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Abstract--In this paper, the impact of prediction errors on the 

performance of a domestic power demand management is 

thoroughly investigated. Initially, a real-time peak power demand 

management system using battery energy storage systems 

(BESSs), electric vehicles (EVs) and photovoltaics (PV) systems is 

designed and modeled. The model uses real-time load demand of 

consumers and their roof-top PV power generation capability, and 

the charging-discharging constraints of BESSs and EVs to provide 

a coordinated response for peak power demand management. 

Afterwards, this real-time power demand management system is 

modeled using autoregressive moving average and artificial neural 

networks-based prediction techniques. The predicted values are 

used to provide a day-ahead peak power demand management 

decision. However, any significant error in the prediction process 

results in an incorrect energy sharing by the energy management 

system. In this research, two different customers connected to a 

real power distribution network with realistic load pattern and 

uncertainty are used to investigate the impact of this prediction 

error on the efficacy of an energy management system. The study 

shows that in some cases the prediction error can be more than 300 

percent. The average capacity of energy support due to this 

prediction error can go up to 0.9 kWh, which increases battery 

charging-discharging cycles, hence reducing battery life and 

increasing energy cost. It also investigates a possible relationship 

between environmental conditions (solar insolation, temperature 

and humidity) and consumers’ power demand. Considering the 

weather conditions, a day-ahead uncertainty detection technique 

is proposed for providing an improved power demand 

management. 
 

Index Terms--ANN, ARMA, energy management loss, peak load 

shaving, power demand management, prediction error. 

I.  INTRODUCTION 

HE traditional power grid was designed considering a 

unidirectional power flow from power stations to 

customers. The power stations were centralized and bulky and 

connected to the customer through long transmission lines [1]. 

In recent years, this traditional power system is experiencing a 

significant paradigm shift towards a smarter, automated and 

distributed system [1], [2]. There is an influx of small-scale and 

aggregated renewable energy sources such as solar, wind and 

biomass that are integrated into the grid. However, most of 

these renewable energy sources are intermittent, and their 

distributed placement creates power management challenges 

for utilities, for example, the control of power flow and 

maintenance of standard voltage and frequency limits and 

power system stability [1], [2].  

With the pace of renewable energy penetration, new types of 

                                                             
. 

loads, e.g. electric vehicles (EVs) are also being integrated into 

the power systems. Although EVs have energy storage 

capability, their mobility makes them significantly different 

than the fixed installation of BESSs [3], [4]. The uneven 

distribution of EVs and the challenges due to their unregulated 

charging-discharging can be reversed as an opportunity through 

a coordinated demand management system. The bidirectional 

vehicle-to-grid (V2G) energy transfer from a single EV at home 

or aggregated EVs in a parking lot can provide various load and 

ancillary support to grids [3], [5]. Subsequently, a combination 

of EVs and fixed battery storage can minimize the uncertainty 

of vehicle’s availability and intermittency of PVs. These energy 

storages can be charged during off-peak hours (periods of low 

electricity price) and discharge during peak load hours (periods 

of high electricity price) to reduce the energy usage cost. As the 

load profile of customers has increasing peaks overtime, the 

power system components (transmission lines, transformer, 

protection circuitry) needs to strengthen to manage this 

overcapacity [3]–[5]. A coordinated power demand 

management can reduce the peaks, which helps customers to 

reduce energy costs, and utilities to properly utilize their 

systems. Sometimes this coordinated demand management is 

realized using various day-ahead energy resources scheduling 

and optimization techniques or using various forecasting 

techniques [6]. The forecasting techniques are used to predict 

the load demand of consumers and their renewable energy 

generation capability (e.g. roof-top PV power generation) 

considering weather conditions to minimize the consumers' 

electricity costs [7]. Sometimes, energy price forecasting is also 

used to economically charge-discharge battery storage and EVs 

to reduce electricity consumption during high price [8]. These 

day-ahead power demand, generation, and electricity price 

forecasting help to effectively manage the cost-effective real-

time operation of domestic appliances and the cycling of energy 

resources. However, any forecasting errors may substantially 

affect the operation of controllable resources and impact 

negatively to their cost-effective real-time operation. Therefore, 

this study aims to uncover the impact of prediction errors to the 

domestic peak power demand management and quantify them.   

A significant and growing body of literature [9]–[11] has 

investigated the smart grid distribution-side demand 

management. Various combination of energy resources such as 

roof-top PVs [10], EVs and battery energy storage systems [3], 

[4], [11] are used for peak power demand management. In [12], 

[13], PVs and BESSs are used for peak shaving and power 

quality regulation. Authors in [14], [15] use a PV-based EV 
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charge management system to minimize their demands on the 

grid. Several studies [16], [17] have applied the load shifting 

techniques for managing distributed energy resources and 

minimizing electricity costs. Few authors [18] used energy 

resource scheduling and optimization techniques for domestic 

power demand management. Some authors [19] used real-time 

load and ancillary support systems. Various forecasting 

techniques such as artificial neural networks, wavelet neural 

networks, time series, fuzzy logic, and support vector machine 

are used for many power systems studies [20], [21]. The studies 

are limited to the short-term [22] and long-term [23] load 

forecasting for power system planning and operation, electricity 

price and energy market behavior forecasting [8], [24], and 

hourly or day-ahead renewable energy forecast [7], [25] to 

manage the available power generation. However, there is a 

little-published data that investigated the impact of these 

prediction errors on the domestic peak power demand 

management. Considering the previous research gaps, this 

paper aims to explore the consequences of prediction errors and 

their techniques on energy management. There are several areas 

where this study makes an original contribution such as 

o modeling a real-time peak power demand management 

system using PVs, EVs and battery energy storage 

systems;  

o designing and implementing a peak power demand 

management system using artificial neural networks 

(ANN) and autoregressive moving average (ARMA)-

based prediction techniques; 

o conducting a comparative study of the performance of 

ANN and ARMA in the peak power demand 

management; 

o analyzing the impact of prediction errors on the 

performance of a domestic energy management systems;  

o investigating the effect of prediction errors on the 

performance of battery energy storage systems and 

quantifying them; and 

o defining a relationship between power demand, 

temperature, humidity and solar insolation, based on the 

environmental parameters, leading to the development of 

day-ahead uncertainty detection technique and an 

intelligent boundary setpoints determination technique 

for better demand management.  

