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Latency and Lifetime Enhancements in IWSN: a
Q-Learning Approach for Graph Routing

Gustavo Künzel, Leandro Soares Indrusiak, Carlos Eduardo Pereira

Abstract—Industrial Wireless Sensor Networks usually have
a centralized management approach, where a device known as
Network Manager is responsible for the overall configuration,
definition of routes, and allocation of communication resources.
Graph routing is used to increase the reliability of the com-
munications through path redundancy. Some of the state-of-
the-art graph routing algorithms use weighted cost equations
to define preferences on how the routes are constructed. The
characteristics and requirements of these networks complicate
to find a proper set of weight values to enhance network
performance. Reinforcement Learning can be useful to adjust
these weights according to the current operating conditions
of the network. We present the Q-Learning Reliable Routing
with a Weighting Agent approach, where an agent adjusts the
weights of a state-of-the-art graph routing algorithm. The states
of the agent represent sets of weights, and the actions change
the weights during network operation. Rewards are given to
the agent when the average network latency decreases or the
expected network lifetime increases. Simulations were conducted
on a WirelessHART simulator considering industrial monitoring
applications with random topologies. Results show, in most cases,
a reduction of the average network latency while the expected
network lifetime and the communication reliability are at least
as good as what is obtained by the state-of-the-art graph routing
algorithms.

Index Terms—Industrial Wireless Sensor Networks, Routing,
Reinforcement Learning, Q-Learning, WirelessHART.

I. INTRODUCTION

INDUSTRIAL Wireless Sensor Networks (IWSN) are an
attractive technology for communication in process au-

tomation and allow the incorporation of Industrial Internet of
Things (IIoT) and Industry 4.0 (I4.0) concepts [1], [2]. The
global IWSN market size is anticipated to reach USD 8.67
billion by 2025 [3]. Flexibility, mobility, scalability, low main-
tenance and reduced infrastructure are advantages of IWSN
[4], [5]. An IWSN consists of a set of wireless sensor devices
(nodes) connected to a gateway through Access Points (AP).
The gateway provides a connection with the plant automation
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network. A device known as Network Manager (NM) is con-
nected to the gateway and is responsible for the management
of the network, admission control, configuration, routing, and
scheduling. Centralized management is used to allow better
control of the network operation and also to simplify the hard-
ware and software of the nodes. WirelessHART (WH), ISA
SP100.11a and WIA-PA standards are being used in IWSN
applications [4]. These standards usually form a mesh network,
where nodes may act as routers to increase path availability for
communications [6]. IWSN applications typically require reli-
able, low-latency and real-time communications. Low energy
consumption is another requirement as batteries are often
used to power devices [1]. Meeting these requirements and
optimizing the network performance are often complex tasks
because of the characteristics of the devices, topologies, and
the wireless network properties (shared medium, interference,
signal reflections, and signal strength) [5]–[8].

Routing is an essential task of the NM. The routes built
by the NM influence the reliability of the communications,
latency, energy consumption, transmission errors and resource
usage [1], [6]. Path redundancy is used to increase reliability
and is implemented using graph routing. A graph is a route
that connects nodes in the network, and each intermediate
node in a route to the destination may have multiple neigh-
bors to forward a message to. If the communication with a
neighbor fails, a node can try to send the message through
another neighbor [9]. Graph routing algorithms for centralized
management protocols were described over the last decade
[9]–[17]. Parameters, heuristics, and weighted cost equations
are used to choose the connections on the graphs. Usually,
these weight values and parameters are statically defined and
suitable only for certain network conditions [6]. Manually
adjusting these parameters, aiming to improve the network
performance, is inconvenient. It needs several tests, requires
periodic monitoring of the network conditions, the user must
know about the properties of the algorithms, and a network
system representation is often unavailable [10]. It would be
significant if these adjustments could be made in a way
that achieves an adaptation according to the current network
operational conditions while balancing or optimizing some
performance metrics. Centralized routing algorithms that can
optimize the performance of the IWSN are a relevant research
topic.

