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A Privacy-Preserving Framework based
Blockchain and Deep Learning for Protecting

Smart Power Networks
Marwa Keshk, Benjamin Turnbull, Nour Moustafa, Dinusha Vatsalan and Kim-Kwang Raymond Choo

Abstract—Modern power systems depend on Cyber-Physical Systems (CPSs) to link physical devices and control technologies. A
major concern in the implementation of smart power networks is to minimize the risk of data privacy violation (e.g., by adversaries
using data poisoning and inference attacks). In this paper, we propose a privacy-preserving framework to achieve both privacy and
security in smart power networks. The framework includes two main modules, namely: a two-level privacy module and an anomaly
detection module. In the two-level privacy module, an enhanced Proof of Work (ePoW) technique based blockchain is designed to
verify data integrity and mitigate data poisoning attacks, and a Variational AutoEncoder (VAE) is simultaneously applied for
transforming data into an encoded format for preventing inference attacks. In the anomaly detection module, a Long Short Term
Memory (LSTM) deep learning technique is used for training and validating the outputs of the two-level privacy module using two public
datasets. The results highlight that the proposed framework can efficiently protect data of smart power networks and discover
abnormal behaviors, in comparison to several state-of-the-art techniques.

Index Terms—Privacy preservation, blockchain, Proof-of-Work (PoW), deep learning, anomaly detection, CPS

F

1 INTRODUCTION

The modernization of power systems is of extreme in-
terest particularly to technologically advanced nations

such as Australia and U.S., as smart grids have the capacity
to optimize energy consumption and provide efficient solu-
tions. Cyber-physical systems (CPSs) can also be combined
to establish smart power networks that integrate physi-
cal and communication technologies and their elements
to increase the efficiency of power systems [1]. Individual
CPSs comprise cyber, physical and cyber-physical elements,
where cyber elements are those with no direct contact with
the physical world, physical elements are those with no
direct contact with cyber elements, and the third category
includes devices that link between cyber and physical el-
ements [2]. CPSs often include Supervisory Control and
Data Acquisition (SCADA) systems as remote interfaces for
monitoring and managing operations of CPSs [3].

Since CPS interconnectivity of power elements and net-
work devices at different power nodes increases the com-
plexity of power grids and SCADA systems , large amount
of data is also generated [4]. Such data can be utilized in
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network management or as a source for security monitor-
ing, facilitates analysis of power measurements, and so on.
The integration of cyber and physical elements with smart
power networks, however, introduces an additional attack
vector. It is known that CPS systems can potentially be ex-
ploited by adversaries, including advanced persistent threat
(APT) actors, with potentially devastating physical conse-
quences [2], [5]. There are two kinds of attacks, namely:
physical and cyber. Physical attacks are those that involve
the direct tampering of physical component while cyber-
attacks are generally executed using malware or malicious
software or by gaining access to the components of network
systems [3], [6] .

Existing conventional security solutions may not be fit-
for-purpose in a smart grid environment. For example,
using secure end-to-end encryption techniques can disrupt
analytical approaches and produce high false alarm rates
[2]. There is a broad range of potential attacks targeting
a smart grid, such as active attacks and passive attacks
[3], [5]. In the latter category, the attackers attempt to sniff
(private) data from the CPSs, for example by analyzing
publicly available data; while in active attacks (e.g., data
poisoning and inference attacks) the attackers have the
capability to alter data [7]. In data poisoning attacks, for
example, the attackers attempt to add or alter normal data.
This can impact on the performance of training of machine
learning-based data analytic or intrusion detection systems
[6]. False Data Injection Attacks (FDIA) is a common type
of data poisoning attack in power system networks [7], [8].
Thus, ensuring data integrity is a key requirement in the
operations of grid systems and their networks [1], [4].

Not surprisingly, there have been a large body of work
relating to data privacy protection and detection and iden-
tification of cyber-attacks [6], [9]. There are, however, a
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number of challenges that have yet to be addressed (see also
Section 2), and hence, in this paper we present our proposed
privacy-preserving framework. The latter is designed to
achieve data privacy and facilitate attack detection in smart
power networks. The main contributions of the study are as
follows. First, two-level of privacy techniques are proposed.
The first level includes the development of an enhanced
Proof of Work (ePoW) technique based on blockchain for
authenticating data records and preventing data poisoning
attacks from altering original data. The second level contains
a Variational AutoEncoder (VAE) that is used for converting
original data into an encoded format for mitigating infer-
ence attacks that could learn from system-based machine
learning. The datasets of ICS power systems [10] and the
UNSW-NB15 [11] are used for validating the framework.
Second, anomaly detection-based deep learning is applied
for evaluating data before and after applying the two-level
privacy techniques. We use the Long Short-Term Memory
(LSTM) deep learning technique due to its efficiency of
detecting anomalies from time-series data such as data of
smart power networks [12].