II.  RELATED PREVIOUS STUDIES 

A large number of authors utilized various forecasting 

techniques in several power system applications and research 

objectives. The most common forecasting techniques include 

time-series models, wavelet neural networks, regression 

methods, neural networks model, fuzzy logic, expert systems, 

and support vector machines (SVM) [20], [21], [26]. The time-

series models are comprised of various approaches such as 

autoregressive moving average (a combination of 

autoregressive and moving average models), autoregressive 

moving average with exogenous variables, autoregressive 

integrated moving average and autoregressive integrated 

moving average with exogenous variables [20], [21], [26]. 

These techniques are applied in both short-term and long-term 

forecasting for control decisions, planning and management 

purposes [7], [8], [23]. The short-term forecasting, which is 

usually day-ahead, hourly or half-hourly, is applied to predict 

the consumers power demand, local renewable energy 

generation capability (roof-top PVs and wind power 

generation) identification, electricity dispatch and generator 

capacity scheduling, spinning reserve calculations, and used as 

an operational signal for energy management devices and 

information to utilities for reliability assessment [8], [22], [23], 

[27]. The long-term forecasting, which is usually weekly, 

monthly, half-yearly or yearly, is applied for the planning and 

expansion decision such as generator maintenance, network 

expansion, electricity price and energy market behaviour 

analysis [7], [22], [23], [26], [27]. The forecasting techniques 

applied to the customer-side perform the domestic load 

management, load shifting and day-ahead energy management 

[28]–[31]. However, little attention is paid to the use of 

forecasting techniques for peak load management using 

customers’ available energy resources. Although some of the 

authors considered the amount of prediction errors while 

applying the prediction techniques to their objectives, there has 

been no detailed investigation to quantify these percentage of 

errors in terms of energy loss, i.e. the kWh battery power loss 

due to wrong cycling of battery storage. Considering these 

research gaps, this paper aims to explore the consequences of 

prediction errors and their techniques on energy management. 

III.  PREDICTION TECHNIQUES 

A.  Autoregressive Moving Average 

An autoregressive moving average (ARMA) based 

technique (𝐴𝑅𝑀𝐴(𝑚, 𝑛)) is the combination of two models, 

i.e., autoregressive 𝐴𝑅(𝑚) and moving average 𝑀𝐴(𝑛) model. 

The 𝐴𝑅(𝑚) model includes the future values of its variables 

(maintaining a linear combination of its past observations), a 

constant, and a random error, and is given as: 

𝑦𝑡 =∑∅𝑖𝑦𝑡−𝑖

𝑚

𝑖=1

+ 𝜁𝑡 + 𝒞 

                  = ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 +⋯+ ∅𝑚𝑦𝑡−𝑚 + 𝜁𝑡
+ 𝒞 

 

(1) 

where 𝜁𝑡  is the random error, 𝒞 is a constant, ∅𝑖 are model 

parameters, 𝑚 is the order of the model. On the other hand, 

moving average 𝑀𝐴(𝑛) model uses the past errors to predict 

future values, and modeled as: 

𝑦𝑡 =∑𝜕𝑗𝜁𝑡−𝑗

𝑛

𝑗=1

+ 𝜁𝑡 + 𝒟 

                    = 𝜕1𝜁𝑡−1 + 𝜕2𝜁𝑡−2 +⋯+ 𝜕𝑛𝜁𝑡−𝑛 + 𝜁𝑡
+ 𝒟 

 

(2) 

where, 𝑛 is used to define the order of the MA model, 𝜕𝑗 is the 

model parameter, and the 𝒟 is the mean of the series. The noise 

considered in the model is assumed to be a white noise having 

a constant variance and zero mean, and follows the typical 

normal distribution. The combination of the AR and MA model 

forms a 𝐴𝑅𝑀𝐴(𝑚, 𝑛) time series, and can be represented as: 

𝑦𝑡 =∑∅𝑖𝑦𝑡−𝑖

𝑚

𝑖=1

+ 𝜁𝑡 + 𝒞 +∑𝜕𝑗𝜁𝑡−𝑗

𝑛

𝑗=1

 (3) 
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In a manipulated expression ARMA model can be presented 

using lag or backshift operators, e.g. 𝐿𝑦𝑡 = 𝑦𝑡−1. So, the 

ARMA model expression becomes 

𝐴𝑅𝑀𝐴 {
𝜁𝑡 = ∅(𝐿)𝑦𝑡   𝑓𝑜𝑟 𝐴𝑅(𝑚)

𝑦𝑡 = 𝜕(𝐿)𝜁𝑡  𝑓𝑜𝑟 𝑀𝐴(𝑛)
 

(4) 

𝐴𝑅𝑀𝐴 (𝑚, 𝑛) → {∅(𝐿)𝑦𝑡 = 𝜕(𝐿)𝜁𝑡 

𝑤ℎ𝑒𝑟𝑒 ∅(𝐿) = {1 −∑∅𝑖

𝑚

𝑖=1

𝐿𝑖} , 𝜕(𝐿)

= {1 +∑𝜕𝑗

𝑛

𝑗=1

𝐿𝑗} 

 

(5) 

The performance of the ARMA model while applied to predict 

the household power demand is shown in Figs 1 and 2. Two 

different household power demand is used to test the 

performance of ARMA prediction. The household power 

demand as shown in Fig. 1 is used to model the ARMA 

prediction technique and then, it is applied for a different time 

duration of the same house. The same model is used for a 

different household power demand in Fig. 2 to test its 

performance. 

 
Fig. 1. ARMA-based consumer’s load demand prediction performance (applied 

at house 1).  

 
Fig. 2. ARMA-based consumer’s load demand prediction performance (applied 
at house 2, which has a different load pattern and is unknown to initial 

modeling).  
 

The order (m, n) of ARMA, has an impact on the prediction 

performance, as shown in (1-5. In Fig. 1, the orders 55 and 56 

show a slight prediction variation. However, the variation is 

more evident in Fig. 2, where m, n are 46 and 56 respectively.  