In this context, the use of Machine Learning (ML) for
creating and adjusting routes in a centralized way may be
useful for IWSN and future IIoT and I4.0 protocols [10], [18].
ML provides a system the ability to learn and improve from
experience, and Reinforcement Learning (RL) relies on the
existence of an agent that acts in an environment and receives
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rewards based on the results of its actions. By exploring the
environment, it learns which behavior it must take to maximize
its rewards [19]. RL demands low computational resources
and implementation efforts, thus providing high flexibility to
topological changes and near-optimal results, without requi-
ring any apriori network model [18]–[20]. RL algorithms like
Q-Learning are being used for centralized and decentralized
routing approaches in general-use network technologies and
Wireless Sensor Networks (WSN) [20]–[22]. In decentralized
approaches, each node is modeled as a learning agent that
selects routes to forward its packets. These approaches are
not suitable for IWSN, since they require nodes to exchange
information independently, reconfigure and decide its routing
strategies [10]. Similarly, the available centralized approaches
are not suitable for IWSN since they are intended to be used
for other protocols and do not build graphs or routes with path
redundancy.

This paper presents the Q-Learning Reliable Routing with a
Weighting Agent (QLRR-WA) algorithm. QLRR-WA builds a
routing graph used by nodes to send information to a gateway.
During the construction of the graph, nodes and neighbors
(edges of the graph) are selected through a weighted cost
equation. A set of weights defines how some topology and
device characteristics influence the cost values. Periodically,
an agent acts in the environment trying to learn a set of
weights that optimizes the network performance. The Q-
Learning states are modeled as a fixed set of weights, and
the actions represent the increase or reduction of weights.
Rewards are given when the agent decreases the Average
Network Latency (ANL) or increases the Expected Network
Lifetime (ENL). To increase reliability, QLRR-WA tries to
build an uplink graph where nodes have at least two neighbors
to forward data to the gateway. QLRR-WA was evaluated using
a WH stack implemented over the Network Simulator 2 (NS2)
[23]. QLRR-WA was compared against other uplink routing
algorithms using ANL, ENL, Packet Delivery Ratio (PDR)
and the Percentage of Reliable Nodes (PRN) as performance
metrics. The tested topologies consisted of nodes with different
types of power sources randomly scattered over an area.

The main contribution of this paper is the QLRR-WA
algorithm, which builds the uplink routing graph in a cen-
tralized manner suitable for IWSN protocols such as WH,
using Q-Learning to enhance the network performance. Other
contributions are the discussion of the implications of the use
of Q-Learning for graph routing in centralized approaches,
the performance evaluation and the comparison of the state-
of-the-art routing algorithms. The remainder of this paper is
organized as follows. Section II presents the literature review.
Section III describes the QLRR-WA algorithm. Section IV
presents the simulation setup and performance evaluation.
Section V presents the conclusions and future works.

II. LITERATURE REVIEW

A. Network Manager tasks
In an IWSN, the NM has a sequence of management tasks

that must be executed. These tasks run when the topology
changes, when some operational conditions change, or pe-
riodically for optimization purposes. The routing algorithms

that will provide the routes used by the gateway and nodes to
exchange information are first executed. Then, the scheduling
algorithms translate these routes in a sequence of timeslots
(links) for communication. Routes and links are then converted
into a sequence of commands sent to the nodes to update
the network configuration [1], [9]. Sending these commands
causes a communication overhead. Some implementations of
the NM reduce overhead by comparing the old and new routes
and links and updating the changes only [9], [23]. To ensure
path availability during reconfiguration, the new routes and
links are first configured, and only then the old ones are
removed [23]. NM must keep information about the current
network topology, nodes, and operating conditions to properly
run these tasks. An overview of IWSN requirements, WH
protocol, and management tasks can be found in [1], [6], [9],
[23].