The rest of this paper is structured as follows. Relevant
background and related work are presented in Section 2. In
Sections 3 and 4, we introduce our proposed framework
and our evaluation approach. In Section 5, we present
and discuss the evaluation findings. Finally, the concluding
remarks are provided in the last section.

2 BACKGROUND AND RELATED WORK

This section includes the concepts and previous studies
related to privacy-preservation including blockchain tech-
nology, and intrusion detection including deep learning
algorithms, used in modern power systems and their net-
works.

2.1 Privacy-preserving approaches

Privacy-preservation is defined as the process of protecting
confidential data from disclosure by unauthorised users
while processing it over networks [6], [9], [13]. Privacy-
preserving approaches can be classified into five types;
encryption-based [14], [12], perturbation-based [12], [15],
authentication-based [16], Differential Privacy (DP) ap-
proaches [6], [17] and blockchain-based approaches [1], [18].
Each of these is discussed separately.

Privacy-preserving based on encryption approaches are
used for encrypting data exchange using symmetric, asym-
metric or homomorphic encryption methods [14]. Com-
puting and analytic techniques demand unencrypted data,
which could be manipulated by data poisoning or infer-
ence attacks. Moreover, despite advances in homomorphic
encryption that allow simple arithmetic operations over
encrypted data, no commercial applications currently use
such techniques due to high computational resources and
limited operational functions [6].

Privacy-preserving based perturbation approaches are
used for transforming original data into new formats to con-
ceal sensitive data using data transformation approaches,
such as data projection and statistical measures [12]. The
main challenge of these approaches is balancing privacy

protection against data utility. Ideally, both are required, but
these are also inverse and perfect privacy protection cannot
co-exist with perfect data utility.

Privacy-preserving based on authentication approaches
are utilised for providing user and system authentication
mechanisms, such as single sign-on, federated identity and
key management [16]. However, these approaches are not
applicable to CPS protocols. Authentication-based tech-
niques for privacy preservation cannot be applied to pro-
tecting data transferred over smart power networks due to
the fact that it is not designed to operate on data, but only
for authentication.

Differential Privacy (DP) approaches use efficient sta-
tistical methods, such as Gaussian and Laplace mecha-
nisms to prevent inference and data poisoning attacks. DP
approaches guarantee complete privacy as they have no
assumption about the attacker’s knowledge [6]. DP ap-
proaches ensure that the perturbed computations of specific
data could not substantially alter when original data are
updated [6], [19].

Privacy-preserving based on blockchain approaches ap-
ply the concept of blockchain, which is a peer-to-peer crypto
connection to protect network nodes or data transactions
[1]. The peers are from distributed networks, where every
peer operates as a node of the network and can contribute
to computing the solution to a hash-based puzzle prob-
lem confirming the transactions’ integrity. Each transaction
record is compressed as a block into the existing block
chains. The recorded block contents are considered as a
ledger. The entire blocks are synchronously updated to the
entire network so that every peer retains a record of the
same ledger [18]. Two popular miner techniques, namely,
Proof of Work (PoW) and Proof of Stake (PoS) have been
applied in Bitcoin and Ethereum, respectively, to verify the
legitimacy of a transaction within blocks and to add new
blocks [20]. To solve the puzzle, the PoW miner depends on
the computation power while the PoS uses a deterministic
algorithm that applies a hard fork to loose some blocks in
some cases [21]. However, both techniques could be violated
if a malicious miner has a computer power higher than 51%
of the network; this is known as the 51% attack [21].

2.2 Intrusion Detection Systems

Intrusion Detection Systems (IDSs) have been widely used
for monitoring and identifying intrusive activities from
CPSs and their networks [6]. IDS approaches are categorised
into three types: misuse-based, anomaly-based and hybrid
of the two. A misuse-based IDS identifies only well-known
attacks, while an anomaly-based IDS can effectively detect
unknown attacks if its detection engine is well-designed
to discriminate between normal and abnormal events [13].
From the perspective of power system networks, an IDS is
an effective security system that can learn from transformed
data generated at the control unit of power systems and
unencrypted flow features of network traffic collected from
smart power networks [6].