B.  Artificial Neural Network 

Artificial neural networks (ANN) is an alternate way to 

predict the time series in the domestic load curve. The ANN is 

self-adaptive, and data-driven that performs better for any 

nonlinear and complex data patterns unlike any traditional 

approaches. The architecture of the feed-forward neural 

network is shown in Fig. 3. 
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Fig. 3. A schematic of the feed forward neural networks. 

The ANN has various hidden layers in between inputs and 

outputs. If the feed forward neural has 𝑔 number of hidden 

layers, for the 𝑦𝑡−𝑖  (𝑖 = 1, 2, … , 𝑘) inputs to the hidden layers, 

the output (𝑦𝑡) is expressed as: 

𝑦𝑡 =∑𝛿𝑗𝑓 (𝛾0𝑗 +∑𝛾𝑖𝑗𝑦𝑡−𝑖

𝑘

𝑖=1

) + 𝛿0 + 𝜎𝑡 , ∀𝑡

𝑔

𝑗=1

 (6) 

where 𝑘 is used to defined the number of inputs to the ANN, 𝛿0 

is a bias term, the weights from/to hidden layers are defined 

using 𝛾𝑖𝑗  (𝑖 = 0, 1, 2, … . . , 𝑘; 𝑗 = 0, 1, 2, …… . , 𝑔) and 𝛿𝑗 (𝑗 =

0, 1, 2, … . . , 𝑔), 𝜎𝑡 is a random shock, and 𝛾0𝑗 is a bias term. The 

𝑓(𝑥) =
1

1+𝑒−𝑥
 in equation 6 is a logistic sigmoid function and 

used as a nonlinear activation function. The Gaussian, linear, or 

hyperbolic tangent functions can be an alternative of this 

nonlinear activation function. In case of the feed forward neural 

networks, it uses past observations to map nonlinear functions 

and generate a time series of its future values. For example, the 

predicted future value is given as: 

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3, … . . , 𝑦𝑡−𝑘 , 𝒵) + 𝜎𝑡 (7) 

where, 𝒵 is the vector of all parameters. The function 𝑓(𝑥) is 

set based on the structure of the networks and the weights 

from/to hidden layers. A nonlinear least square method is used 

to determine the weights between the connections, and it 

functions of minimize the value of error function. If 𝜛 is 

denoted as the space of all connection weights, the 

minimization error function will be 

𝐹(𝜛) =∑𝑒𝑡
2

𝑡

 (8) 

𝐹(𝜛) =∑(𝑦𝑡 − �̂�𝑡)
2

𝑡

 (9) 

ANN-based consumer’s load demand prediction performance is 

shown in Figs. 4 and 5. Alike ARMA, two different household 

power demand (H1 and H2) is used to test the ANN-based 

prediction performance under various scenario. The consumer’s 

load demand (H1) in Fig. 4 is used to model the ANN prediction 

technique and then it is applied for a different time duration of 

the same house. The same model is used for a different 

household power demand (H2) in Fig. 5 to test its performance.  
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Fig. 4. ANN-based consumer’s load demand prediction performance (applied 

at H1).  

 
Fig. 5. ANN-based consumer’s load demand prediction performance (applied 

at H2, which has a different load pattern and is unknown to initial modeling). 

C.  Prediction Performance During Uncertainty 

In this section, the performance of ARMA and ANN-based 

prediction techniques under uncertainty is analyzed. Initially, 

uncertainty is added to the load curve of house 1 based on which 

the ARMA is modeled, as shown in Fig. 6. Afterwards, 

uncertainty is added to the second house, and the prediction 

performance is analyzed in Fig. 7. Like ARMA, ANN is also 

used to observe its performance during power demand 

uncertainty. From Figs. 6-8, it is clear that the performance of 

the ANN-based prediction is better than that of an ARMA-

based prediction.  

 
Fig. 6. Performance of the ARMA-based household power demand prediction 

during uncertainty at house 1 (based on which ARMA technique is modeled). 

 
Fig. 7. ARMA-based consumer’s load demand prediction performance during 

uncertainty (applied at house 2, which has a different load pattern). 

 
Fig. 8. ANN-based consumer’s load demand prediction performance during 
uncertainty (applied at house 2, which has a different load pattern). 

IV.  PEAK POWER DEMAND MANAGEMENT  

     The proposed system consists of a BESSs, a vehicle-to-grid 

(V2G)-capable EV and a PV. A schematic of the system is 

shown in Fig. 9.  
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Fig. 9. Schematic of the proposed system. 

The EV is plugged to the domestic AC bus (main bus of the 

house) using a V2G-capable charger. Basically, this charger is 

a bidirectional AC-DC/DC-AC converter (converter 1, as 

shown in Fig. 9). Another intermediate DC bus is used to 

integrate BESSs and PV unit using a bidirectional DC-DC 

converter (converter 3, as shown in Fig. 9) and a unidirectional 

DC-DC converter (converter 2), respectively. This intermediate 

DC bus is interconnected to the main bus (AC bus) using a 

bidirectional DC to AC and AC to DC converter. The controller 

reads the state-of-charge (SOC) of the battery and EV, PV 

power generation, and domestic power demand to manage the 

peak load condition through a controlled discharging and 

charging of EV and battery storage systems. 

Consumers load demand and their roof-top PV power 

generation are predicted using ARMA and ANN-based 

techniques to manage their power demand day ahead of the 

actual operation. Based on these predicted values and some 

other parameter (e.g. battery and EV SOC and their charging-

discharging boundaries, EV availability) peak load is managed. 

The performance of the PV power generation prediction during 

normal and uncertainty states are shown in Figs. 10 and 11 

respectively.   

 
Fig. 10. The performance of the ARMA and ANN-based prediction for PV 

power generation under normal conditions.  
 



 5 

 
Fig. 11. The performance of the ARMA and ANN-based prediction for PV 

power generation during uncertainty.  