B. Graph routing algorithms

Three graph types are defined for IWSN: broadcast, al-
lowing the gateway to send messages to all nodes; uplink,
allowing nodes to send messages towards the gateway; and
downlink, allowing the gateway to send messages to specific
nodes [6], [9]. ELHFR [12] produces an uplink graph based
on a Breadth First Tree (BFS) and uses the Received Signal
Level (RSL) information to select neighbors. The distance
in hops from the gateway is used to build graphs in [9],
reducing latency and resource usage. Communication load,
energy consumption, and residual energy are used by nodes to
choose which neighbors they will use to forward a message,
considering that a graph was already given [15]. Residual
energy, link quality, and node degree are used to calculate a
priority for neighbor selection [14]. A survey on routing and
scheduling for WH suggests the use of adaptive weighted cost
functions [6]. Network lifetime maximization is formulated as
a greedy heuristic and as an optimization problem that requires
intensive processing [13]. Quality of service is achieved by es-
timating the reliability and delay using link quality information
[16]. A greedy algorithm builds graphs where nodes and edges
are selected through a weighted cost equation that uses the
number of hops, RSL, number of neighbors, and node power
source type [11]. Primary and redundant paths are chosen
based on the residual energy of neighbors to balance energy
consumption in [17], but the configuration of a preferred
neighbor for a node is not available in the WH standard. Few
of these approaches adjust parameters autonomously or try to
improve network performance over time. These approaches
does not try to reduce latency and increase lifetime at the
same time. Some of the algorithms require changes in the WH
standard. Besides, the works are not compared using similar
conditions or a simulator with a complete stack of an IWSN
protocol such as WH.

C. Reinforcement Learning and Q-Learning

RL is an ML approach where a learning agent is usually
modeled through a tuple consisting of a set of states S, actions
A, and rewards R. At each iteration t, the agent takes an action
at ∈ A that leads the environment to the state st+1 ∈ S. The
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agent receives a reward rt+1 ∈ R based on the effects of
the last action taken and associates the reward with the action
at and state st. The main goal of the agent is to maximize
its long-term rewards, and after several iterations, the agent
learns which actions it should take on each state to achieve
this goal. Fig. 1 presents the interaction between an agent and
the environment.

Agent

Environment

Reward
r

State
s

Action
at

t+1

t

t+1r
s

t

Fig. 1: Agent-environment interaction in RL [19].

The selection of the action to be taken is made through
exploration or exploitation. When the agent explores the en-
vironment, it selects random actions to extend the knowledge
concerning the rewards. When the agent exploits, it chooses
actions where the expected rewards are already known. The
balance between exploration and exploitation helps to increase
the rewards accumulated over time, and the agent tries a
variety of actions and progressively favors those that seem
to give better rewards. ε-greedy is an approach to balance
exploration and exploitation where the agent explores with a
probability 0 ≤ ε ≤ 1 all available actions in a state and
exploits with a probability 1− ε the best action.

Q-Learning is an RL algorithm where a table with size |S|×
|A| store Q-values, which are the long-term rewards that an
agent can expect to receive by taking action at in state st.
The Q-values are updated at each iteration t + 1, using the
previously stored Q-value and the new reward rt+1 received
from the environment following Eq. 1.

Qt+1(st, at)← (1− α)Qt(st, at) + α [rt+1(st+1)

+ γmaxa∈AQt (st+1, a)]
(1)

In Eq. 1, 0 ≤ α ≤ 1 is the learning rate, which makes the
agent give preference for immediate rewards. Higher values of
α tend to make the learning process susceptible to environmen-
tal perturbations. The discount factor 0 ≤ γ ≤ 1 allows the
agent to adjust its preference for long-term rewards because
the future reward expected in the state st+1 is considered. The
Q-table usually initiates with zero values or random values
[19]. The states, actions, rewards, and exploration approach for
a specific problem are defined during design time and must
consider the problem characteristics [19]. Further details of
RL and the Q-Learning algorithm can be found in [18]–[21].

