሺ𝑚ሻ ⋯ 𝜆௭ሺ𝑚ሻ   ⋯ 𝜆௡ ሺ𝑚ሻ⎦

⎥
⎥
⎥
⎤

  (1) 

 

The rows define the time sample and columns define the input 
data index [21].  
To apply GCA, input data can be normalized as follows: 

𝜆௭
∗ሺ𝑡ሻ ൌ

ఒ೥ሺ௧ሻ ି ௠௜௡ ఒ೥ሺ௧ሻ

 ௠௔௫ ఒ೥ሺ௧ሻ ି  ௠௜௡ ఒ೥ሺ௧ሻ
  (2) 

then, the grey coefficient is determined as: 

π௭൫𝜆௢
∗ሺ𝑡ሻ, 𝜆௭

∗ሺ𝑡ሻ൯ ൌ
୼೘೔೙ାక ୼೘ೌೣ

୼೚೥ሺ௧ሻା క ୼೘ೌೣ
    𝜉 ∈ ሺ0,1ሻ            (3) 

Δ௢௭ሺ𝑡ሻ ൌ |𝜆௢
∗ሺ𝑡ሻ  െ 𝜆௭

∗ሺ𝑡ሻ| (4) 

Δ௠௔௫ ൌ 𝑚𝑎𝑥 |𝜆௢
∗ሺ𝑡ሻ  െ 𝜆௭

∗ሺ𝑡ሻ|   𝑧 ൌ 1, . . , 𝑛  (5) 

Δ௠௜௡ ൌ 𝑚𝑖𝑛 |𝜆௢
∗ሺ𝑡ሻ  െ 𝜆௭

∗ሺ𝑡ሻ|      𝑧 ൌ 1, . . , 𝑛  (6) 

where 𝜉 is a distinguishing factor and has the value of 0.5 to 
avoid the sharp selection in GCA task and keeps the useful 
features as much as possible [21], [24].  The final grey 
correlation values for different input data is calculated by: 

𝛤௭൫𝜆௢
∗ሺ𝑡ሻ, 𝜆௭

∗ሺ𝑡ሻ൯ ൌ
∑ ஠೥ቀఒ೚
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∗ሺ௧ሻቁ೘

೟సభ

௠
  (7) 

B.  Denoising 

SDAE is used in this paper as a pre-training methodology. 
SDAE which is a type of AE collects its input  𝑋 ∈ ሾ0 , 1ሿ and 
based on the properties of the hidden layers produces the 
outcome 𝐻 ∈ ሾ0 , 1ሿ. The coding equivalent of this procedure 
can be obtained using the following equation: 

 𝐻 ൌ 𝑓ሺ𝑊𝑋 ൅ 𝑏ሻ  (8) 

 In the encoding section, the output of the previous section is 
treated as the input and the remodeled form of the input 𝑋ᇱ ∈
ሾ0 , 1ሿ is created by maintaining the same dimension as follows: 

𝑋ᇱ ൌ 𝑓ሺ𝑊ᇱ𝐻 ൅ 𝑏ᇱሻ  (9)  

Afterward, the difference in the values of the real input and the 
remodeled one should be minimized. An unsupervised mode is 
employed in order to achieve this goal. The loss function (L) 
that needs to be minimized is defined as follow: 

𝐿ሺ𝑋, 𝑋ᇱሻ ൌ ‖𝑋 െ 𝑋ᇱ‖ଶ  (10) 

X X̂ X

H



f f

 ,L X X 
 

 
Fig. 1. The procedure of a typical SDAE. 

X

 

1AE 2AE
Endonding Layer Endonding Layer

3AE
Endonding Layer Logistic regression layer

X 

H1 H2 H3

 
Fig. 2. The structure of an SDAE with three AEs. 