Let us assume that the domestic power demand (𝔇𝑡
𝑝
) and the 

customers’ desired base load demand (�̂�𝑡
𝑝
) are functions of 

power and time, and expressed as [19]: 

𝔇𝑡
𝑝
= 𝑓(𝑝, 𝑡) (10) 

�̂�𝑡
𝑝
= 𝑓(𝑝𝜏, 𝑡) (11) 

The time (𝑡) is the summation of both base-load (𝑡𝑏) and peak 

load (𝑡𝑝) periods and given as: 

𝑡 = 𝒶(∑ 𝑡𝑏

𝑡=𝑡𝑏
𝑒

𝑡=𝑡𝑏
𝑠

) + 𝒷(∑ 𝑡𝑝

𝑡=𝑡𝑝
𝑒

𝑡=𝑡𝑝
𝑠

) (12) 

where, 𝑡𝑏
𝑠 and 𝑡𝑝

𝑠  are the time when base load and peak load 

periods start. Likewise, 𝑡𝑏
𝑒 and 𝑡𝑝

𝑒 are the time when base and 

peak load periods end. 𝒶 and 𝒷 in equation 12 define the base 

and peak load occurrence frequency, respectively, for a 

particular time period. The off-peak (base load) and peak load 

periods are determined through a comparison with the 

customers’ desired base load demand (�̂�𝑡
𝑝
), i.e. 

(𝔇𝑡
𝑝
− �̂�𝑡

𝑝
) {
+𝑣𝑒 𝑓𝑜𝑟 𝑝𝑒𝑎𝑘 𝑙𝑜𝑎𝑑 
−𝑣𝑒 𝑓𝑜𝑟 𝑜𝑓𝑓 − 𝑝𝑒𝑎𝑘

 (13) 

At 𝑡𝑡ℎ (𝑡 ∈ 𝑡𝑏 , 𝑡𝑝) time, if the power demand is 𝔇𝑡
𝑝
> �̂�𝑡

𝑝
, the 

required power is supplied by the available energy resources, 

i.e. battery storage, PV, and EV will provide power to the 

common AC bus which are given as: 

𝒫𝑟 = 𝔇𝑡
𝑝
− �̂�𝑡

𝑝
, 𝒫𝑟 > 0 (14) 

𝒫𝑟 =∑( 𝒫𝑟
𝑏⏟

𝑏𝑎𝑡𝑡𝑒𝑟𝑦

, 𝒫𝑟
𝑒𝑣⏟
𝐸𝑉

, 𝒫𝑟
𝑝𝑣
⏟
𝑃𝑉

) (15) 

where, 𝒫𝑟
𝑏 , 𝒫𝑟

𝑒𝑣 , 𝒫𝑟
𝑝𝑣

 are the maximum available power from the 

BESSs, EV, and PV respectively. If the EV is not available, 

𝒫𝑟
𝑒𝑣 = 0. If ∑(𝒫𝑟

𝑏 , 𝒫𝑟
𝑒𝑣 , 𝒫𝑟

𝑝𝑣
) ≠ 𝒫𝑟 , the mismatch power, i.e. 

{𝒫𝑟 − ∑(𝒫𝑟
𝑏 , 𝒫𝑟

𝑒𝑣 , 𝒫𝑟
𝑝𝑣
)} is supplied by the grid. Let us assume 

the lower SOC boundary for EV and battery discharging are 

Θ𝑒𝑣
𝑚𝑖𝑛 , and Θ𝑏

𝑚𝑖𝑛  respectively. If the SOC of EV and BESSs at 

𝑡𝑡ℎ (𝑡 ∈ 𝑡𝑏 , 𝑡𝑝) time is Θ𝑒𝑣
𝑡  and Θ𝑏

𝑡 , respectively, the maximum 

available power from EV and battery is written as: 

�̂�𝑟
𝑒𝑣 = {(Θ𝑒𝑣

𝑡 − Θ𝑒𝑣
𝑚𝑖𝑛) ∗ Π𝑐

𝑒𝑣} ∗ 𝜂1  

𝑓𝑜𝑟 Θ𝑒𝑣
𝑡 > Θ𝑒𝑣

𝑚𝑖𝑛 , �̂�𝑟
𝑒𝑣 ∈ 𝒫𝑟

𝑒𝑣  
(16) 

�̂�𝑟
𝑏 = {(Θ𝑏

𝑡 − Θ𝑏
𝑚𝑖𝑛) ∗ Π𝑐

𝑏} ∗ 𝜂3 ∗ 𝜂4  

𝑓𝑜𝑟 Θ𝑏
𝑡 > Θ𝑏

𝑚𝑖𝑛 , �̂�𝑟
𝑏 ∈ 𝒫𝑟

𝑏  
(17) 

where, Π𝑐
𝑒𝑣 and Π𝑐

𝑏 are the EV and battery storage capacity, 

respectively. 𝜂1, 𝜂3, 𝜂4 are the efficiencies of the converter 1 

(V2G-capable EV charger), converter 3 and converter 4, 

respectively.  

At 𝑡𝑡ℎ (𝑡 ∈ 𝑡𝑏 , 𝑡𝑝) time, if the power demand is �̂�𝑡
𝑝
> 𝔇𝑡

𝑝
, the 

energy storages (i.e. EV and battery storage) can charge from 

the available grid power (𝒫𝑔) from the AC bus and it is given 

as:  

𝒫𝑔 = �̂�𝑡
𝑝
−𝔇𝑡

𝑝
, 𝒫𝑔 > 0 (18) 

This available grid power (𝒫𝑔) will be divided among the 

battery storage and EV, i.e. 

𝒫𝑔 = {𝒫𝑔
𝑏 − 𝒫𝑝𝑣}⏟      
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

+𝒫𝑔
𝑒𝑣
⏟
𝐸𝑉

 (19) 

𝒫𝑝𝑣 = 𝒩 ∗ 𝒫0
1 ∗ 𝜂2 (20) 

where, 𝒫𝑝𝑣  is the PV power generation, 𝒫0
1 is the output power 

from a single PV unit, 𝒩 is the number of PV modules, 𝜂2 is 

the efficiency of the converter 2. The required power to charge 

battery and EV in (19) depends on the SOC status and 

maximum charging limits. Let us assume that the maximum 

charging limits for battery and EV are Θ𝑏
𝑚𝑎𝑥 , and Θ𝑒𝑣

𝑚𝑎𝑥  

respectively. So, the maximum requested power by the battery 

and EV (�̂�𝑔
𝑏) is given as: 