D. RL applied to routing

A survey on RL routing approaches for networks was
recently presented in [21], but the centralized approaches
described are not related to IWSN. A literature review in
RL approaches for WSN networks is presented in [24] and
a survey in [20] describes three main decentralized RL ap-
proaches for WSN, where each node has an agent to choose
routes. In Q-routing, states are defined as the destination,
actions are the next-hop neighbor, and rewards are calculated
based on the information exchanged by nodes. In Multi-Agent

Reinforcement Learning, nodes exchange information about
its rewards with neighbors. In Partial Observable Markov
Decision Processes, a node estimates its state using data from
neighbors. In [25], a source node broadcasts a transmission
request to the destination node, which collects topology infor-
mation, simulates the transmission of the packet on a virtual
topology and creates a path using Q-Learning. The path is then
sent to the source node. In [10], an agent changes the value of
the weight of the power source type of nodes in a cost equation
used to build a broadcast graph. States store the current weight,
actions keep or change the state, and rewards are given only
when the agent reduces latency and increases lifetime. The use
of actions that lead to the same state and the given rewards
increase the worst-case complexity of the RL problem and
require more exploration [26]. Also, link quality information
is not used to define routes, and the simulations do not use
an error model in the physical layer, and therefore do not
provide proper information about reliability. To the best of our
knowledge, the current works are not suitable for centralized
IWSN because the decentralized approaches require nodes to
choose routes independently, and the centralized approaches
are used for other communication technologies and do not
build uplink graphs that address the IWSN requirements.

III. Q-LEARNING RELIABLE ROUTING WITH A
WEIGHTING AGENT

A. Scope and definitions

We focus on the construction of the uplink graph used by
nodes to send sensor readings towards the gateway in IWSN
monitoring applications. Static topologies are considered be-
cause IWSN are commonly planned topologies, having low-
mobility nodes, and some nodes may be powered by batteries
[6]. The network operates with a given topology during the
simulations. Nodes can inform the NM about poor connections
with neighbors. NM removes these connections from the
network topology. We evaluate QLRR-WA considering three
requirements of IWSN applications: low latency, low energy
consumption, and high reliability [1], [6]. The following
metrics are defined to evaluate these requirements, considering
IWSN monitoring applications and the literature. The latency
of a data packet is defined as the time interval between the
generation of the packet at the sensor’s Network Layer and
the reception at the gateway’s Medium Access Control layer.
The ANL is calculated by measuring the latency of all data
packets received at the gateway over a time interval ts. The
energy consumption is evaluated using the ENL, defined as the
minimum expected lifetime value between all battery-powered
nodes at a specific instant [13]. Reliability is evaluated using
PDR, which is the percentage of data packets received at the
gateway in comparison to the ones generated at the nodes, and
PRN, which is the percentage of nodes which have at least two
neighbors to forward data in the uplink graph [9], [13].

B. Uplink Graph Construction

The greedy algorithms in [9]–[11] are used as a baseline for
QLRR-WA, where nodes and edges are iteratively added to the
uplink graph and selected through a weighted cost equation.
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The current network topology graph is G(V,E), where V
represents the devices such as nodes, VAP is the set of AP,
and g the gateway. E contains edges representing the available
connections between devices. Fig. 2b depicts an example of
G. The uplink graph GU (VU , EU ) consists of a set of nodes
VU added while building GU , and EU , which is a subset of
E with edges connecting the nodes towards g. An edge from
a node v to a node u (successor) is represented by ev,u. Fig.
2 depicts some of the GU construction steps.

GA1 A2

(a) Initial GU
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(b) G, a candidate node and its
edges with possible successors
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(d) 2nd round candidates
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candidate in GU (2nd round)
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(f) Finished GU

Fig. 2: Uplink graph construction sequence in QLRR-WA [11]

Alg. 1 describes the construction of GU . It is assumed that
nodes disconnected from the topology are previously removed
from G. At line 4, g, VAP , and the edges from VAP to g are
added to GU , as depicted in Fig. 2a. QLRR-WA then goes to a
loop that adds all nodes in V − VU to GU . First, the candidate
nodes S′ which have at least two possible successors in GU

are identified, as depicted in Fig. 2b. The successor nodes Uv

of a node v and the candidate nodes in S′ are assigned a cost
c using Eq. 2.

c = wh
h

hmax

+ wpp+ ws
min(s− sd, 0)

sd
(2)

