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Abstract—Battery calendar aging prediction is of ex-
treme importance for developing durable electric vehicles.
This article derives machine learning-enabled calendar ag-
ing prediction for lithium-ion batteries. Specifically, the
Gaussian process regression (GPR) technique is employed
to capture the underlying mapping among capacity, stor-
age temperature, and state-of-charge. By modifying the
isotropic kernel function with an automatic relevance de-
termination (ARD) structure, high relevant input features
can be effectively extracted to improve prediction accuracy
and robustness. Experimental battery calendar aging data
from nine storage cases are utilized for model training,
validation, and comparison, which is more meaningful and
practical than using the data from a single condition. Illus-
trative results demonstrate that the proposed GPR model
with ARD Matern32 (M32) kernel outperforms other counter-
parts and can achieve reliable prediction results for all stor-
age cases. Even for the partial-data training test, multistep
prediction test, and accelerated aging training test, the pro-
posed ARD-based GPR model is still capable of excavating
the useful features, therefore offering good generalization
ability and accurate prediction results for calendar aging
under various storage conditions. This is the first-known
data-driven application that utilizes the GPR with ARD
kernel to perform battery calendar aging prognosis.

Index Terms—Battery health, calendar aging predic-
tion, data-driven model, Gaussian process regression,
lithium-ion batteries.
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I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries are the promising can-
didates for electric vehicle (EV) applications, owing to

their impressive features such as high energy density, high
efficiency, and environmental friendliness [1]. However, reliable
calendar aging prediction is still a bottleneck for the performance
enhancement of EVs. In real automotive applications, Li-ion
batteries generally degrade with the calendar and cyclic modes.
Considering that more than 75% of battery life is spent under
parking mode for EVs [2], calendar aging prediction therefore
becomes a prerequisite for battery service life diagnosis.

Calendar aging for most Li-ion batteries is mainly caused by
the growth of solid electrolyte interface (SEI) during storage
[3]. Specifically, when a battery is stored, the reduction of its
electrolyte solvents such as ethylene carbonate would cause
the formation of Li-based products, further resulting in the
generation of SEI on the anode particle of battery [4]. In such
cases, Li-ion battery capacity would decrease over time [5].
The corresponding capacity aging rate is highly dependent on
several key factors including the storage temperature and battery
state-of-charge (SOC) [6]. Therefore, a key but challenging issue
for calendar aging prediction is to simultaneously take these
factors into account. It is vital to develop suitable models to
capture capacity degradation dynamics under various storage
conditions.

Several physics-based models have been reported in the lit-
erature to explain battery calendar aging behaviors [7], [8].
Although electrochemical dynamics of batteries during storage
have been analyzed in the simulation environment, these models
are highly time-consuming and complex to parametrize, making
them overly expensive for real-time calendar aging prediction
on a long period scale.

To overcome the above challenges, calendar aging prediction
approaches based on semiempirical models have been designed.
For instance, Schmalstieg et al. [9] proposed an Arrhenius-based
semiempirical model to capture calendar cell aging. Petit et al.
[10] developed an empirical capacity loss model to evaluate the
effects of SOC and temperature on storage lifetime of Li-ion bat-
teries. In [11], instead of using Arrhenius acceleration model, a
semiempirical approach based on the Eyring acceleration model
was adopted to predict battery calendar aging, while the SOC
drifting was also taken into account. By considering the effects
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of temperature and storage conditions, De Hoog et al. [12] pro-
posed a semiempirical combined model to estimate the calendar
lifetime for a nickel-manganese-cobalt oxide battery. In [13],
by taking the initial surface layer caused by cell formation
into account, an extended semiempirical model was proposed
to improve the calendar aging predictive ability. These referred
works belong to open-loop models without strong generalization
abilities; in a way, their performance highly depends on the
quality of test experiments.

Data-driven models, which are free of assuming any mecha-
nism a priori, are also gaining increasing attention in the battery
state-of-health (SOH) estimation and remaining useful life di-
agnosis [14]. Different intelligent techniques such as support
vector regression [15], [16], Bayesian prediction [17], [18],
and artificial neural network [19]–[21] have been successfully
applied to build data-driven models for battery cyclic aging
prediction. On one hand, some review papers have summarized
these state-of-the-art applications [22], [23], concluding that
several limitations still exist as: 1) data-driven approaches are
mainly used to capture battery cyclic aging states but very
few attempts have been done for calendar aging diagnosis.
2) Most publications fit the model on aging data obtained under
constant operating conditions, ignoring various cases of tem-
perature and SOC. Such models are infeasible for predicting
capacity under different conditions. On the other hand, in a
previous publication, a critical review on various data-driven
models in battery aging domain was presented, in which the
Gaussian process regression (GPR) is identified as one of the
most powerful techniques. Detailed comparisons for different
machine learning techniques are referred to Table 5 of [14] and
the corresponding discussions. In fact, beyond the performance
of simple structure and computationally acceptable predictions,
GPRs enjoy the significant merits of being nonparametric and
able to consider the uncertainty of predicted values. Through for-
mulating specific input features, GPR-based models have been
applied successfully in both academic and industrial domains
[24]–[26]. However, to the best of our knowledge, there is still
a lack of researches by using GPR in battery calendar aging
prediction domain.

Besides, most existing works just use single conventional
kernels to develop their GPR techniques without considering
the correlations of multidimensional input variables. In the
light of this, it could be a promising way through developing
an improved GPR technique with the multidimensional kernel
structure to capture the battery capacity degradation dynamics
under different temperature and SOC storage conditions.