There are multiple methods used to develop an effective
IDS. These include statistical learning, data mining, machine
learning and deep learning [9]. Deep learning networks
are broadly used for security applications such as malware
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detection and IDSs, due to their capability to learn a com-
putational process in depth. In intrusion detection, deep
networks require information about legitimate data classes
in the training phase to learn the weights of the network
and obtain a model that can distinguish abnormal activities
from normal ones. Deep learning includes generative and
discriminative architectures. The generative architecture es-
timates joint probability distributions from observed data
with their classes while discriminative architecture com-
putes posterior distributions of classes conditioned on the
observed data [16]. The LSTM is one of the useful generative
models that can learn time series data of smart power
networks [12].

2.3 Related studies
Privacy preserving and anomaly detection approaches are
the main focus of this study, given that as the utility model
that can effectively protect sensitive information and iden-
tify zero-day attacks from smart power networks. Several re-
search studies have been carried out to assert data confiden-
tiality and integrity in CPSs, along with applying a utility
model to an IDS [7], [13], [16], [1], [12]. Lu et al. [4] proposed
a privacy-preserving cosine similarity method to protect Big
data in different systems such as power networks. Deng
et al. [7] reviewed different methods and approaches for
creating and preventing false data injection attacks in power
systems. Gope et al. [22] proposed a privacy-preserving
authentication scheme for securely analysing energy con-
sumption between service providers and end users.

Gai et al. [13] proposed a blockchain-oriented approach
to address the problem of privacy leakage in smart grids.
In [16], a layer-wise perturbation and differential privacy
based deep belief network techniques were developed for
examining points of perturbation and accomplishing data
privacy. Shen et al. [18] trained a support vector ma-
chine algorithm for detecting intrusive events from smart
cities, along with authenticating data providers using a
blockchain technique. More recently, Liang et al. [1] sug-
gested a distributed blockchain-based framework for pro-
tecting modern power systems against cyber intrusions
where blockchain technology was applied to power nodes.
Their work was promising, but due to the tremendous
computational resources required, it is unable to be directly
applied to heterogeneous nodes found in smart power net-
works.

In our previous study [9], a Privacy-Preservation Intru-
sion Detection (PPID) mechanism was developed based on
correlation coefficient and EM clustering algorithms for con-
cealing confidential data and detect anomalous behaviours
from power systems and their network data. Following that,
in [6], a privacy-preserving anomaly detection framework
was proposed for preserving sensitive data and detecting
attacks from smart power networks. However, the two mod-
els cannot ensure data integrity against data poisoning and
inference attacks while running anomaly detection systems.
Consequently, this work addresses this problem through
the use of two-level privacy methods using blockchain
and variational autoencoder for differential privacy. For
evaluating the reliability of the system utility, we then use
LSTM as anomaly detection that has proven its capability of
discovering abnormal events from time series data [12].

3 PROPOSED PRIVACY-PRESERVING FRAMEWORK

This section discusses the components of the proposed
framework, including the proposed privacy-preserving and
anomaly detection modules. The framework itself is out-
lined in Figure1.

The proposed methodology is comprised of input data
collection, a two-level privacy preserving module, and an
anomaly detection module using LSTM. The two-level pri-
vacy module is comprised of two components; the first
level is a privacy-based blockchain, and the second level
is a privacy-based Variational AutoEncoder (VAE). These
components will be explained separately.

3.1 Privacy-preserving module
We propose a two-level privacy-preserving module for pro-
tecting data from disclosure while executing a utility system
(e.g., anomaly detection) in smart power networks. The first
level is the data integrity checker that uses the blockchain
technology for authenticating data collections, and the sec-
ond level includes the data transformation and generation
model, which uses a VAE algorithm for converting original
data into a new format that considerably prevents inference
attacks from learning any information. The performance
of the privacy-preserving model is evaluated using an
anomaly detection system based on deep learning.

First level: Privacy-based blockchain
In the first level of the two-level privacy module, the
blockchain technology has been applied to authenticate me-
ter nodes of smart power networks. As previously outlined,
blockchain uses encryption methods on each block inside a
ledger [1], [13]. However, such methods take significant time
and resources for processing while validating and mining
every transactional record in a dataset. Instead, we propose
utilising a blockchain construct for ensuring data integrity.
The proposed method verifies the chains of data records that
prevent data poisoning attacks from altering data records.