�̂�𝑔
𝑏 = {(Θ𝑏

𝑚𝑎𝑥 − Θ𝑏
𝑡 ) ∗ Π𝑐

𝑏} ∗ 𝜂3 ∗ 𝜂4  

𝑓𝑜𝑟 Θ𝑏
𝑡 < Θ𝑏

𝑚𝑎𝑥 , �̂�𝑔
𝑏 ∈ 𝒫𝑔

𝑏 
(21) 

�̂�𝑔
𝑒𝑣 = {(Θ𝑒𝑣

𝑚𝑎𝑥 − Θ𝑒𝑣
𝑡 ) ∗ Π𝑐

𝑒𝑣} ∗ 𝜂1  

𝑓𝑜𝑟 Θ𝑒𝑣
𝑡 < Θ𝑏

𝑚𝑎𝑥 , �̂�𝑔
𝑒𝑣 ∈ 𝒫𝑔

𝑒𝑣  
(22) 

where �̂�𝑔
𝑏 ∈ 𝒫𝑔

𝑏 and �̂�𝑔
𝑒𝑣 ∈ 𝒫𝑔

𝑒𝑣 . Considering the charging-

discharging strategies, the number of energy sources and loads 

connected to the main bus changes over the peak and off-peak 

load periods. The sources and loads connected to the main bus 

at a particular time is expressed as [19]: 

𝐿𝑜𝑎𝑑𝑠

{
 
 

 
 

𝔇𝑡
𝑝
⏟

𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠

[{(Θ𝑏
𝑚𝑎𝑥 − Θ𝑏

𝑡 ) ∗ Π𝑐
𝑏} ∗ 𝜂3 ∗ 𝜂4]⏟                    

𝑏𝑎𝑡𝑡𝑒𝑟𝑦

[{(Θ𝑒𝑣
𝑚𝑎𝑥 − Θ𝑒𝑣

𝑡 ) ∗ Π𝑐
𝑒𝑣} ∗ 𝜂1]⏟                  

𝐸𝑉

  𝑓𝑜𝑟 𝔇𝑡
𝑝
< �̂�𝑡

𝑝
 

 

(23) 

𝑆𝑜𝑢𝑟𝑐𝑒𝑠

{
 
 

 
 
[{(Θ𝑏

𝑡 − Θ𝑏
𝑚𝑖𝑛) ∗ Π𝑐

𝑏} ∗ 𝜂3 ∗ 𝜂4]⏟                    
𝑏𝑎𝑡𝑡𝑒𝑟𝑦

[{(Θ𝑒𝑣
𝑡 − Θ𝑒𝑣

𝑚𝑖𝑛) ∗ Π𝑐
𝑒𝑣} ∗ 𝜂1]⏟                  

𝐸𝑉

[𝒩 ∗ 𝒫0
1 ∗ 𝜂2]⏟        

𝑃𝑉

𝑓𝑜𝑟 𝔇𝑡
𝑝
> �̂�𝑡

𝑝
 

 

(24) 

The polarity of the power flow identifies the charging-

discharging mode of the battery and EV. If the current flow 

from the battery, EV and PV are 𝒾𝒷 , 𝒾ℯ𝓋𝒾𝓅𝓋 , respectively, the 

equation becomes 

∀𝑖 ∈ 𝑓(𝑙𝑡
𝑝
, 𝑡) =

{
 
 

 
 𝒾ℯ𝓋 , 𝒾𝒷 < 0 𝑓𝑜𝑟 𝔇𝑡

𝑝
> �̂�𝑡

𝑝

𝒾ℯ𝓋 , 𝒾𝒷 > 0 𝑓𝑜𝑟 𝔇𝑡
𝑝
< �̂�𝑡

𝑝

𝒾𝓅𝓋 = 0 𝑓𝑜𝑟 𝒫𝑝𝑣 = 0

𝒾𝓅𝓋 > 0 𝑓𝑜𝑟 𝒫𝑝𝑣 > 0

 

 

(25) 
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The power demand management considering the real-time 

values of load curve, charging-discharging boundaries of 

battery and EV is illustrated in algorithm 1.  

Algorithm 1: real-time power demand management 

1: Acquire: power demand 𝔇𝑡
𝑝
= 𝑓(𝑝, 𝑡) and set the value 

�̂�𝑡
𝑝
 

2: while (𝔇𝑡
𝑝
< �̂�𝑡

𝑝
){ 

3:      calculate: the available power 𝒫𝑔 

4: 
 

check: boundary conditions of battery storage 

Π𝑐
𝑏 , Θ𝑏

𝑡 , Θ𝑏
𝑚𝑎𝑥 and calculate �̂�𝑔

𝑏 

5: 
 

check: availability of EV and its boundary conditions 

Π𝑐
𝑒𝑣, Θ𝑒𝑣

𝑡 , Θ𝑒𝑣
𝑚𝑎𝑥 and calculate �̂�𝑔

𝑒𝑣         

6: 
 

check: PV power generation 𝒫𝑝𝑣 

7: 
 

if 𝒫𝑝𝑣 > 0 

8: 
 

 calculate (𝒫𝑔
𝑏 −𝒫𝑝𝑣) and divide 𝒫𝑔 power to 

{𝒫𝑔
𝑏 −𝒫𝑝𝑣} and 𝒫𝑔

𝑒𝑣 

9: 
 

elseif 𝒫𝑝𝑣 = 0 

10: 
 

 divide 𝒫𝑔 power to 𝒫𝑔
𝑏 and 𝒫𝑔

𝑒𝑣 

11: 
 

 continue process and check condition in 2 

12: while (𝔇𝑡
𝑝
> �̂�𝑡

𝑝
){ 

13: 
 

calculate: the required load-support from sources 𝒫𝑟 

14: 
 

check: PV power generation 𝒫𝑝𝑣 

15: 
 

if 𝒫𝑝𝑣 > 𝒫𝑟 

16: 
 

 𝒫𝑝𝑣 → 𝒫𝑟 

17: 
 

elseif 𝒫𝑝𝑣 < 𝒫𝑟 

18: 
 

 check: availability of EV and its boundary 

conditions Π𝑐
𝑒𝑣 , Θ𝑒𝑣

𝑡 , Θ𝑒𝑣
𝑚𝑖𝑛 and calculate �̂�𝑟

𝑒𝑣 

19: 
 

 if (𝒫𝑝𝑣 + �̂�𝑟
𝑒𝑣) > 𝒫𝑟 

20: 
 