Based on the above discussions, this article is concerned with
machine learning-enabled calendar aging prediction for Li-ion
batteries, where both the corresponding storage temperature and
battery SOC can be taken into account simultaneously. Several
key original contributions are made in this article. First, nine
cases of experimental calendar aging data are collected under
various storage temperatures and SOC levels over 480 days,
constituting a well-rounded database to train and validate the cal-
endar aging model. Second, because the battery calendar aging
involving local fluctuations over storage time is a highly nonlin-
ear process, a framework based on the GPR model is proposed to

Fig. 1. Calendar aging test equipment.

efficiently capture the capacity degradation dynamics with reli-
able confidence ranges. Third, due to the input features involving
storage temperature and cell SOC, the isotropic kernel function
of GPR is modified with an automatic relevance determination
(ARD) structure, which brings the benefits that irrelevant inputs
can be removed by fixing large length scales. Meanwhile, various
predictors can be formulated to improve prediction accuracy
and robustness. Finally, based on our dataset, the prediction
performance of our proposed GPR model is investigated in terms
of different kernel functions, and compared with a regression
calendar-life (RCL) model. This is the first known data-driven
application by utilizing GPR with ARD kernel to handle bat-
tery calendar aging predictions. Obviously, due to mechanism-
free characteristics, the proposed GPR+ARD model can be
readily extendable to other battery types for calendar aging
prognosis.

The rest of this article is organized as follows. Section
II presents the calendar aging experiments and the collected
dataset. Section III introduces the developed model framework
and several key quantitative metrics, followed by the description
of ARD-based GPR model. Section IV analyzes the comparison
and verification results. Finally, Section V concludes this article.

II. CALENDAR AGING TEST

Fig. 1 illustrates the equipment used for conducting the
battery calendar aging tests under different conditions. The
cells were stored in the Votsch VT3050 Thermal Chambers,
and operated by the Bitrode MVC 16-100-5 Cell Cyclers. The
generated battery data were monitored and stored by a computer.
Commercial Panasonic NCRBD batteries from a commercial
automotive company were the cells used to study calendar aging
characteristics of Li-ion batteries. The battery has a 3Ah nominal
capacity, 2.5 V lower cut-off voltage, and 4.2 V upper cut-off
voltage. Because the rate of degradation can be minimized
through keeping the SOC at a low or medium level and lowering
the battery temperature [27], all cells are stored at 10 ◦C and
moderate 50% SOC prior to any tests.

The calendar aging test was performed under various storage
temperatures (10 ◦C, 25 ◦C, and 45 ◦C) and SOC levels (20%,
50%, and 90%) for a storage time of 480 days. All batteries
were set in the temperature chambers with an open-circuit status
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Fig. 2. OCV–SOC curve for the tested NCRBD battery.

Fig. 3. Calendar aging dataset for different storage conditions.

during storage. For each storage temperature and SOC, three
cells were studied to obtain the average battery capacity and
minimize any battery-to-battery discrepancies.

Periodic check-ups were performed every 30 days to obtain
the capacity information during storage. For all tests, 1 C-rate
is equal to 3 A. At each check-up, the temperature chambers
were set to 25 ◦C. Each cell was then charged by a constant-
current constant-voltage (CC-CV) pattern with 1/2 C-rate in the
CC phase until the terminal voltage reached 4.2 V, followed
by a CV phase until the current dropped below 1/10 C-rate.
After resting for 3 h, the cells were discharged by a CC pattern
with 1/3 C-rate until the lower cut-off voltage of 2.5 V. The
average discharge capacity (over the three cells) was selected as
the battery capacity for each condition. Before calibrating the
SOC of cells, CC-CV pattern would be implemented again to
recharge all batteries to their full-charging states. After another
3 h rest period, the batteries were discharged to their specified
SOC setpoints by a well-controlled coulomb counting method.
Fig. 2 illustrates the open-circuit voltage (OCV)–SOC curve for
our adopted NCRBD battery. The OCV–SOC points at which the
batteries were stored are also highlighted with red. Subsequently,
each temperature chamber was readjusted to its specified storage
condition again.

Following this procedure, the calendar aging dataset that
contains nine storage cases was obtained, as shown in Fig. 3. Five
cases (Case 1, Case 3, Case 5, Case 7, and Case 9) are labeled as
“Group 1” and another four cases (Case 2, Case 4, Case 6, and
Case 8) are labeled as “Group 2.” Detailed capacity aging curves
with the standard deviations versus time for various storage
conditions are illustrated in Fig. 4. Several of the capacity fade
trends illustrate an initial rapid capacity fade followed by a more
linear decrease. This phenomenon is attributed to the presence
of excess anode electrode area in comparison to the cathode
electrode area. Known as anode “overhang” in literature [28],

Fig. 4. Capacity degradations in calendar aging with standard
deviations versus storage hours for different cases.

TABLE I
INITIAL BATTERY CAPACITY VALUES FOR DIFFERENT CASES

[29], an outflow of Li-ions can occur from the active regions
of the anode to its excess passive regions, leading to the initial
rapid capacity fade. The subsequent linear capacity fade is then
attributed to the irreversible capacity fade due to SEI growth.