To describe the proposed method, let’s assume that a
dataset d includes records R = {r1, r2, ...., rn}, where n
is the number of records involved in d. Each record r
contains a generated message digest that includes a secure
hash function (SHA) which asserts data integrity. There are
different SHA functions, such as SHA265 and SHA512,
which are one-way cryptographic functions with different
structures and fixed bit-lengths as output [18]. The reason
for using the message digest to data blocks (i.e., records) is
that hash functions are difficult to be inverted to find the
input message using the corresponding output of the mes-
sage digest. Any modification to data blocks will generate
different message digests, which would occur in the event
of a data poisoning attack [1].

To generate blocks in the data transaction context, each
block includes an index, a timestamp, a hash value of the
previous record (i.e., previous_hash), the current hash of the
data record (i.e., new_hash) and proof, as described in Table
1. The hashes of data blocks are linked to each other (i.e.,
Hash Chain), as shown in Figure 2. We use the SHA512
function, as formulated in Equation 1, for generating hash
values as, at time of writing, is it infeasible to be inverted in
real-time processing using brute-force attacks [1].
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Figure 1. Proposed Deep Learning-based Blockchain Framework for protecting smart power networks

Table 1
Attributes of data blocks in the blockchain

Items Meaning
Index A sequent number of each block included in

the ledger
Timestamp The time generated while generated the

message digest of a block
Data Each record included in a dataset
Previous hash The hash output of the previous block
Proof /nonce The solution of the puzzle problem for the

current block solved by a miner or problem
solver

New hash The hash result of the current block

It is essential in the blockchain to apply a consensus
mechanism; a distributed rule set for the creation of new
blocks and verifying the chain hash [21]. A puzzle problem
is used to find a random number (nonce/proof) added
to the hash value of a candidate block. This is shown in
Equation 1. A problem solver or miner algorithm demands
high computational power to find the proof of the candidate
block. As depicted in Figure 2, the miner uses the proof of
a particular block. For example, the miner uses the proof of
Attribute 2 (99) in its mathematical hash function to find the
linked hash of Attribute 2, which is located at Attribute 3.

Block −Hash = SHA512 (data, proof) (1)

We propose an enhanced PoW (ePoW) miner algorithm
that does not demand high computation power when com-
pared with the classical PoW and PoS algorithms. This
algorithm is presented in Figure 3. The algorithm includes
two functions for creating hash blocks and estimating its
proof based on the number of records in the dataset, where
the number of records and proof are not equal zero, a proof
of a new block can be created until the end of records
included in the dataset is reached.

Figure 2. Privacy-preserving based blockchain module for ensuring the
integrity of datasets

Second-level: Privacy-based Variational autoencoder (VAE)

While the ePow algorithm runs, the second level of privacy
is applied to the attribute ‘data’ in Function 1, shown in
Figure 3. This attribute refers to the datasets of smart power
networks. In this level, we select important features for the
purpose of securely training and validating a utility model.
A Variational AutoEncoder (VAE) is used, which is a feed-
forward model used for encoding an input X into new data
codes using a set of weighted parameters [23]. The VAE is a
generative model of classical autoencoder that can generate
new samples from data based on their prior distribution.
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Figure 3. An enhanced PoW (ePow) algorithm for authenticating data
records

This technique considerably improves the utility system of
anomaly detection. The model can achieve better protection
against inference attacks when compared with classical and
denoising autoencoder models that are deterministic for
only learning the latent structure of features and do not
generate new samples [24]. The VAE is trained to encode the
input dataset d without the class labels into a hidden rep-
resentation through a set of adapted weights; then the data
codes are reconstructed using a set of generative weights,
which are obtained from the latent data representation, as
depicted in Figure 1.