The average number of hops h of a successor or node is
given by the average hops of its successors in GU plus one.
When evaluating the successors in Uv , hmax stores the highest
value of h between all successors, p is a constant value that is
associated with the energy source type of the successor, s is
the RSL value of the edge between node v and the successor.
sd is a constant value which gives a desirable level for the
RSL. When all successors in Uv have their costs evaluated,
they are sorted and then the two lower-cost successors u1
and u2 are selected for candidate node v. Then, the candidate
nodes in S′ are evaluated to choose one of them to be added
to GU with the edges to their selected successors. For the
evaluation of a candidate node, hmax is the maximum value

of h between all the candidate nodes in S′, p is associated with
the energy source type of v, and s is given by the average RSL
of the edges with u1 and u2. If |S′| = 0, the set of nodes S′′

with only one successor is identified and then the node which
has the maximum number of ingoing edges from V − VU is
chosen to maximize the chance of |S′| > 0 in the next round.
By changing the values of the weights wh, wp, and ws, it is
possible to define how nodes and successors will be selected.
Increasing wh will reduce the distance in hops from nodes to
g and thus the use of communication resources [9]. Increasing
wp will make nodes avoid choosing battery-powered nodes
as successors [10]. Increasing ws will make nodes connect to
successors with greater RSL, thus reducing the probability of
packet transmission failures [11], [27].

Algorithm 1: Building the Uplink Graph with QLRR-WA
1 Calculate reward rt+1 according to Eq. 3
2 Update Qt+1(st, at) according to Eq. 1
3 Select next action at+1 using ε-greedy and set the weights

wh, wp, ws according to at+1

4 VU = g ∪ VAP and EU contains all edges from VAP to g.
5 while VU 6= V do
6 Find S′ ⊆ V − VU : ∀v ∈ S′, v has at least 2 edges to VU

7 if S′ 6= ∅ do
8 for all v ∈ S′ do
9 Store in Uv the successors of the edges ev,u to VU

10 Sort Uv with Eq. 2, choose ev,u1 and ev,u2

11 hv = 1 +
hu1+hu2

2
12 Choose the node v with min c using Eq. 2
13 Add v to VU and add ev,u1 and ev,u2 to EU

14 else
15 Find S′′ ⊆ V − VU : ∀v ∈ S′′, v has 1 edge ev,u to VU

16 for all v ∈ S′′ do
17 hv = hu1 + 1
18 Calculate nv , the # of ingoing edges from V − VU

19 Choose the node v with maximum nv

C. Q-Learning Weighting Agent model

At each periodic execution of the tasks of the NM, the agent
acts choosing a set of weights to be used before rebuilding
GU (Alg. 1, lines 1-3). At the next periodic execution, the
agent access the performance metrics and receives a reward.
A set of states was defined, and each state has a fixed set of
values for wh, wp, and ws, and wh + wp + ws = 1. A step
factor 0 ≤ sf ≤ 1 defines how much the value of the weights
changes from state to state and is given by sf = m−1, where
m is an integer that represents how many transitions between
values each weight will have. This allows a trade-off between
the number of available states (influencing the exploration
time) and the change of the cost values (influencing the num-
ber of changes in GU from state to state). Actions represent
the increment or reduction of the weights from one state to
another, but actions available in one state only allow transitions
to states where the values of the weights change ±sf . Fig. 4
depicts an example of the states, the effect of the actions, and
the weights when m = 7 (states where a weight assumes zero
value were suppressed). The available actions are numbered
according to the increment or reduction of the weights.

In our approach, the reward has the main objective of
reducing the ANL while increasing the ENL. The ANL in
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a specific iteration t of the agent is indicated as dt, while the
ENL is indicated as lt. The current ANL and ENL values are
indicated as dt+1 and lt+1. Two arrays D and L keep the last
measurements of d and l. D and L store the values of the
least k iterations of the agent. The use of these arrays allows
the agent to receive rewards not only based on the current
ANL and ENL, but to compare the current values over a time
window. A positive reward of value R is given if the ANL
has decreased and the ENL has increased in comparison with
min(D) and min(L) over the last iteration of the agent; a
positive reward of value R/2 is given if ANL has decreased
or ENL has increased; no reward otherwise. Eq. 3 describes
the rewards given to the agent.