The initial battery capacities Cini for these cases are all
different from each other, as described in Table I. It can be also
seen that the initial measured capacities do not start from the
nominal capacity of cell, which is a practical and likely scenario
to occur.

III. TECHNIQUE

This section elaborates the modeling methodology as well as
the corresponding quantitative metrics. Additionally, the fun-
damentals of GPR technique with ARD kernel are presented,
followed by a brief description of a RCL model for comparison
purposes.

A. Model Development and Quantitative Metrics

On the basis of the tested calendar aging dataset, machine
learning-based techniques can be developed to capture capacity
degradation dynamics with various storage conditions. Com-
pared with the existing data-driven models that normally con-
sider just capacity information, an innovative model structure,
which also takes both storage temperature term and battery SOC
term into account, is developed for calendar aging prediction, as
shown in Fig. 5. This model framework can be mainly divided
into two parts. For the prediction of next capacity point, output
Csto(t+ 1) can be predicted after using GPR to learn the under-
lying mappings among all input terms including the historical
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Fig. 5. Model framework for calendar aging prediction.

capacity data vector [Csto(t− k), . . ., Csto(t)], storage SOC
level SOCsto, and temperature Tsto. In GPR, these mappings are
reflected within the covariance functions. Detailed pseudo-code
of this mapping can be found in Section II of [30]. For the
multistep prediction, as illustrated in the green dashed line of
Fig. 5, an iteration process that uses the previously predicted
capacity as the next input to further predict new capacity value
is conducted until the jth capacity value is achieved. Here j
and k represent the horizons of future and previous calendar
capacities, respectively. In order to use our collected dataset and
verify the prediction performance of the proposed model, the
capacity prediction in this article is conducted in steps of 30 days
(720 h) for a total time duration of 480 days (11 520 h). Through
a trial-and-error method, the case of “k = 2” is selected due to
a good trade-off between computational effort and prediction
accuracy.

After constructing the proper input–target pairs from the
battery calendar aging dataset, the GPR technique is employed
to study the potential mapping mechanism, giving rise to the
capacity prediction model that considers various storage con-
ditions. Based on our collected dataset as shown in Fig. 3, in
order to ensure enough aging information can be learned for pure
machine-learning techniques, the dataset from “Group 1” (green
cases) that covers all temperatures and SOCs is applied for model
training purpose. After training, the dataset from “Group 2”
(yellow cases) is used to verify the effectiveness of the proposed
model.

Moreover, to evaluate the prediction performance of the data-
driven model, several key quantitative metrics are adopted in this
article [31]. Here, N is the total number of predicted points, yj
and ỹj stand for each actual capacity data and each predicted
value, respectively.

1) Maximum absolute error (MAE): By defining as (1), MAE
is used to illustrate the maximum difference between the
predicted and real test values. The larger the MAE values,
the poorer the predicted accuracy is [31].

MAE = max
1≤j≤n

|yj − ỹj | . (1)

2) Root-mean-square-error (RMSE): RMSE is another
widely used metric to measure the overall difference
between the predicted values and real test values. By

defining as (2), the closer RMSE reaches to 0, the better
the prediction accuracy is achieved [31].

RMSE =

√
1
N

∑N

j=1
(yj − ỹj)

2

. (2)

3) Fit-goodness (R2): R2 is defined by (3) to measure the
match quality of a model to the real test data [32]

R2 = 1 −
∑N

j=1 (yj − ỹj)
2

∑N
j=1 (yj − ȳ)

2 (3)

where ȳ is the mean of the predicted values. It is evident
that as R2 approaches 1, the corresponding model well
describes the variability of the target class.

4) Calibration score (CS): By defining as (4), CS reflects
the frequency of real data lying within the obtained
confidence range [24]

CS =
1
N

N∑
j=1

[|yj − ỹj | < 2σ]I (4)

where [·]I represents the Iverson bracket. For a GPR model,
95.4% is a general confidence range with the interval corre-
sponding to ±2σ [24]. Therefore, the ideal CS should get close
to 0.954: be less or larger than this value indicates that the de-
veloped model is overconfident or underconfident, respectively.

B. GPR Technique With ARD Kernel Structure

Derived from the Bayesian framework, the GPR is able to
undertake nonparametric regression with the Gaussian process.
By defining the mean function m(i) and covariance function
κ(i, i

′
) of a real process f(i) as{

m(i) = E (f(i))

κ
(
i, i

′)
= E

[
(m(i)− f(i))

(
m(i

′
)− f(i

′
)
)] . (5)

The probability distributions of GPR can be specified by [30]

f(i) ∼ GPR
(
m(i), κ

(
i, i

′
))

. (6)

Supposing that the same Gaussian distribution exists between
the training set i and the new dataset i′, then the corresponding
output y′ can be calculated by the conditional distribution as
[24], [33]

p (y′ |i, y, i′ ) = N (y′ |ȳ′ , cov (y′)) (7)

with {
ȳ′ = κ(i, i′)T [κ(i, i)]−1y

cov (y′) = κ (i,′ i′)− κ(i, i′)T [κ(i, i)]−1κ (i, i′)
(8)

where y′, ȳ′, and cov(y′) are the GPR posterior prediction, its
corresponding mean and covariance, respectively.N() indicates
a normal distribution; κ(i, i), κ(i,′ i′), and κ(i, i′) are the co-
variance matrices between just training inputs, just validation
inputs, as well as training and validation inputs, respectively;
y denotes the training output vector. It should be known that
the uncertainty quantification of GPR in this article is actually
the confidence boundaries to reflect the “scope compliance”
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uncertainty of predicted values. This uncertainty is caused by
differences between the modeled context and the application
context, which is not the same as the standard deviations of
measurements [30].