The VAE is trained on a dataset d that includesX fea-
tures and n records, which are stochastically generated
with a latent variable z. The stochastic process includes
two key steps: prior and likelihood distributions. The prior
distribution pθ(z) estimates the hidden values of zi. Then,
the xi observed value is generated using the conditional
probability distribution pθ(x | z). Supposing pθ(z) is a prior
distribution and pθ(x | z) is a distribution that is estimated
using the general parametric relations of pθ(z) and pθ(x | z)
distributions. The marginal likelihood of the X features can
be calculated using the sum of the likelihoods of data points,
as given by

log pθ(x1, x2, x3....., xN ) =

N∑
i=1

log pθ(xi) (2)

log pθ(xi) = DKL(qϕ(z | xi)K pθ(z | xi))+L(θ, ϕ;xi) (3)

where DKL(qϕK pθ)denotes the Kullback–Leibler di-
vergence [1] among the estimated posterior qϕ(z | xi) and

the true posterior pθ(z | xi), and its value is a non-negative
value, as estimated by:

DKL(qϕ ‖ pθ) =
N∑
i=1

pθ(xi) log
pθ(xi)

qϕ(xi)
(4)

L(θ, ϕ;xi) refers to the variational lower bound on the
marginal likelihood for each single data point i , as formu-
lated by

L(θ, ϕ;xi) = −DKL(qϕ(z | xi) ‖ pθ(z))
+Eqϕ(z|xi) [log pθ(xi | z)] (5)

such that qϕ(z | xi) is fitted using a normal distribution,
which estimates the true input distribution. The constructed
latent distributions could reduce the probability of varia-
tions in the original input. The model is optimised using a
L2 regularisation function to transform original data into a
new data format [24]. The generated data cannot be violated
using inference attacks because the model can generate new
data samples using many potential distributions rather than
using the original data.

3.2 Anomaly detection Module based LSTM
Once the data blocks are successfully verified using the
ePoW algorithm, a Recurrent Neural network (RNN) algo-
rithm is applied as a utility system of anomaly detection
with retaining data privacy. The RNN is a deep learning
algorithm for classifying a sequence of data. It is an ex-
tension of the conventional feed-forward neural network,
but with recurring relations for better modelling. In this
case, it is used to classify data from smart power net-
works. Assuming we have a sequence of input observations
X = (x1, x2, ....., xT ) for t = 1 to T , the RNN estimates the
hidden and output vector sequences H = (h1, h2, ....., hT )
and Y = (y1, y2, ....., yT ), accordingly as follows [2]:

ht = σ(Wxhxt +Whhht−1 + bh) (6)

yt =Whyht + by (7)

where σ is a nonlinear function, W denotes a weight
matrix and b is a bias.

This work utilises Long Short Term Memory (LSTM) for
classifying time-series data of smart power networks. LSTM
has several advantages in this space. It has a complicated
structure, which confers it to memorise information for a
longer time, then use this information for prediction. It
can also challenge the vanishing and exploding gradient
problems through the use of three gates [3]. Figure 4 shows
the connections in a single LSTM cell, where it has three
gates (i.e., input gate i, forget gate f and output gate o)
that control the information flow and a cell state c. For
computing, the values of i,f ,o and c, the following equations
can be calculated,

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (8)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (9)
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ct = ftct−1 + ic tanh(Wxcxt +Whcht−1 + bc) (10)

ht = ot tanh(ct) (11)

where σ is the logistic sigmoid function and Wci,Wcf

and Wco refer to weight matrices for peephole connections.
The i gate determines the proportion of input data, f gate
decides to pass previous memory ht−1 or not and o gate
determines whether the output can be passed or not. While
calculating the cell state c, the input ratio has great effect.

Input gate

Output gate

Forget gate

Cell

Figure 4. LSTM for anomaly detection

4 DATASETS AND EVALUATION METRICS

To investigate the performance of the privacy-preserving
framework for smart power networks, we used the datasets
of Power System [10] and UNSW-NB15 [11], as the first in-
cludes control attributes of power systems while the second
represents network attributes.

The Power system dataset is a multiclass dataset, involv-
ing 37 scenarios that include 8 natural events, 28 intrusive
events and 1 no event. The UNSW-NB15 dataset includes
a combination of current normal and attack records. The
features published in our previous study [6] were used to
validate the proposed framework and provide a fair com-
parison with recent peer techniques of privacy-preservation
and anomaly detection. 300,000 random samples of legiti-
mate and attack observations are chosen from each dataset
for assessing the performance of the proposed framework.
To evaluate the reliability of the proposed framework and
other competing techniques without the associated bias due
to the normal and abnormal classes in the datasets, the
average from the the 5-fold cross-validation results is used
as the performance.

As explained in [6], to evaluate privacy-preserving tech-
niques, we apply the measures of the privacy level index
(Pindex), the dissimilarity level (DISS) and the information
loss (IL). To evaluate the performance of anomaly detection
before and after applying the privacy-preserving technique,
we use Accuracy, False Alarm Rate (FAR), and accuracy
vs. loss measures. For this work, the framework was de-
veloped in the ’R programming language’ and are run on
Ubuntu 18.04 LTS with a GPU Quadro P6000 and 32 GB
RAM.