The summary of the SDAE process is illustrated in Fig. 1. As 
shown in this figure, the function 𝜓 stochastically maps the 
input and adds error to the data. Then, another function 
transforms the contaminated data into a hidden layer. At last, 
the reformed version of input is created based on these data. 
This process casts out bad data and supports SDAES’s 
robustness. 
After each independent training of DAEs, all of them are put 
together and trained by the input data in the supervised mode as 
shown in Fig. 2. The purpose of this section is just to eliminate 
input data noise; thus, the input and output data dimension in 
this section are the same. The loss function for fine-tuning is 
considered as the following cross-entropy function: 

𝐿ሺ𝑋, 𝑋ᇱሻ ൌ െ ∑ ሾ𝑋௜ logሺ𝜏௜ሻ ൅ ሺ1 െ 𝑋௜ሻ logሺ1 െ 𝜏௜ሻሿ௡బ
௜ୀଵ   (11) 

where, 

𝜏௜ ൌ
ଵ

ଵା௘௫௣ሺିௐಽೃுା௕ಽೃሻ
  (12) 

More information on cross-entropy function is given in [19].  

C. Dimension Reduction 

DR process is illustrated in Fig. 3. This procedure consists of 
multiple AEs stacked together. Excluding the unnecessary data 
and extracting the main features are the ultimate goals of the 
DR which is recommended for all dataset studies, mainly with 
large dimension input data. In this paper, to prevent overfitting 
and improving SAE performance, the initial weight of each AE 
is determined independently by a Restricted Boltzmann 
Machines (RBMs), based on their proven capacities stated in 
[25]. Reducing the data is a delicate matter, in order to prevent 
excessive data loss, the optimal number of compression layers 
(CLs) and the compression factor (CF) needs to be determined. 
In this paper, as illustrated in Fig. 3(a), the structure of SAE is 
achieved by examining the different arrangement of layers with 
various CFs. The next step is training each AE based on the two 
consecutive layers. This training is done autonomously for each 
AE, and in the final fine-tuning, these AEs come together to be 
trained by the input data in the mini-batch mode as shown in 
Fig. 3(b). The error that defines the optimal structure of the AEs 
in DR task is calculated in this state. 

D. Forecasting 

Going through the denoising and DR process, a data set 
containing the main features of the study is available to estimate 
future prices. A rough-ANN is implemented in this study to 
forecast the EP. Fig. 4 illustrates a rough neuron with its main 
parameters at layer S. Equations defining the relations of these 
parameters are as follows:   



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2933009, IEEE
Transactions on Industrial Informatics

TII-19-1608 5

2 2W 
3 3W 4 4W 4 5

TW 
3 6
TW 

2 7
TW  1 1W 1 8

TW 

Fine-tuning

(a)

1
N

IN
PU

T
2

1
N

N
CF




3
2

N
N

CF




4 3N N CF 
5 4N N CF 

4N

3N2N1N

3W4W4
TW3

TW2
TW 2W 1W

D
ecoder

Encoder

(b)

2
1

N
N

CF




3
2

N
N

CF




1
N

IN
PU

T


4 3N N CF 5
4

N
N

CF




4N
3N2N1N 1

TW

 
 Fig. 3. The overall configuration of the DR strategy: 
 (a) The training process for auto-encoders. (b) Auto-encoders fine-tuning 
process. 
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Fig. 4. Rough neuron structure. 
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Normally, sigmoid activation functions are used in ANNs. 
However, this function can easily get saturated especially 
dealing with large input values.  
Consequently, in this study, a sinusoidal activation function is 
used to circumvent this saturation. Additionally, this function 
has better performance in following abrupt changes in the 
phenomena under study [23]. Back Propagation equations are 
described as follows: 

𝑊ௌሺ𝑘ሻ ൌ 𝑊ௌሺ𝑘 െ 1ሻ െ 𝜂
డாሺ௞ିଵሻ

డௐೄሺ௞ିଵሻ
൅ 𝛾Δ𝑊ௌሺ𝑘 െ 1ሻ (16) 

𝛼ௌሺ𝑘ሻ ൌ 𝛼ௌሺ𝑘 െ 1ሻ െ 𝜂
డாሺ௞ିଵሻ

డఈೄሺ௞ିଵሻ
൅ 𝛾Δ𝛼ௌሺ𝑘 െ 1ሻ  (17) 

𝛽ௌሺ𝑘ሻ ൌ 𝛽ௌሺ𝑘 െ 1ሻ െ 𝜂
డாሺ௞ିଵሻ

డఉೄሺ௞ିଵሻ
൅ 𝛾Δ𝛽ௌሺ𝑘 െ 1ሻ  (18) 

Momentum coefficient 𝛾 is defined between 0 and 1. 