The performance of GPR is fully determined by its m(i)
and κ(i, i

′
), indicating that the corresponding kernel function

must be selected and learned carefully from the training dataset.
Among various kernel types, several simple but effective kernel
functions are particularly noteworthy.

Squared-exponential (SE) function is a more widely used
kernel function given as [30]

κSE

(
i, i

′
)
= σ2

SE exp

[
−(

i− i
′)2

2l2SE

]
(9)

where σSE and lSE are hyperparameters to control the amplitude
and length scales. To some extent, SE kernel belongs to a
stationary-type kernel in that the correlations between different
points are purely affected by the term i− i

′
, leading to a smooth

distribution. This would be too strict for capacity degradation
data with many local fluctuations; therefore, an alternative is the
Matern32 (M32) kernel function as [30]

κM32

(
i, i

′
)
= σ2

M32

[
1 +

√
3
(
i− i

′)
lM32

]
exp

[
−
√

3
(
i− i

′)
lM32

]

(10)

where σM32 and lM32 represent the hyperparameters to control
the function amplitude and smoothness, respectively.

In practice, due to the limited capture ability of the SE func-
tion and M32 function, these isotropic kernels would provide
unreliable predictive results for nonlinear mapping that involves
multidimensional input variables. For the calendar aging model,
the inputs should not only contain the capacity terms, but also
involve the storage temperature and cell SOC. In order to extract
these features and improve accuracy, the isotropic SE and M32
kernels are modified with the ARD structure [34], as denoted by
(11) and (12).{

κSE∼ARD(i, i
′
) = σ2

SE exp[− 1
2r]

κM32∼ARD(i, i
′
) = σ2

M32(1 +
√

3r) exp(−√
3r)

(11)

with

r =

∥∥iT − i
′
T

∥∥2

l2T
+

∥∥iSOC − i
′
SOC

∥∥2

l2SOC

+
k∑

C=0

∥∥iC − i
′
C

∥∥2

l2C
(12)

where hyperparameters lT , lSOC, and lC determine the relevan-
cies of temperature, SOC, and capacities inputs with respect
to the regression results, respectively. Generally, a large value
leads to a low relevancy. For GPR, the “learning” implies the
optimization of hyperparameters within the covariance function,
using the training dataset. In this article, a standard gradient
descent optimizer is used to fit the hyperparameters of GPR
through maximizing the log marginal likelihood [30]. Here the
threshold of gradient descent optimizer is 2 × e−5, which is
defined by Matlab GPR toolbox.

TABLE II
IDENTIFIED PARAMETERS FOR RCL MODEL

Therefore, ARD structure can be seen as a powerful tool for
input features extraction. By using the ARD kernel for calen-
dar aging prediction, irrelevant input features among capacity,
storage temperature, and SOC would be effectively removed by
fixing large length scales for them, yielding a sparse and explana-
tory subset of features. Besides, various predictors with different
length scales are generated to improve prediction accuracy and
robustness.

C. Regression Calendar-Life Model

In order to demonstrate the effectiveness of the proposed
GPR+ARD model, a simplified RCL model is also adopted and
compared. This RCL model is actually a typical semiempirical
model which has been applied in publication [11]. Generally,
the capacity lossΔQ during storage is expressed as a function of
the battery SOC SOCsto, storage temperature Tsto, and storage
time duration t as [11]

ΔQ = f (SOCsto, Tsto, t) . (13)

Then, (13) can be simplified by assuming decoupling. First,
both battery SOC and Ts versus time, implying that the calendar
degradation trend is similar over time and can be shaped by a
coefficient as [11]

ΔQ = C (SOCsto, Tsto) t
p. (14)

In the literature, the shaping coefficient C(SOCsto, Tsto) is
usually assumed to follow the Arrenhius relation, allowing the
SOCsto and Tsto to be decoupled as [11]

C (SOCsto, Tsto) = A(z) exp

[
−Ea(SOCsto)

kTsto

]
. (15)

It is noteworthy that the activation energy, denotedEa in (15),
could be approximated by an affine linear dependence of SOC
[11], as expressed in (16)

ΔQ=α1 exp [α2 · SOCsto] exp [(α3 · SOCsto+α4)/Tsto] t
p.

(16)

For this RCL model, input parameters include the storage
SOC, temperature, and time duration. Following the same
datasets as GPR, all data from “Group 1” (green cases) are used
to train the RCL model, while all data from “Group 2” (yellow
cases) are used to validate the trained RCL model. In this article,
five parameters (α1, α2, α3, α4, and p) require to be identified.
An advanced heuristic method named biogeography-based op-
timization (BBO) is adopted to calculate these parameters by
minimizing the RMSE between the predicted values and the real
test data through 20 independent runs. More details regarding
the BBO technique and the identification procedure can be found
in [35]. The corresponding identified parameters are shown in
Table II.
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Fig. 6. Training results by using different kernel functions for Case 5
data. (a) SE. (b) M32. (c) ARD+SE. (d) ARD+M32.

IV. RESULTS AND DISCUSSIONS

A. Performance Comparisons

In this subsection, two comparisons are first conducted to
quantify the improvement by using GPR+ARD model for
calendar aging prediction.