rt+1 =


R, if dt+1 < min(D) and lt+1 > min(L)
R
2 , if dt+1 < min(D) or lt+1 > min(L)

0, otherwise
(3)

D. QLRR-WA use considerations

The impacts of exploration and the learning time must
be considered when using QLRR-WA. Fluctuations in the
latency are expected because of the following reasons: the
Q-Learning parameters and randomness of the exploration;
changes in GU require reconfiguration commands to be sent
over the network, causing overhead; commands messages may
have priority over data messages [7]; the number of hops
that a message takes to reach the gateway may change; the
number of messages waiting in the transmission stacks of the
nodes may increase; and poor connections with neighbors may
be chosen. When considering these fluctuations, several data
process messages should be received to measure the ANL. The
exploration will also reduce the ENL because of the energy
spent with overhead, and this influence will be more significant
when low-capacity batteries are used. Fluctuations may be
tolerable only during the network’s startup and maintenance,
but not during process monitoring and control. In applications
where variations in the latency are acceptable, the agent can
continuously explore.

The learning time is influenced by the reconfiguration and
the agent model. The time between the iterations of the
agent must allow the network to reconfigure properly and
the measurements of ANL and ENL to represent stabilized
conditions. In the current protocols, reconfiguration may take
from seconds to tens of minutes. Changes in the topology are
usually informed by health reports and path down alarms, also
influencing the time needed for reconfiguration. The number of
iterations required depends on the complexity of the learning
model, which is influenced by the number of states, actions,
and the choice of the rewards function [19], [20], [26]. The
agent should explore several times the available actions in each
state, requiring many iterations to converge [21], [26]. The
actions of the agent will also be associated with the schedule
changes because the changes in GU will cause different
reconfiguration patterns on the timeslots depending on the
scheduling strategy. Thus, a proper combination of routing and
scheduling algorithms is needed to enhance performance [6].

IV. PERFORMANCE EVALUATION

A. Simulation setup

We conducted simulations using the WH simulator over
NS-2 [23], which was validated through comparison with
real WH networks [6], [23]. The simulation parameters used
are similar to the works described in Section II related to
IWSN monitoring applications using WH. The energy model
[6] and the simulator changes [10] were used to allow the
NM to poll the battery type and the current expected battery
lifetime from nodes. In the WH protocol, the battery lifetime
is reported through an integer value that represents days and
reduces slightly from one report to another. Because IWSN
are subject to different conditions of the wireless channel,
we included a general path loss model for RSL estimation
(Two-Ray Ground-Reflection) with power transmission of 0
dBm with a maximum communication range of 40 m [23].
A packet loss probability model for indoor environments was
included on the physical layer and uses the same transceiver
family of the energy model [27]. We added to the application
layer the Alarm Path Down command, so nodes can report
broken links with neighbors to the NM when a Keep-Alive
message is not exchanged between linked nodes after a certain
amount of time. We also adapted the simulator to measure
latency and PDR by monitoring the Absolute Slot Number
snippet available in the Network Layer of the WH, and to
calculate the PRN of GU . Topologies were built consisting
of: one NM/gateway positioned in the center of a 100 by
100 m area; two APs located 5 m to the left and 5 m to
the right of the gateway; and several randomly-positioned
nodes. The connections between the gateway and the APs are
considered wired and reliable [9]. The nodes were numbered
according to the distance from the gateway. 50 % of the nodes
were powered with industrial-standard batteries (3.6 V, 17
Ah). Simulations were conducted with 20 and 40 nodes to
verify QLRR-WA’s performance when IWSN have different
density of nodes. Fig. 3 depicts a 40-node topology used as
an example for the performance evaluation. Black nodes are
line-powered nodes, gray nodes are battery-powered nodes,
and lines represent nodes within the communication range of
each other.
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Fig. 3: A network topology example with 40 nodes.