According to (15), if 𝑓ௌାଵ൫𝑊௎
ௌାଵ𝑂ଵ ൅ 𝑏௎

ௌାଵ൯ ൒ 𝑓ௌାଵ൫𝑊௅
ௌାଵ𝑂ଵ ൅

𝑏௅
ௌାଵ൯ሻ, the training process of different parameters of the ANN 

with two rough layers, which is illustrated in Fig. 5, can be seen 
in the Appendix section, part B. The step by step procedure of 
the overall proposed methodology is illustrated in Fig. 6. Each 
step is implemented autonomously, and the results of each 
section are relegated to the next step. For the final training 
procedure, all different parts are stacked together. Deep 
networks are remarkable tools for forecasting problems with 
high intermittent behavior, but with a large number of training 
parameters, they have some shortages such as instability and 
overfitting. To solve this problem, in this study, three 
commonly used techniques in DL concept such as Mini-Batch 
Gradient Descent (MBGD), dropout, and L2 regularization 
algorithms are employed [26], [27].     

IV. NUMERICAL STUDY 

A. Data Description 

The data used in this paper is based on the EP records of the 
province of Ontario, Canada [29]. This province gets its required 
energy from multiple sources that contain sustainable energies, 
such as wind and solar and etc. As stated in [21], the EPF should 
be considered as a “Big Data” problem, and many parameters 
affect this issue. 
 In this regard, the input data (January 1, 2016 to December 30, 
2017 with one-hour time intervals) of different parameters such 
as:  generation power data -nuclear, gas, hydro, wind, solar, 
biofuel, total generation output power (all with the unit of MW)- 
, forecasted EP data -Hour 1 pre-dispatch (H1P),  Hour 2 pre-
dispatch (H2P) and Hour 3 pre-dispatch (H3P) (all are forecasted 
price for one, two and three hours ahead, respectively  with 
$/MWh unit)- , weather condition data –temperature (℃), dew 
point temperature (℃)  real humidity (%), and load data- market 
demand and Ontario demand (both of them based on MW) -, are 
considered in EPF problem.  The GCA result is depicted in Fig. 
7. Based on the GCA results, the parameters with low grey 
correlation grades (less than 0.6) including nuclear, hydro, 
temperature, dew point temperature, real humidity are 
considered as irrelevant data and have been eliminated in this 
study. The resultant correlation factors are justifiable from the 
power system and electricity market point of view as well. Since 
the hydro and nuclear power units are providing the base load 
demand, they do not have the same effect on EP as the other 
power units such as gas units which participate in the peak load 
demands. 
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Fig. 5. Proposed rough NN. 
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Fig. 6. The overall structure of the proposed methodology. 

 

 
 Fig. 7. GCA result. 

The parameters such as temperature, dew point temperature, 
and humidity depend on the regional conditions. Ontario has a 
cold climate which causes the temperature to be somewhat 
constant. Therefore, these parameters also play less significant 
role in the EP. On the other hand, if we had studied data from 
other regions with a greater variety of climate conditions, the 
correlation factors of the mentioned parameters might have 
higher values. In this regard, the EP for each hour of a day in 
2018 is forecasted based on the different parameters data - gas, 
wind, biofuel, total output, H1P, H2P, H3P, market demand, 
and Ontario demand - of the similar hour in the last 14 days 
according to the high grey correlation grades with the target 
data. According to Fig. 6, 140 data is employed for forecasting 
the EP of each hour.  

B. Error Calculation Strategy 

In this study well-known error criteria including the Mean 
Absolute Error (MAE), the Mean Absolute Percentage Error 
(MAPE) and the Root Mean Square Error (RMSE) [14] are 
considered as follows:  

𝑀𝐴𝐸 ൌ
ଵ

௡బ
∑ ሺห𝑌௚෡ െ 𝑌௚หሻ௡బ

௚ୀଵ   (19) 

𝑀𝐴𝑃𝐸 ൌ
ଵ

௡బ
∑ ൬ฬ

௒೒෢ି௒೒

௒೒෢
೘೐ೌ೙

ฬ൰௡బ
௚ୀଵ   (20) 

𝑅𝑀𝑆𝐸 ൌ ට
ଵ

௡బ
∑ ሺห𝑌௚෡ െ 𝑌௚หሻଶ௡బ

௚ୀଵ   (21) 

In addition, R-squared, which is the square of the correlation 
between the target and the forecasted values, is also 
considered. The R-squared range is [0,1] denoting that a higher 
value implies a better forecasting result [30]. 