     (𝒫𝑝𝑣 + �̂�𝑟
𝑒𝑣) → 𝒫𝑟 

21: 
 

 else 

22: 
 

  check: boundary conditions of battery storage 

Π𝑐
𝑏 , Θ𝑏

𝑡 , Θ𝑏
𝑚𝑖𝑛 and calculate �̂�𝑟

𝑏 

23: 
 

  𝒫𝑟 →∑(𝒫𝑟
𝑏, 𝒫𝑟

𝑒𝑣 , 𝒫𝑟
𝑝𝑣
 ) 

24: 
 

  Continue the process and check the conditions in 

2 and 12 

Let us assume that the load demand of consumers and their PV 

power generation using ANN prediction (as shown in equations 

6-7) are 𝔇𝑡,𝑝
𝑎𝑛𝑛and 𝒫𝑝𝑣

𝑎𝑛𝑛, respectively. The error between the 

predicted and actual values in consumers load demand and their 

PV power generation capability is expressed as: 

𝜆 = 𝔇𝑡
𝑝
−𝔇𝑡,𝑝

𝑎𝑛𝑛 (26) 

Υ = 𝒫𝑝𝑣 − 𝒫𝑝𝑣
𝑎𝑛𝑛 (27) 

where, 𝜆 is the error in the power demand prediction and Υ is 

the error in PV power prediction. Based on this prediction value 

power demand management will be executed as described in 

algorithm 2. 

Algorithm 2: power demand management with ANN prediction 

1: Initialization: set the parameter of 𝑦𝑡−𝑖, 𝑦𝑡, 𝒫𝑝𝑣
𝑡−1, 𝒫𝑝𝑣

𝑡 , 

where (𝒫𝑝𝑣
𝑡−1, 𝒫𝑝𝑣

𝑡 ) ∈ {𝒫𝑝𝑣 = 𝒩 ∗ 𝒫0
1 ∗ 𝜂2} and 

(𝑦𝑡−𝑖 , 𝑦𝑡) ∈ 𝔇𝑡
𝑝

 

2:  set number of hidden layers and the training algorithm 

to the Bayesian Regularization. 

3:  train the feed forward neural networks for power 

demand with 𝑦𝑡−𝑖 and 𝑦𝑡 data, where 𝑦𝑡  = 𝑓(𝑝, 𝑡) 

4:  train the feed forward neural networks for PV with 𝒫𝑝𝑣
𝑡−1 

and 𝒫𝑝𝑣
𝑡  

5: Prediction: get the predicted power demand 𝑦𝑡, 𝑦𝑡−𝑖 ∈

𝔇𝑡,𝑝
𝑎𝑛𝑛 = 𝑓(𝑝, 𝑡) and set the value �̂�𝑡

𝑝
 

6: continue with algorithm 1: step 2- 5 

7: prediction: PV power generation 𝒫𝑝𝑣
𝑡  

8: continue with 𝒫𝑝𝑣
𝑡  with algorithm 1: step 7- 13 

9: prediction: PV power generation 𝒫𝑝𝑣
𝑡  

10: continue with 𝒫𝑝𝑣
𝑡  with algorithm 1: step 15-24 

Let us assume that the load demand of customers and their PV 

power generation using ARMA prediction (as shown in 

equation 3) are 𝔇𝑡,𝑝
𝑎𝑟𝑚𝑎and 𝒫𝑝𝑣

𝑎𝑟𝑚𝑎, respectively. The error 

between the predicted and actual values in load demand of 

consumers and their PV power generation is expressed as: 

𝛼 = 𝔇𝑡
𝑝
−𝔇𝑡,𝑝

𝑎𝑟𝑚𝑎 (28) 

𝛽 = 𝒫𝑝𝑣 − 𝒫𝑝𝑣
𝑎𝑟𝑚𝑎  (29) 

where, 𝛼 is the error in the power demand prediction and 𝛽 is 

the error in PV power prediction. Based on this prediction value 

power demand management will be executed as described in 

algorithm 3. 

Algorithm 3: power demand management with ARMA prediction 

1: Initialization: set the parameter of 𝑦𝑡−𝑖, 𝑦𝑡, 𝒫𝑝𝑣
𝑡−1, 𝒫𝑝𝑣

𝑡 , where 

(𝒫𝑝𝑣
𝑡−1, 𝒫𝑝𝑣

𝑡 ) ∈ {𝒫𝑝𝑣 = 𝒩 ∗ 𝒫0
1 ∗ 𝜂2} 

2: set the order, 𝐴𝑅(𝑚) and 𝑀𝐴(𝑚), 𝐴𝑅𝑀𝐴(𝑚, 𝑛) 

3: set the 𝑦𝑡−𝑖 and 𝒫𝑝𝑣
𝑡−1 to predict 𝔇𝑡,𝑝

𝑎𝑟𝑚𝑎 and 𝒫𝑝𝑣
𝑎𝑟𝑚𝑎, where 

(𝑦𝑡, 𝑦𝑡−𝑖 , 𝔇𝑡,𝑝
𝑎𝑟𝑚𝑎) ∈ {𝔇𝑡

𝑝
= 𝑓(𝑝, 𝑡)} and (𝒫𝑝𝑣

𝑡−1, 𝒫𝑝𝑣
𝑡 , 𝒫𝑝𝑣

𝑎𝑟𝑚𝑎) ∈

𝒫𝑝𝑣 

4: follow algorithm 2: step 5-10 

V.  CASE STUDIES 

     In this section, various case studies using the proposed 

control algorithm are presented. The case studies are conducted 

based on a real Australian power network, located in Nelson 

Bay, NSW, Australia. This real network data is obtained from 

the ‘Smart Grid, Smart City (SGSC)’ database, maintained by 

Ausgrid [32], [33]. A single line diagram of the network is 

shown in Fig. 12 [32], [33]. This is a large network divided into 

Nelson Bay and Tomaree zone, with more than 17,000 

customers [32], [33]. The real PV power generation data is 

generated by incorporating the local weather data to the module, 

which is also predicted using ARMA and ANN techniques.  