Each simulation starts with the startup of the NM/gateway
and APs. The first node is turned on after 5 minutes, and the
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other nodes are turned on in 1-minute intervals, according to
the sequence number given during the topology construction.
A node listens to the channel looking for an advertisement
packet from its neighbors and then beigns the join process.
After joining, it requests bandwidth to the NM, receives
configurations (routes and links), and starts sending sensor
readings towards the gateway with a period of 32 seconds.
Health reports are sent every 15 minutes and the NM polls
the battery lifetime in 1-minute intervals. The management
routines are executed when a new device joins the network
or in 10-minute intervals. The simulations run for 12 hours.
Other simulation parameters follow the work of [10], [23].

We used p = 1 for battery-powered nodes and p = 0 for
line-powered nodes; sd = −45 dBm; ts = 5 min; k = 2;
and R = 1. The Q-Learning parameters follow the suggested
values from the works in Section II-C, where α = 0.1,
γ = 0.8, and ε = 0.3. The Q-values were set to 0 at
startup. We set m = 7 and removed states with weights
with value 0 to keep all weights influencing the cost equation
and to reduce the number of states and the exploration time
required. Fig. 4 depicts the states and actions used. The initial
state was arbitrarily set to s7, where all weights have similar
values. The exploration phase starts at the beginning of the
simulation and ends after 8 hours, allowing the agent to iterate
approximately 48 times. The number of iterations was chosen
because it represents the average number of iterations needed
considering the complexity of a similar RL problem for goal-
oriented domains [26]. After the exploration phase, the agent
goes to the next state related to the state-action pair with
greater value in Q(s, a), where it exploits the best set of
weights found. QLRR-WA executes only with the periodic NM
management routines (10-minute intervals) to avoid network
reconfiguration when a node is joining. This time interval
between iterations was chosen based on simulation tests which
allowed the evaluation of the network reconfiguration time for
those topologies. Periods of hours are required for exploration
in WH because of the time needed for network reconfiguration
and stabilization.

Downlink graphs without path redundancy were used in
the simulations to reduce the number of links required during
the scheduling process. They were created using a BFS tree,
where edges are chosen based on the RSL of neighbors.
The scheduling algorithm in [9] (implemented in [23]) was
used. Links are allocated on the paths from the source to the
destination in a depth-first manner and the traffic is split from
a node among all its successors by reducing the bandwidth
required on each successor [6], [9]. Links are scheduled in
the following sequence: Advertisement links are allocated
for all devices currently in the network with a period of
8 s; For the downlink graphs, one permanent link between
two neighbors (for management communications) is allocated
with a period of 4 s, and normal links are allocated for
management (limited to 6 links between two neighbors) with
a period of 2 s. The same allocation is used for the uplink
graph for permanent and management links. Finally, links
for publishing periodic data are allocated. Downlink graphs
were scheduled first to reduce reconfiguration, because they
rarely change during the simulations. We compared QLRR-
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Fig. 4: Set of Q-Learning states, actions and weights used in
the simulations (rounded values)

WA with the following baseline uplink algorithms: Han [9],
which builds graphs trying to reduce the number of hops from
the gateway; ELHFR [12], which chooses edges based on
the RSL of neighbors; Künzel [11], where weights were set
wh = 0, wp = 1, ws = 0, wn = 0 on all related equations
trying to build graphs that avoid battery-powered nodes as
routers; and Künzel [10], which uses RL to adjust the weight
of the power type of nodes in a cost equation, where we
used α = 0.1, γ = 0.8, ε = 0.3 and sf = 0.25. We ran
several repetitions of the simulation for each algorithm for
each topology to get statistics of ANL, ENL, PDR, and PRN.

B. Results

Fig. 5 depicts the ANL of the 40-node topology over time
(over several repetitions of the simulation). During the startup
of the network (from 0 to 4 hours), the ANL increased because
nodes were joining the network, exchanging commands and
sending process data. The ANL stabilized in the Han, ELHFR,
and Künzel [11] after the join process because the topology
stopped changing. Künzel [10] continued to reduce ANL as it
was exploring, but it had an average performance in these si-
mulations. In QLRR-WA, the ANL started with reduced values
during exploration because of the topology characteristics and
weights used, and also presented slight variations from 0 to
8 hours because of the exploration. After exploration, QLRR-
WA stabilized the ANL in a reduced value.