1) Comparisons of Various Kernel Functions: To evaluate
the performance of different kernel functions in the calendar ag-
ing prediction domain, four covariance functions, including solo
SE, solo M32, SE with ARD kernel (ARD+SE), and M32 with
ARD kernel (ARD+M32), are compared with respect to their
training and prediction performance. The initial values of all
GPR models’ hyperparameters are set through using MATLAB
GPR toolbox, and defined as follows: for the solo SE and M32
kernels, σSE = σM32 = 0.1, lSE = lM32 = 2; for the ARD+SE
and ARD+M32 kernels, σSE = σM32 = 0.1, lT = lSOC = 2,
lc = 1. Here, Case 5 with the worst training results and Case 6
with the largest one-step prediction errors are specified for
performance comparisons.

Fig. 6 illustrates the training results by using different kernel
functions for Case 5 data. It is evident that experimental capacity
presents a nonlinear declining trend during storage with 0.5 SOC
and 25◦C temperature. Although solo SE function can capture
the overall degradation trend with the largest confidence range,
some points are still mismatched especially at beginning. After
modifying SE with the ARD structure, as shown in Fig. 6(c),
the training performance can be effectively improved. Here the
MAE for ARD+SE case is 0.0091, which is 33.1% less than that
at solo SE case. For solo M32 and ARD+M32 kernels, it seems
that better training results are obtained for both the cases. After
using the ARD structure, the MAE for ARD+M32 case becomes
0.0078, which is 8.3% less than that of the solo M32 case. These
satisfactory training results are mainly due to the variable length
scales of the ARD structure. We can conclude that with the
same calendar aging dataset, the training performance can be
improved by using ARD-based kernel functions.

After training, the GPR models with different kernel functions
are applied to predict the future capacity in different storage
conditions. Fig. 7 and Table III illustrate the prediction results

Fig. 7. Prediction results by using different kernel functions for Case 6
data. (a) SE. (b) M32. (c) ARD+SE. (d) ARD+M32.

TABLE III
PREDICTION QUANTITATIVE METRICS FOR DIFFERENT KERNELS

and the corresponding quantitative metrics for Case 6 data. It
can be observed that by using solo SE kernel, although the
obtained 95% confidence range almost covers the overall degra-
dation trend, the mean prediction values still mismatch the real
experimental data in most time points (here the CS and RMSE
values are 0.929 and 0.0100, respectively). For solo M32 kernel,
the prediction values are all lower than the actual values (here
MAE, RMSE, and R2 become the worst ones as 0.0300, 0.0228,
and 0.927, respectively). Besides, the corresponding 95% con-
fidence range distributes in a wide region, implying that high
uncertainty is achieved in this case. These prediction failures
are mainly caused by the overfitting problem, implying the poor
generalization ability of solo kernel structure. In comparison,
the predicted values get closer to the real capacity data by using
the ARD-based SE kernel, indicating the effectiveness of ARD
structure. But several mismatch points still exist, especially after
8000 h points for this case, which means the SE kernel cannot
capture the overall capacity degradation dynamics. In Fig. 7(d),
by using the ARD-based M32 kernel, the capacity trend is well
captured as desired. Quantitatively, the RMSE for Case 6 data
here is just 0.0054, which is 76.3% and 34.1% less than the
solo M32 case and ARD+SE case, respectively. Besides, the
95% confidence range distributes in a narrow region for such
a case, indicating a high credibility for the prediction results.
This satisfactory performance is caused by the strong feature
extraction abilities of ARD and high robustness of M32 kernel.
Accordingly, ARD-based M32 kernel is selected for predicting
calendar aging in the following studies.

2) Comparisons of Training Results for GPR and RCL
Models: Next, in order to further evaluate the effectiveness of



LIU et al.: GAUSSIAN PROCESS REGRESSION WITH AUTOMATIC RELEVANCE DETERMINATION KERNEL 3773

Fig. 8. Comparisons of training results by using GPR model and RCL
model. (a) Case 1. (b) Case 3. (c) Case 7. (d) Case 9.

TABLE IV
QUANTITATIVE TRAINING METRICS FOR GPR MODEL AND RCL MODEL

the GPR model for calendar aging prediction, the RCL model is
used as a comparison. Fig. 8 and Table IV illustrate the training
results and the corresponding quantitative metrics for different
storage conditions, respectively. It is worth noticing that the RCL
model gives a general trend of capacity aging without the direct
uncertainty quantification for the predicted values. Even for the
best fitting results obtained under 0.2 SOC and 10 ◦C storage
temperature, the MAE is larger than those of GPR model, respec-
tively. For the remaining three cases of “Group 2” validation, the
corresponding fitting results also present large differences with
the measured data, implying that this RCL model is inadequate
to capture capacity degradation of our dataset case. The main
reason that makes RCL model bad would be the unrecorded
initial capacity fading for such dataset. In comparison, by using
the ARD-based GPR model, both the overall capacity decline
trend and local nonlinear fluctuations are well fitted as desired.
From Table IV, the MAE and RMSE for all cases by using GPR
model are within 0.005 and 0.0012, respectively. Moreover, the
CS values are all equal to 0.954, indicating the high training
accuracy and good generalization ability by using our proposed
GPR+ARD data-driven model.