… 
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Fig. 12. Singe line diagram of the power distribution network and the test location of the proposed system.   

The performance of algorithm 1 while testing at house 1 are 

shown in Figs. 13 and 14. Algorithm 1 is modeled based on the 

load profile of house 1. Fig. 14 shows the performance of house 

1 when an uncertainty is added on a different time scale. The 

parameters used in the analysis are listed in Table I.  

 
Fig. 13. The performance of the real-time energy management using algorithm 

1 at H1.  

 
Fig. 14. Real-time energy management performance, while algorithm 1 is used 

and applied at H1 during uncertainty.  

TABLE I  

Specification of the components used in the analysis 

Components Values 

Battery storage and its 

boundaries 
Π𝑐
𝑏 = 3 𝑘𝑊ℎ, Θ𝑏

𝑚𝑖𝑛 = 40%, Θ𝑏
𝑚𝑎𝑥 =

95% 

PV capacity 1.5 kW 

EV and its bounadies Π𝑐
𝑒𝑣 = 24 𝑘𝑊ℎ, for V2G Θ𝑒𝑣

𝑚𝑖𝑛 = 85%, 

Θ𝑒𝑣
𝑚𝑎𝑥 = 95% 

Fig. 14 shows that the real-time algorithm performs better even 

during uncertainty. To test their robust behavior, the same 

algorithm is tested at house 2 (H2) having a different load 

pattern, and the performance is shown in Fig. 15. Uncertainty 

in that different load pattern is added and the performance is 

shown in Fig. 16.   

 
Fig. 15. Real-time energy management performance, while algorithm 1 is used 
and applied at H2 (which has a different load pattern). 

 
Fig. 16. Real-time energy management performance, while algorithm 1 is used 

and applied at H2 during uncertainty (H2 has a different load pattern). 

From Figs. 15 and 16, it is clear that algorithm 1 shows a robust 

behavior even when applied to an unknown load pattern and 

during uncertain conditions. Afterwards, the ANN and ARMA 

prediction-based power demand management algorithm 

(algorithm 2 and 3) is applied at house 1 during both normal 

and uncertainty conditions, as shown in Figs. 17 and 18. A 

quantitative comparison of ANN and ARMA-based prediction 

and their energy management performance in compared to real-

time energy management and shown in Table II.  
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Fig. 17. Power demand management at house 1 using ANN and ARMA 

prediction-based techniques.  

 
Fig. 18. Power demand management performance at house 1 during uncertainty 
using ANN and ARMA prediction-based techniques. 

TABLE II  

The performance of ANN and ARMA-based prediction, and their energy 

management (EM) 

Obser
vation 

No 

Actual 
Load 
(W) 

ANN 
Prediction 

(W) 

ARMA 
predicti
on 

(W) 

Real-
time 
EM 
(W) 

ANN-
based 
EM 
(W) 

ARMA-
based 
EM (W) 

1 2886.7 2256.8 2805.1 2609.5 2205.6 2768.1 

2 1545.5 2149.8 1987.6 1810.5 2149.8 2058.1 

3 2354.4 2136.6 1658.9 2190.8 2136.6 1992.4 

4 3364.7 2698.9 3305.9 3048.6 2098.9 3018.6 

5 3005.6 2875.1 3357.6 2869.1 2802.5 3044.4 

6 3286.2 2885.9 3120.1 2939.7 2807.9 2925.7 

From Figs. 17, 18 and Table II, it is clear that the error in 

prediction, i.e. the values of (𝛼, 𝛽) dictates the amount of errors 

in power demand management. This error becomes severe 

when the load profile or PV power generation encounter any 

uncertainty. When (𝛼) and (𝛽) increases, the required power 

(𝒫𝑟) from the energy resources during (𝑡𝑝), and the available 

power (𝒫𝑔) for charging battery storages and EV during (𝑡𝑏) 

will mismatch. The impact of this error is further tested by 

applying at house 2 (H2), as shown in Figs. 19 and 20.  

 
Fig. 19. ANN and ARMA prediction-based power demand management 

performance when tested at house 2 (different load pattern).   

 
Fig. 20. ANN and ARMA prediction-based power demand management 

performance when tested at house 2 during uncertainty.    

From Figs. 19 and 20, it is clear that the impact of prediction 

error becomes more severe when it is applied to an unknown 

network (different from the original network based on which 

the system is modeled). This is because the ARMA-based 

prediction depends on the order of AR and MA (m, n) which 

becomes untuned in an unknown network. In case of ANN, 

during training stage, it creates relationship between the inputs 

and targets, and on the new systems it works based on that 

relationship. The amount of prediction error and their impact on 

both H1 and H2 are shown in Figs. 21 and 22.  

 
Fig. 21. The percentage of prediction error and the energy management (EM) 

error (in watts) during power demand management at H1.  

 
Fig. 22. The percentage of prediction error and the energy management (EM) 

error (in watts) during power demand management at H2.  

From Figs. 21 and 22, it is clear that the ANN-based system 

performs better than the ARMA-based system in a known 

model. However, it performs worse than the ARMA-based 
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system in an unknown network. In most cases, the prediction 

error is compensated using a battery energy storage system. 

Therefore, in this analysis, BESSs is used to compensate for the 

prediction error. For a 16-day analysis at H1 for both ANN and 

ARMA, up to 0.38 kWh battery storage is wasted either in 

wrong cycling or compensating prediction error, as shown in 

Fig. 23. This value increases up to 0.90 kWh at H2, as shown 

in Fig. 24. 

 
Fig. 23. kWh energy loss (error compensation energy) in each day of a 16 days 

analysis at H1. 

 
Fig. 24. kWh energy loss (error compensation energy) in each day of a 16 days 

analysis at H2. 

A summary of the findings on prediction process is listed in 

Table III. 

Table III. Summary of the findings on prediction errors. 

Findings Reason/description 

ARMA performs better when 

the data pattern (trend) is 

similar, i.e., without having any 

uncertainty. 

ARMA model includes the future values 

of its variables (maintaining a linear 

combination of its past observations), a 

constant, and a random error. So, for a 

regular trend or repetitive data pattern 

having no uncertainty, it is easier to set 

the model order of AR and MA model, 

which helps ARMA model to predict 

better.  