𝑅ଶ ൌ 1 െ
∑ ൫௒೒ି௒෠೒൯

మ೙బ
೒సభ

∑ ൫௒೒ି௒ത೒൯
మ೙బ

೒సభ

  (22) 

C. Optimum Dimension Reduction Structure 

As mentioned before, one of the main challenges in reducing 
data is determining the number of compression layers (CL) and 
the compression factor (CF). In order to decide which structure 
is the optimum one, four different number of layers were 
examined with different compression factors. For this purpose, 
the day-ahead EPF in 2016 and 2017 are employed. The mean 
value of different error criteria for each structure is presented in 
Table I. According to this table, the best choice is CF=0.85 for 
three compression layer (CL=3). As shown in Fig. 8, by 
increasing the compression (decreasing the CF) the error criteria 
decrease until they reach the saddle point which is the optimum 
point and increases afterward. This enhancement of accuracy is 
the result of omitting unnecessary features and the increments of 
error criteria after the saddle point means losing the vital features 
of data. Based on these results, by increasing the number of CLs 
from 1 layer to 4 layers, the optimum CF has been increased from 
0.75 to 0.95. It should be noted that in implementing the DR 
method, determining the optimal number of CL is very 
important. In this case, the application of DR with four CLs is 
not adequate as it significantly increases the error value rate. 
 This means that the DR structure must be designed based on the 
available data set and that increasing the number of compression 
layers is not always useful. The optimum configurations (for 
CL=1, 2 and 4) are shown in Fig. 9. Among these four different 
CLs, according to Table I and Fig.8, the deep ANN had the best 
performance with three compression layers and CF=0.85.  
Consequently, in the following, this optimal structure is 
employed to forecast a day-head EP in 2018. As stated above, 
data from January 1, 2016, to December 30, 2017, with one-hour 
time intervals consisting 17520 data is applied for training the 
proposed method. Regression figures of training (80% of input 
data with 14016 data set), validation and test (both contain 10% 
of input data with 1752 data set) processes of this structure are 
shown in Fig. 10.  

D. Forecasting Results 

In this study, different types of ANNs (Rough SDAE (R-
SDAE), SDAE, Conventional NN (C-NN)), SVM and Long 
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Short Term Memory (LSTM)  [14], [21], as benchmarking 
data-driven approaches in EPF field, and the hourly forecasted 
EP by  Independent Electricity System Operator (IESO) from 
Ontario power system [29] are employed in order to evaluate 
the proposed methodology i.e. the Dimension Reduction 
Rough SDAE (DR-R-SDAE)  with three CLs and optimal CF 
(0.85). The numerical study is done using MATLAB 9.3 
software on a PC with an Intel Core i7, 3.4 GHz CPU and 16 
GB of RAM. More details about the tested networks are given 
as follows: 
 As stated before, according to the pre-training process by the 
RBMs, for training SDAEs, the smaller learning rate is 
required, so that the information in the trained weights is not 
entirely lost. In this paper, RBM and SDAEs training rate are 
considered as 0.005 and 0.001, respectively. L2 regularization 
rate, dropout rate (probability of retaining a hidden unit in the 
network) are defined as 0.001 and 0.6, respectively. Maximum 
epoch and validation frequency are considered as 1000 and 10, 
respectively. These training parameters are applied in all of the 
ANN-based approaches (DR-R-SDAE, R-SDAE, SDAE, and 
C-NN). In this study, the benchmarking SVM method is 
considered as a least-squares SVM with sigmoid kernel 
function which is a powerful tool in EPF studies. Basic super 
parameters of SVM which have a high effect on SVM 
performance are adjusted with the cross-validation method. 
Furthermore, the benchmarking LSTM method as one of the 
powerful recurrent networks, which has an internal self-looped 
cell has been considered by 20 hidden layers. For more details 
about SVM and LSTM training procedure see [21] and [28] 
respectively. The training procedure of the ANN-based 
methods is done by stochastic gradient descent method which 
is much faster than gradient descent method according to its 
high-frequency updating rate of the training parameters. 
Stochastic gradient descent attempts to find minimums or 
maximums by iteration from some randomly picked training 
examples instead of all the training data set. In this way, the 
error is typically noisier than gradient descent. Given this, the 
stochastic gradient descent can escape shallow local minimum 
points more efficiently in comparison with the gradient 
descent method and results in a more accurate forecast. 
 