Fig. 6 depicts the boxplots of the ANL, ENL, and PDR at
the last hour of the simulations. Samples of the ANL, ENL,
PDR, and PRN were collected, for several simulations of the
same topology, over the last hour of simulation (1 sample every
10 minutes). In both 20 and 40-node topologies, QLRR-WA
presented the lowest ANL. Regarding ENL, it can be seen that
QLRR-WA kept values as good as the other routing algorithms
in both topologies. QLRR-WA presented the highest PDR for
both topologies. All algorithms kept a PRN of 100 % on
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both topologies, except ELHFR which presented 80 % (20
nodes) and 85 % (40 nodes). ELHFR presented the lowest
PRN because it allows nodes to connect only to neighbors
from lower levels in a BFS tree, and usually a few neighbors
are available in lower levels.
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Fig. 6: ANL, ENL and PDR boxplots for topology examples

Because each topology and application have different cha-
racteristics (i.e. spatial distribution and power source of
nodes), the performance metrics will present different values.
We conducted simulations to verify if QLRR-WA presented
similar performance over 30 random topologies. We collected
the ANL, ENL, PDR, and PRN samples of the last simulation
hour for several repetitions of the simulations for each topo-
logy, and then used One-way Analysis of Variance (ANOVA)
with a 95 % significance to verify if QLRR-WA improved
those metrics on each topology when compared side-by-side
to the other routing algorithms. Improvement is considered
to exist when, for a given topology, the ANL is less or ENL,
PDR, PRN are great than the other algorithm being compared,
and the null hypothesis of the ANOVA test is rejected.
Table I shows the percentage of topologies where QLRR-WA

improved the ANL, ENL, and PDR when compared to the
baseline algorithms. PRN was always around 100 % for all
algorithms except ELHFR which was always above 75 %.
Table I also shows the average relative decrease of the ANL
and increase ENL for the topologies where improvements
occurred when compared to the values presented by the other
algorithms. PDR and PRN were omitted because these values
were similar for all compared algorithms.

TABLE I: Performance comparison of the QLRR-WA with the
state-of-the-art algorithms

Topologies where QLRR-WA improved ANL, PDR, ENL (%)
Nodes Metric Han [9] Künzel [10] Künzel [11] ELHFR [12]

20
ANL 86 63 76 80
ENL 46 50 26 23
PDR 33 6 56 96

40
ANL 100 100 100 93
ENL 90 63 10 86
PDR 3 0 16 100

Average decrease of ANL, increase of ENL values for QLRR-WA (%)
Nodes Metric Han [9] Künzel [10] Künzel [11] ELHFR [12]

20 ANL 14 10 10 16
ENL 34 9 9 28

40 ANL 26 16 17 14
ENL 76 11 11 62

V. CONCLUSIONS AND FUTURE WORK

QLRR-WA is a centralized routing algorithm that builds
uplink graphs. An agent using Q-Learning learns a set of
weights to apply on a cost equation that is used to choose
nodes and connections during the graph construction. Rewards
are given when the agent reduces ANL or increases ENL.
Simulations were conducted on a WH simulator considering
IWSN applications and random network topologies. Results
showed a reduction of the ANL in most topologies, while
the ENL, PDR, and PRN were as good as the other state-of-
the-art algorithms. Considerations must be made regarding the
characteristics of the protocol and application, the time interval
for network reconfiguration, the parameters used, the number
of iterations necessary during the learning process, and the re-
wards of the agent. All these aspects influence the performance
of QLRR-WA. Open issues are: how to estimate and reduce the
required learning and exploration times, and how to quantify
the expected performance improvements. These issues could
be tackled by implementing a simulation/optimization module
inside the NM, which could use simulation or real data to
provide information about the network performance and an
optimized configuration to be used. Other research possibilities
include the development of QLRR approaches able to build
routes considering adjustments on the transmission power,
mobility, coexistence, scheduling, and real-time requirements;
simulation and experiments using other centralized network
protocols; to evaluate the state-of-the-art routing algorithms in
real IWSN, specific IWSN applications and physical channel
conditions.
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