B. Full-Data Training Results of ARD+M32

Fig. 9 and Table V present the prediction results and the corre-
sponding quantitative metrics for “Group 2” cases after full-data
training based on the “Group 1” cases. It can be seen that the
predicted capacity values for all cases match the actual data
well. The trained ARD-based GPR model captures the overall

Fig. 9. Prediction results by using full data from “Group 1” cases as
the training set. (a) Case 2. (b) Case 4. (c) Case 6. (d) Case 8.

TABLE V
PREDICTION QUANTITATIVE METRICS AFTER FULL-DATA TRAINING

capacity degradation trends well as the RMSE of all predicted
samples are less than 0.006. Besides, among all samples, the
maximum MAE value is 0.0122, obtained for Case 6 data.
This is mainly caused by the insufficient training data as only
Case 5 covers 0.5 SOC condition. However, this MAE is still
less than 0.5% capacity range, indicating that high accuracy is
also achieved for such a case. For Case 8 with 0.9 SOC and
25 ◦C storage temperature, the corresponding CS value reaches
0.954, which means that the actual results are all covered within
the obtained confidence range. Interestingly, CS values for other
cases are all 0.929, implying that the corresponding confidence
ranges are also reliable. Therefore, it can be concluded that the
full-data-trained GPR model with ARD structure is effective
and highly accurate for battery calendar aging prediction under
various storage conditions.

C. Partial-Data Training Results

For GPR technique, the inclusion of a larger number of
relevant data could lead to explain the data better and learn
more underlying mapping information, further resulting in more
accurate prediction results, and narrower confidence boundaries.
However, collecting calendar aging data under various storage
conditions is an extremely time-consuming process in real-world
applications. In such a case, it is meaningful to develop a reliable
model with a satisfactory accuracy level based on partial training
data. To evaluate the partial-data training results and the corre-
sponding prediction performance of the proposed ARD-based
GPR model, the capacity data before 8000 h of all “Group 1”
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Fig. 10. Training results by using partial data from “Group 1” cases as
the training set. (a) Case 1. (b) Case 3. (c) Case 7. (d) Case 9.

cases (nearly 7/3 split) are chosen as the dataset for the training
part, while the remaining data are employed as the validation
set.

Fig. 10 illustrates the results for “Group 1” cases based on
the partial-data training. From Fig. 10, it is observed that for
various cases with different storage conditions, the capacity
values are highly similar to the real data in training phase,
indicating that an accurate fitting result is obtained for our GPR
model. After 8000 h, apart from Case 9 that still presents the
highly similar trend with just 0.0032 MAE, other cases all show
more or less differences. Specifically, Case 1 and Case 7 obtain
the MAE values of 0.0116 and 0.0154 at 11 520 h, respectively.
Case 3 achieves 0.0123 MAE at 10 800 h. It therefore proves
that decreasing the training data will result in the information
loss of capacity fade in calendar aging, further reducing the
extrapolation and generalization performance of the trained
model. Even so, by using the GPR model with the ARD struc-
ture, all MAE values are still less than 0.5% capacity range,
which means that the training results are still reliable. To further
evaluate the prediction results of partial-data training, all data
from “Group 2” cases are then employed as the validation set.

After training the GPR model based on the partial data from
“Group 1” cases, the prediction results for “Group 2” cases are
presented in Fig. 11. Moreover, detailed quantitative metrics
are examined in Table VI. It is seen that Case 4 presents much
higher accuracy in the whole validation process with the smallest
values of MAE (0.0112) and RMSE (0.0057), respectively. For
Case 2, the corresponding RMSE is 0.0065, indicating that
satisfactory overall capacity prediction is also achieved. Here
the MAE is 0.0128, caused by a short-period mismatch around
11 000 h. From Fig 11(d), the predicted values present more
fluctuations in comparison with those in the full-data training
case. Quantitatively, here the MAE and RMSE for Case 8
become 0.0118 (55.3% increase) and 0.0061 (32.6% increase).
Even so, the result of Case 8 still presents a satisfactory capacity
prediction. In comparison, Case 6 has the worst prediction due
to several mismatches occurring after 7000 h. The RMSE for

Fig. 11. Prediction results by using partial data from “Group 1” cases
as the training set. (a) Case 2. (b) Case 4. (c) Case 6. and (d) Case 8.

TABLE VI
PREDICTION QUANTITATIVE METRICS AFTER PARTIAL-DATA TRAINING

Case 6 reaches 0.0084, which is 61.5% more than that under the
full-data training. This result is reasonable due to the decreased
capacity characteristics covered by using partial-data training.
However, the MAE for Case 6 is still less than 0.6% capacity
range (here is 0.0167), which means that the corresponding
predicted accuracy is also acceptable. Besides, the CS values for
all cases are all larger than 0.896, implying that the confidence
levels are reliable. In conclusion, these facts signify that with
a suitable partial-data training, the proposed GPR model is
also capable of excavating the useful information, therefore
providing reliable and accurate prediction results for calendar
aging under various conditions.

D. Multistep Calendar Aging Prediction

Multistep calendar aging prediction is more meaningful in
real-world applications as it can provide the entire future trend
of capacity degradation. To evaluate the multistep prediction
performance of our proposed ARD-based GPR model, a mul-
tistep prediction test is conducted for all “Group 2” cases in
comparison with the RCL model.