The performance of an ARMA 

model debase when applied to a 

new system having uncertainty. 

ARMA predicts based on the AR and 

MA polynomials, and it is highly 

dependent on the model order. So, for a 

new system and having unknown data 

trend and uncertainty, the tuning of the 

model order loses and degrade the 

prediction performance. 

ANN-based prediction 

performs slightly better than 

that of an ARMA-based 

prediction in case of a new 

system. 

The ANN-based model uses its past 

observations to map nonlinear functions 

and generate a time series of its future 

values. Unlike ARMA it is not 

dependent on any model order. During 

the training stage, it creates relationship 

between the inputs and targets, and on 

the new systems it works based on that 

relationship. 

Higher percentage of prediction 

errors may cost more to 

consumers. 

If consumer’s energy management 

systems are dependent on predictions, 

any percentage of errors in prediction 

will enhance the chances of wrong 

battery storage cycling. It will degrade 

the battery lifetime and the EMS may 

not reduce the grid load demand of 

customers. 

 

    The investigations in Figs. 18 and 20 show that the prediction 

process provides a significant percentage of errors during 

uncertainty, which ultimately impacts the power demand 

management systems. As a substantial portion of appliances 

and energy resources of the consumers are dependent on 

weather conditions, consideration of environmental parameter 

may help the prediction and demand management systems. The 

case studies conducted in this section considered the real 

weather conditions and power networks, as shown in Fig. 12. 

therefore, the impact of real environmental parameters in the 

test location such as solar insolation, temperature and humidity 

on the power consumption behavior of consumers for 16 days 

are investigated in Figs 25 and 26. Fig. 25 shows that for the 

particular area like Nelson Bay, NSW, the power consumption 

during February and March is proportional to the temperature, 

i.e. the power consumption increases when the temperature 

increases. However, if the temperature goes too low, the power 

consumption behavior may show inverse relationship, because 

in that case the consumers may use heating systems, and which 

will increase the consumption. On the other hand, the humidity 

is inversely related to the power consumption behavior for this 

particular time and area.  

 

Fig. 25. Impact of weather and humidity to the energy consumption of the 

consumers.  

The solar insolation rate also impacts the power consumption 

behavior. As most of the consumers have a roof-top PV, the 

higher the solar insolation, the more is the PV power generation, 

which decreases the grid’s dependency of the consumers. This 

is evident from Fig. 26 which shows a declining trend in grid 

power demand of consumers with increasing solar insolation, 

i.e. inverse relationship. 
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Fig. 26. Impact of solar insolation to the energy consumption of the consumers. 

    As the prediction errors cannot be avoided, environmental 

parameters (temperature, humidity and solar insolation rate) are 

essential to precisely identify the power demand uncertainty. 

Moreover, the location-specific historical data of these 

parameters are easily accessible, and it minimizes the need for 

any real-time, expensive and sophisticated data acquisition 

devices. The incorporation of these parameters to the demand 

management system can help to quickly identify the day-ahead 

uncertainty, take measures to meet extra power demand and 

avoid expensive grid electricity during peak grid uncertainty 

periods. Moreover, uncertainty detection can also be used to 

intelligently set the energy storages’ (battery storage and EV) 

boundary conditions. As shown in Fig. 27, temperature and 

humidity data are used to identify the day-ahead uncertainty in 

the power demand and intelligently set the battery discharging 

setpoints. It shows that out of four days, first and last day has a 

significantly high-power demand, where the temperature also 

goes to the upper peak and humidity goes to the lower peak. 

Based on these parameters, the lower discharging setpoint of 

EV is set to 75% and the battery is set to 20% and 25% for day 

one and four, respectively. By using this early uncertainty 

detection and boundary set technique, the grid load demand can 

be significantly reduced.  

 

Fig. 27. Uncertainty detection and demand management considering local 

weather conditions.  

A summary of the findings on the uncertainty detection is 

provided in Table IV. 

Table III. Summary of the findings on uncertainty detection. 

Findings Description 

An early uncertainty detection may 

help to minimize the grid power 

demand by enabling the battery 
storage functioning boundary 

change. 

All the time-series based prediction 

techniques are dependent on its 

previous data history, and it 
degrades their performance during 

uncertainty. As prediction errors are 

unavoidable, an early detection of 
uncertainties may help EMS to set 

its energy storage’s charging-
discharging boundary, and it may 

help consumers to reduce grid 

dependency during high electricity 

costs. 

Temperature has a proportional 

relationship with load demand 

(during a particular time/season) 

When the temperature increases, 

consumers turn on their cooling 

devices which increase the power 
demand. This relationship is valid 

for summer season. However, if the 

temperature goes too low, the power 
consumption behavior may show 

inverse relationship, because in that 

case the consumers may use heating 
systems, and which will increase the 

consumption. 

The humidity is inversely related to 
the power consumption behavior for 

a particular time and area. 

Humidity sometimes dictates the 
human comfort factors, which may 

encourage customers to turn-on 

some devices to make their living 
area comfortable. However, 

humidity maybe highly dependent 

on the location, human adaptability 

with the weather, temperature etc. 

So, the inverse relation of humidity 

of weather may change if the 
location, time, consumers are 

changed.  

Solar insolation rate is inversely 
related to the grid power demand of 

consumers having roof-top PVs. 

The higher the solar insolation, the 
more is the PV power generation. 

So, the grid load demand of a 

consumer having roof-top PV will 
reduce if the solar insolation 

increases.  

VI.  CONCLUSION 

The aim of this paper is to investigate the impact of 

prediction errors on the domestic peak power demand 

management. The study has shown that both ARMA and ANN-

based techniques create errors while predicting load demand 

and renewable energy generation. This error becomes 

substantial when it is applied to a new and unknown system and 

faces uncertainty conditions. As a consequence, a significant 

amount of power demand management error is observed. The 

findings in various case studies suggest that a substantial 

capacity of battery storage is required to compensate this error, 

which increases battery cycling, decreases their lifecycle, and 

hence increases the energy cost. Moreover, the incorporation of 

weather information could identify the power demand 

uncertainties and use it for day-ahead power demand 

management. Future extension of this research could usefully 

explore the relationship between the percentage of prediction 

error to the electricity costs.    
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