 

(a) (b) 

 

(c) 
Fig. 8. Different error criteria variation for various CL and CFs: 

(a) MAE ($/MWh) (b) MAPE (%) (c) RMSE ($/MWh). 
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Fig. 9. Optimal configuration of data reduction for different CLs: (a) CL=1, 
CF=0.75 (b) CL=2, CF=0.8 (c) CL=3, CF= 0.85 (d) CL=4, CF= 0.95. 
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Fig. 10. Training procedure of the proposed method. 
 

Table I. The mean value of different error criterions for different CF. 
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0.95 32.38 9.36 12.37 29.15 8.43 11.15 26.11 7.552 9.91 24.07 6.96 9.06
0.9 31.75 9.18 12.11 28.94 8.37 11.07 18.31 5.29 6.99 30.54 8.83 11.62
0.85 30.70 8.88 11.53 27.73 8.01 10.48 12.97 3.75 5.28 35.50 10.26 13.32
0.8 28.67 8.29 10.64 19.46 5.63 7.29 21.31 6.16 7.94 39.05 11.29 14.59
0.75 28.18 8.15 10.53 22.85 6.61 8.63 24.74 7.15 9.43 41.49 12.00 15.88
0.7 32.20 9.31 12.11 25.44 7.35 9.68 35.50 10.26 13.32 43.12 12.47 16.12
0.65 37.28 10.78 14.24 37.42 10.82 14.04 39.38 11.38 14.60 42.34 12.24 16.13
0.6 39.00 11.28 14.60 39.08 11.30 14.60 42.82 12.38 16.17 46.32 13.39 17.33