In this test, after obtaining a new predicted capacity value
by our GPR+ARD model, a recursive process is iteratively
conducted to predict future capacity until the last one is achieved.
It should be known that due to the structure as illustrated in
Fig. 5, ARD+GPR model requires the information of first k + 1
historical capacity points (k = 2 in the article), while the RCL
model just requires the initial one capacity point. Here the
comparison between two models is conducted after the k + 1th
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Fig. 12. Multistep calendar aging prediction results of ARD-GPR
model and RCL model. (a) Case 2. (b) Case 4. (c) Case 6. (d) Case 8.

TABLE VII
QUANTITATIVE METRICS FOR MULTISTEP PREDICTION

capacity points. Fig. 12 and Table VII illustrate the multistep
prediction results and the corresponding quantitative metrics for
both RCL and GPR+ARD models, respectively. From Fig. 12,
it can be observed that relatively large predicted mismatches
exist for cases by using the RCL model (here the worst MAE
reaches 0.0472 for Case 6 at 11 520 h), indicating the poor
generalization ability of the RCL model for our dataset. In
comparison, by using the GPR+ARD model, although several
mismatches occur especially in large local fluctuations of Case 4
and Case 6, the entire capacity decline trends are still captured
reliably for all cases. These increased local mismatches are
reasonable as the predicted errors are accumulated for multistep
conditions. Here the RMSE for Case 4 and Case 6 become
0.0102 and 0.0104, which are nearly twice larger than those
of one-step prediction cases. These results are mainly caused
by the poor training dataset for 0.5 SOC condition (just Case 5
owns the information of 0.5 SOC). However, the worst MAE is
still within 0.7% capacity range (here it is 0.0152 for Case 6),
indicating that the corresponding multistep prediction results are
acceptable for all cases. Moreover, all the obtained uncertainty
ranges cover the local fluctuations. It can be concluded that even
for the multistep prediction, the developed GPR+ARD model
can capture the overall capacity degradation trends well with an
acceptable confidence level.

E. Prediction at New Condition Through Accelerated
Aging Data Training

In the real world, batteries experience a wide range of storage
temperatures and SOCs. Developing a lifetime model based on
converting accelerated aging data to predict new degradation

Fig. 13. Prediction result of Case 1 through training based on the
accelerated aging data.

TABLE VIII
QUANTITATIVE METRICS AFTER ACCELERATED AGING TRAINING

case is another promising research topic [32], [36]. To eval-
uate the corresponding performance of proposed GPR+ARD
model, a test regarding the entirely new condition prediction is
conducted in this subsection.

In this test, GPR+ARD model is trained through using accel-
erated aging data. Specifically, the aging data under the relatively
high SOCs and temperatures from Case 5, Case 6, Case 8, and
Case 9 are utilized for model training. After that, data from
Case 1 that represents an entirely new storage condition are used
for validating our proposed model. Fig. 13 and Table VIII illus-
trate the prediction results of Case 1 after accelerated aging data
training and the corresponding quantitative metrics, respectively.
One obvious observation is that the obtained uncertainty bounds
become relatively wider than the tests from previous subsections.
This is hardly surprising given that temperature and SOC in
Case 1 are both different from the utilized accelerated aging
data. In such situations, the covariance values calculated by the
kernel function are smaller, leading to the broader confidence
boundaries. However, it is clear that these uncertainty bounds
still cover the real data. The overall capacity degradation trend
of Case 1 can be captured by the predicted capacity values,
indicating that the proposed GPR+ARD model also presents
effectiveness for such a case.

F. Further Discussions

Due to the lack of exploiting machine learning-based ap-
proaches for calendar aging prediction in the existing published
work, for the first time, this article focuses especially on the
development of the GPR technique with ARD kernel to achieve
satisfactory capacity prediction under various storage condi-
tions. In this article, the calendar aging dataset is acquired from
an OEM automotive company with some initial degradation due
to the reduced begin-of-life (BOL) capacity of the battery. Then,
the observed trends would inevitably decrease the prediction
performance of the utilized RCL model, while favoring the step-
by-step GPR model. Based upon our test results, several useful
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observations can be made. 1) In order to take full advantage of
the semiempirical model, a well-designed aging test that covers
the battery’s nominal capacity and considers overhang effects is
recommended [28]. 2) In real-world applications, missing data
related to any usage and subsequent degradation of a cell is a
practical and likely scenario to occur. In such circumstances, our
proposed GPR+ARD model outperforms the RCL model with
regard to prediction performance and uncertainty quantification.
3) To avoid underfitting problem of pure data-driven technique,
a dataset covering enough useful information is suggested in
the training phase [14], [30]. Future work could include an
effective combination of the proposed GPR technique with
battery electrochemical knowledge or electrothermal models,
and the performance improvements in research areas such as
the conversion of accelerated aging data to predict entirely new
degradation cases, and the holistic aging predictions regarding
both calendar and cycling modes.

V. CONCLUSION

In this article, effective capacity prognosis under various
storage conditions for Li-ion batteries was presented. The GPR
technique with ARD kernel was employed to synthesize a
data-driven model for battery calendar aging prediction. Based
upon the GPR toolbox of MATLAB 2018 with a 2.40 GHz Intel
Pentium 4 CPU, our proposed GPR model can be well trained
within 10 s. Illustrative results corroborated that the ARD+M32
kernel outperforms other kernels in both training and validation
processes (here the MAE and RMSE are less than 0.011 and
0.0055 for all cases). Based upon our measured dataset, such
GPR model exhibits improved prediction performance with
higher accuracy and better generalization ability. Moreover,
the uncertainty level of predicted results can be considered
simultaneously. Even for the partial-data training test, multistep
prediction test, and accelerated aging training test, the predicted
results were satisfactory in terms of the accuracy (here the worst
RMSE were less than 0.0105) and the reliable confidence range
for various storage conditions. Without any requirements of
electrochemical knowledge it is worth noting that the proposed
model can be easily extended to other battery types for resilient
calendar aging prognosis.
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[36] D.-I. Stroe, M. Świerczyński, A.-I. Stan, R. Teodorescu, and
S. J. Andreasen, “Accelerated lifetime testing methodology for lifetime
estimation of lithium-ion batteries used in augmented wind power plants,”
IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 4006–4017, Nov./Dec. 2014.

Kailong Liu (M’18) received the B.Eng. degree
in electrical engineering and the M.Sc. degree
in control theory and control engineering from
Shanghai University, China, in 2011 and 2014,
respectively, and the Ph.D. degree in electrical
engineering from the Energy, Power and Intelli-
gent Control Group, Queen’s University Belfast,
Belfast, U.K., in 2018.

He is a Research Fellow with the Warwick
Manufacturing Group, University of Warwick,
U.K. He was a Visiting Student Researcher

with Tsinghua University and North China Electric Power University,
China, in 2016. His research interests include modeling, optimiza-
tion, and control with applications to electrical/hybrid vehicles, energy
storage, and battery management systems.

Dr. Liu was the Student Chair of IEEE QUB student branch and a re-
cipient of awards such as EPSRC Scholarship, Santander International
Scholarship, and QUB ESM International Scholarship.

Yi Li received the B.E. degree in chemical
engineering from the East China University of
Science and Technology, Shanghai, China, in
2008, the M.S. degree in material science from
the Technical University of Munich, Munich,
Germany, in 2012, and the Ph.D degree in elec-
trical engineering from Vrije Universiteit Brus-
sels, Brussels, Belgium, in 2019.

She is currently a Senior Research Associate
with Lancaster University, U.K. Her research in-
terests include lithium-ion battery aging mecha-

nism identification, state of health estimation, and lifetime prediction.

Xiaosong Hu (SM’16) received the Ph.D. de-
gree in automotive engineering from the Beijing
Institute of Technology, Beijing, China, in 2012,
and the second Ph.D. degree with dissertation
in automotive research center from the Univer-
sity of Michigan, Ann Arbor, USA, in 2012.

He is currently a Professor with the State Key
Laboratory of Mechanical Transmissions and
with the Department of Automotive Engineer-
ing, Chongqing University, Chongqing, China.
He was a Postdoctoral Researcher with the De-

partment of Civil and Environmental Engineering, University of Cali-
fornia, Berkeley, CA, USA, between 2014 and 2015, as well as with
the Swedish Hybrid Vehicle Center and the Department of Signals and
Systems, Chalmers University of Technology, Gothenburg, Sweden, be-
tween 2012 and 2014. He was also a Visiting Postdoctoral Researcher
with the Institute for Dynamic Systems and Control, Swiss Federal In-
stitute of Technology (ETH), Zurich, Switzerland, in 2014. His research
interests include battery management technologies and modeling and
controls of electrified vehicles.

Dr. Hu has published more than 100 high-caliber journal/conference
papers. He has been a recipient of several prestigious awards/honors,
including SAE Ralph Teetor Educational Award in 2019, Emerging Sus-
tainability Leaders Award in 2016, EU Marie Curie Fellowship in 2015,
ASME DSCD Energy Systems Best Paper Award in 2015, and Beijing
Best Ph.D. Dissertation Award in 2013.

Mattin Lucu (S’19) received the M.Sc. degree
in integration of renewable energy sources into
the electricity grid from the University of the
Basque Country, UPV-EHU, Spain, in 2016,
and is currently working toward the Ph.D. de-
gree in control engineering with the IK4-Ikerlan
Technology Research Centre, University of the
Basque Country, Barrio Sarriena, Spain.

During his graduate studies, he worked as
R&D intern successively with the EneR-GEA
research group (ESTIA Engineering School,

France) in wind turbine emulation and control, and with the EDP in the
analysis of photovoltaic power insertion in low-voltage distribution net-
works. In 2016, he joined the IK4-Ikerlan Technology Research Centre.
His research interests include electrochemical energy storage systems
and machine learning algorithms applied to their lifetime estimation.

Widanalage Dhammika Widanage received
the honour’s (first class) degree in electronic
and communication engineering and the Ph.D.
degree in system identification from the Univer-
sity of Warwick, in 2004 and 2008, respectively.

He is currently an Assistant Professor of Mod-
eling and Energy Storage with the WMG, War-
wick University, Coventry, U.K. He leads the
battery modeling research with the department
and recently secured funding to lead the mod-
eling activity as a PI (for WMG) on the Faraday

Multiscale Modeling project, as a Co-Investigator (C0-I) on the EPSRC
Prosperity Partnership with Jaguar Land Rover, and a PI and Co-I on
four Innovate UK projects (PI and three Co-I). His research interests
include system identification theory, applied across several applications
including batteries.

Dr. Widanalage is a member of the European Materials Modelling
Community Interoperability and Repository Advisory Group (EMMC-
IRAG) and supported the compilation of the materials modeling-
terminology, classification, and metadata document which is now
publicly available to increase the use of material modeling with industrial
end-users. He was the recipient of the WMG Early Career Researcher
of the Year Award in 2016.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