 
The computation time of different methods are given in Table II. 
As shown in Table II, in this study, the large number of input 
data (17520×140) is employed for training, validating and 
testing tasks which caused high computational time in 
comparison to the other DL based EPF papers [14]. Fig. 11 and 
Fig.12 show the hourly EPF results for August 30, 2018, and 
November 30, 2018, which are randomly selected dates with 
different fluctuation rate in EP data, respectively. In the same 
manner, for a month time span, the EP for the August 2018 and 
November 2018 with low and high EP spike are also forecasted, 
and the results are shown in Fig. 13 and Fig. 14, respectively.  
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The forecasted results from different methods are shown in 
Table III, and it is evident that DR-R-SDAE, in general, 
outperforms the other methods in a day or a month time span. 
This precision stems from utilizing DR method alongside the 
rough structure, and LSTM is the second best. LSTM is a 
strong tool in time series forecasting which is capable of 
memorizing the long (static) and short (recurrent) terms of 
data, and choosing the useful past terms. In the proposed 
method, the important parameters are selected by GCA, and 
main features are extracted by DR technique. In fact, this 
method accomplishes the LSTM duty in another way. As 
illustrated in the GCA results, different input parameters such 
as generating power data, weather condition data and so on, 
have a high correlation with EP profile, and in this study, the 
input data sequence has a large dimension (140 data in each 
sequence). In this situation, as illustrated by the forecasting 
results in different time spans, feature extraction-based method 
has a better performance than LSTM. Because every 
component of the input data sequence has a different effect and 
in LSTM, all of them are selected or forgotten together, 
however in the proposed method main features are selected 
and extracted with high precision. Furthermore, LSTM has a 
gradient vanishing problem in large dimension input data and 
feature extraction methods are built for solving this situation 
[cite power system]. After LSTM, R-SDAE has a sufficient 
performance; as an example, in November 2018, the SDAE 
without DR and rough structure, the MAPE, MAE, and RMSE 
augmented from 12.698%, 3.097($/MWh), and 
4.343($/MWh) to 16.266% 4.418($/MWh), and 
6.062($/MWh), respectively. Moreover, as shown in Fig. 11, 
12, 13, and 14, the proposed method outperforms the LSTM 
networks in sharp spike points. Indeed, high ability of the 
proposed method in feature extraction task and handling the 
uncertainty, which is achieved by deep auto-encoders and 
rough neurons, is more illustrated in high spike points, and this 
is so imperative in power system operation problems. 
Comparing the error criterions of R-SDAE with SDAE points 
out the rough structure’s effect on forecasting results that can 
improve accuracy by examining data in lower and higher 
bound intervals. Considering these intervals handles the 
uncertainty more effectively. The error criterions of C-NN in 
Table III reveal the influence of reducing the noise of the data 
via SDAE. Input data in this study is derived from diverse 
sources through different origins of noise. Therefore, 
employing the SDAE has an appreciable effect on reducing the 
error of the forecasting results. As shown in Figs. 11 and 12, 
day-ahead EPF is more accurate on August 30, 2018, than 
November 30, 2018. This is because of the smoother variation 
of EP on August 30 than November 30, 2018. On November 
30 the best forecasting result employed by DR-R-SDAE has 
MAPE error equal to 12.69%, whereas, on August 30, DR-R-
SDAE presented the MAPE error equal to 5.62% which is less 
than half of MAPE value on November 30. This is also evident 
in IESO forecasted results as well. It should be mentioned that 
by the proposed method, on November 30 –a day with more 
fluctuation in EP data– the accuracy of EPF result is improved 
compared to IESO forecasted data as its MAPE criterion is 
reduced about 9.55%. As shown in Fig. 14, the extremely large 
price spikes occurred at November 9, 2018.  
 

In this day, EP raised from 14.35 $/MWh to 365.64 $/MWh 
and drops to 33.74 $/MWh in the proceeding hour, which had 
high influence in forecasting results in this month. This might 
have happened based on market players’ behavior. These 
changes were compared to the relevant days of previous years, 
and further investigation of these points revealed that other 
related parameters did not share the drastic changes such as 
price. In the same situation, the forecasting accuracy by IESO, 
SVM and LSTM based on MAPE were 38.30%, 39.97%, and 
33.91%, while our proposed method has improved it to 
30.95%. Indeed, the proposed method decreased forecasting 
error in comparison with other strong benchmark techniques.  
In order to clarify more on this topic, it is better to analyze the 
EPF results for August 2018 which are depicted in Fig. 13. As 
shown in this Figure, the proposed method was able to forecast 
the EP more correctly because there were fewer unprecedented 
peaks in this month. As stated in Table III, the values of the 
error criteria in August 2018 are also lower than those of 
November 2018, which supports this assertion. 

Table II. The computational time for different methods. 

Algorithms DR-R-
SDAE LSTM R-SDAE SDAE C-NN SVM 

Time (S) 48.325 32.559 30.727 28.682 23.641 31.365 
 
Table III. Error criteria for different methods on selected days - 30 August, 30 

November. – and selected months – August and November. 2018. 
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DR-R-
SDAE 5.62 1.59 1.95 12.69 3.09 4.34 12.96 3.75 5.28 30.95 7.31 16.32

R-
SDAE 8.16 2.30 2.77 13.18 3.77 5.27 14.70 4.25 5.45 34.67 7.75 17.29

SDAE 10.26 2.90 3.88 16.26 4.41 6.06 17.80 5.14 6.71 34.79 8.19 17.84

C-NN 12.90 3.65 4.28 19.27 4.88 6.68 19.55 5.65 7.40 37.97 8.97 18.23

LSTM 8.02 2.09 2.41 13.03 3.22 5.01 14.10 4.08 5.39 33.91 7.63 16.87

SVM 11.92 3.37 4.70 22.81 6.31 8.34 24.58 7.10 9.16 39.97 9.44 20.36

IESO 11.60 3.28 3.93 22.24 5.98 7.90 23.31 6.74 10.79 38.30 9.05 18.56

 
Fig. 11. Forecasting results for different methods on August 30, 2018. 

 

Fig. 12. Forecasting results for different methods on November 30, 2018.
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(a) 

 
(b) 

Fig. 13. Forecasting results for different methods for August 2018; (a): DR-R-SDAE, IESO, LSTM; (b): R-SDAE, SDAE, SVM, C-NN. 

 
(a) 

 
(b) 

Fig. 14. Forecasting results for different methods for November 2018; (a): DR-R-SDAE, IESO, LSTM; (b): R-SDAE, SDAE, SVM, C-NN.

 

Table IV. Error criteria values for different methods on selected days - 30 
March, 30 July. – and selected months – March and July. 2018. 
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DR-R-
SDAE 11.68 2.08 2.99 5.64 0.83 1.17 17.10 3.18 4.76 7.66 1.13 1.58

R-
SDAE 13.32 2.39 3.68 6.56 0.97 1.38 20.74 3.72 5.57 10.33 1.53 2.06

SDAE 14.46 2.59 4.09 7.95 1.18 1.67 21.38 3.84 5.80 11.98 1.77 2.43

C-NN 18.31 3.27 5.15 9.03 1.33 1.83 24.86 4.46 6.64 16.12 2.39 3.25

LSTM 12.91 2.31 3.58 6.11 0.90 1.28 19.65 3.53 5.33 8.31 1.23 1.71

SVM 17.68 3.22 4.89 10.05 1.49 2.03 26.10 4.69 7.10 16.47 2.44 3.28

IESO 17.17 3.08 4.63 10.41 1.54 2.16 25.77 4.63 6.97 15.95 2.36 3.25

 

To prove the performance of the proposed method, another 
forecasting test is implemented in July and March, 2018, and the 
forecasting results are presented in Table IV. As the forecasting 
results show, the proposed method has high accuracy and 
outperforms the other approaches. 
To investigate the robustness of the proposed method with low 
input data parameters, another forecasting task is also 
considered. In this study, each hour of a day in 2018 is forecasted 
based on the different input parameters data - gas, wind, biofuel, 
total output, H1P, H2P, H3P, market demand, and Ontario 
demand - of the similar hour in the last 14 days. If we don’t have 
this information about our case study, we can employ the similar 
hour of the last 30 days for low input data parameters (just 
electricity price and load demand of the similar hour of the last 
30 days).  
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To verify the robustness of the proposed method with low 
input data parameters, the forecasting result on November 9, 
2018 (a day with sharp spikes), with low input parameters in 
comparison with LSTM (the best benchmark approach) 
network result is shown in Fig. 15. Different error criteria of 
low and full input parameters are presented in Table V. 
Based on the numerical results; the proposed method shows 
more robustness with low input parameters in comparison 
with LSTM method. Indeed, based on the MAPE criterion, 
the proposed method just losses 4.23% in the accuracy of the 
forecasting results but the LSTM losses 8.4%, which implies 
the acceptable performance of the proposed method with low 
input parameters. This happens because of the high ability of 
the proposed method in feature extraction of the large 
dimension data sets and handling the uncertainty. 
Accordingly, to improve the robustness of the proposed 
method in case studies with low input parameters, we can 
employ more previous data of the available parameters based 
on the high ability of the proposed method in feature 
extraction task with large dimension data sets. The 
superiority of the proposed method to LSTM network is 
more illustrated on November 9, 2018, so that DR-R-SDAE 
method can follow the sharp spike points more precisely in 
comparison with LSTM. 

 Finally, another comparison based on R-square as a 
performance metric is calculated for August 30, 2018 –
random day-ahead forecasting – and the results are shown in 
Fig. 16. In Fig. 16, a higher R-squared specifies the better-
forecasted EP which moves more relatively in line with the 
real data. The R-squared value defines the relationship 
between forecasted EP and real EP. As the results show, the 
proposed method, significantly increased the R-squared, and 
it is greater than other approaches which validates the 
efficiency of the proposed method. The findings illustrate the 
effects of the DR task with optimal DR rate and rough 
neuron-based networks on decreasing the forecasting error in 
daily and monthly time spans. DR and rough neuron-based 
networks handle the feature extraction and data uncertainty 
with acceptable performance, respectively. 

Table V. Error criteria values for different input parameters  
on November 9, 2018. 

Case Study 

Full input data parameters 
including gas, wind, biofuel, total 
output, H1P, H2P, H3P, market 
demand, and Ontario demand 

Low input data parameters 
including H1P, H2P, H3P, market 

demand, and Ontario demand 

Methods MAPE 
(%) 

MAE 
($/MWh) 

RMSE 
($/MWh) 

MAPE 
(%) 

MAE 
($/MWh)

RMSE 
($/MWh)

DR-R-SDAE 32.38 9.36 12.37 29.15 8.43 11.15 
LSTM 31.75 9.18 12.11 28.94 8.37 11.07 

 

 
Fig. 15. Forecasting results for different input parameters  
on November 9, 2018. 
 

 

• EP Data                         - - - - - -   Real EP Data = Forecasted EP Data

 
DR-R-SDAE: R^2=0.9568 R-SDAE: R^2=0.9073 SDAE: R^2=0.8039

 
C-NN: R^2=0.6478 LSTM: R^2=0.92 SVM: R^2=0.7723

 
IESO: R^2=0.7745 

Fig. 16. R-squared values for different approaches on August 30, 2018.

V.  CONCLUSION  
A short-term Electricity Price Forecasting (EPF) problem has 
been studied in this paper. Previous records of electricity 
price, load demands, different power sources data are 
considered as input data. In this regard, to select effective 
parameters in EPF, Grey correlation analysis is applied which 
finds the vital parameters in EPF task and improves the 
forecasting accuracy. Then, data from different sources are 
denoised via stacked denoising auto-encoders in order to 
eliminate the noise deficiencies. To enhance the accuracy, a 
feature extraction method based on Dimension Reduction 
(DR) strategy is implemented to obtain the crucial features of 
the phenomena under study. As the numerical results show, 
increasing compression factor is not always adequate, and for 
each case study, the optimal configuration of the DR method 
should be determined. It should be mentioned that over DR 
will have a negative impact on forecasting task. To validate 
the proposed method, in addition to the different ANN-based 
methods, EPF results are compared with independent 
electricity system operator (IESO) forecasting data, and 
benchmarking methods SVM and LSTM. As illustrated in 
numerical results, the proposed method outperforms these 
approaches based on different performance metric criterions 
which shows the robustness of this technique. The numerical 
results point out the impact of feature extraction tool and 
rough neurons which improve the forecasting results about 6-
12 % and 3-8%, respectively, in comparison to IESO 
forecasting results. This improvement implies the superiority 
of the proposed approach. This approach is recommended to 
other studies with a large volume of input data. For future 
work, it is suggested to employ the proposed method in 
forecasting the renewable energy resources power and load 
demand, and find the accurate forecasting effects in power 
system optimal dispatch problem. 
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APPENDIX 
A. Deep learning method Pseudo-code 
 
Training procedure of Deep artificial neural network is 
 presented by pseudo-code as follows: 
 

Algorithm  
Deep learning by back-propagation algorithm 
 1: Begin operation Back-Propagation 
 2:    while validation criterion is not satisfied do 
 3:         for epoch = 1 to 𝑒𝑝𝑜𝑐ℎ௠௔௫ do 
 4:              for each input sequence X do 
 5:                    divide data set in mini-batches 
 6:                    dropout neurons 
 7:                    forward propagation 

 8:                    calculate loss function for each sequence with 
                   momentum and L2 regulation coefficients

 9:                    for S = 1 to 𝑁௟ do //with 𝑁௟ number of hidden       
layers 

10:                          back-propagate error on the hidden layer S
11:                    end for 
12:                    calculate the updated weights of the output   

layer 
13:                    for i = 1 to 𝑁௟ do 
14:                          update weights of the hidden layer i 
15:                    end for 
16:               end for 
17:                     for each input sequence of validation part do 
18:                           calculate loss function 
19:                     end for 
20:         end for 
21:    end while 
22: end operation 

 
B. Training formulation of rough network 

 
The training procedure of the rough neuron-based network  
with two hidden layers is defined as follows: 
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