5 EXPERIMENTAL RESULTS AND EVALUATIONS

5.1 The two-level privacy-preserving process
As per the proposed framework, the ePoW technique is
applied as the first level of privacy to the datasets of power
system and UNSW-NB15 for verifying data records and
preventing data poisoning attacks from manipulating their
records. Figure 5 represents a sample of the power system
data to illustrate the ePow technique. The attributes of the
blockchain were created for each record in the dataset,
where the previous hash of index i should be equal to the
new hash of index i+ 1 when the miner solves the proof.

Figure 5. Example of applying the ePow technique for authenticating
data records

While running the ePoW technique, the VAE technique
is applied as the second level of privacy (i.e., differential
privacy) on the eight features of each dataset published in
[10], [11]. This is to protect data against inference attacks that
can learn sensitive information about models. The hyper-
parameters of executing the VAE technique on the two
datasets are listed in Table 2. The technique includes 8 input
features in the input layer, along with 2 hidden layers in the
encoder and the decoder layers.

Table 2
Adopted VAE parameters

Settings Hyper-parameters
Input layer 8 input features
Encoder Two hidden layers:

1) Layer 1: 50 units, a 0.2 dropout rate, a Relu
function

2) Layer 2 (output): 2 units, a Softmax function
Decoder Two hidden layers:

1) Layer 1: 50 units, a 0.2 dropout rate, a Relu
function

2) Layer 2 (output): 8 units of decoding the input
features

VAE model loss= ‘binary_correntopy’ , optimizer= ‘adam’,
epochs=25, batch_size= 50, metrics= ’accuracy’

The results in terms of accuracy (acc) and loss revealed
that the VAE model could effectively learn from both
datasets, as shown in Figures 6 and 7. For 25 epochs, the
VAE technique achieves about 92.1% accuracy and 0.5%
loss on the dataset of the power system, while the model
accomplishes 99.8% accuracy and 0.01% loss for validating
the UNSW-NB15 dataset. The aim of VAE is not for detecting
attack vectors but transforming the data into a new shape
that can be used for learning attack behaviours without
degrading the system’s performance.

The proposed two-level privacy techniques are com-
pared with other four techniques using the three privacy
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Figure 6. The accuracy (acc) vs the loss for training and validating the
VAE using the power system dataset

Figure 7. The accuracy (acc) vs the loss for training and validating the
VAE using the UNSW_NB15 dataset

metrics of Pindex,DISS and IL on both datasets, as demon-
strated in Table 3. The RDP technique [17] transforms data
using a rotating noise perturbation, but it cannot entirely
convert the original data. The PPFSCADA technique [25]
divides the original data into vertical parts and then uses
k-mean clusters to transform them. However, these parts
are executed for all the features without ranking their sig-
nificance in terms of defining attack vectors. The PCA-DR
technique [15] replaces the original attributes by a small
number of uncorrelated attributes. It is similar to the PPAD-
CPS framework except that the latter improves privacy and
security using multiple perturbation processes, and then ap-
plies an anomaly detection method to discover attacks using
the permutated data. The proposed two-level techniques
can protect data against altering data based on the ePoW
technique that is not used in any technique before, and then
protects against identifying sensitive information using the
VAE technique. Therefore, it achieves the highest values for
the three privacy metrics.

5.2 Anomaly detection based LSTM

The evaluation of the proposed two-level privacy model is
also evaluated as a utility system of the anomaly detection
based LSTM model. The parameters of LSTM is set as
illustrated in Table 4. The LSTM model is applied to both
datasets for classifying normal and attack classes on both
datasets. The results, after applying the two-level privacy

Table 3
Comparisons of the two-level privacy techniques with other four ones

on both datasets.

Privacy
method

Power
data

UNSW-
NB15

Power
data

UNSW-
NB15

Power
data

UNSW-
NB15

Pindex(%) DISS (%) IL (%)
RDP [17] 43.56 46.16 52.45 54.61 57.41 59.16
PPFSCADA
[25]

51.33 58.89 49.73 58.75 52.14 56.43

PCA–DR [15] 57.78 62.34 67.29 69.87 72.19 74.50
PPAD-CPS [6] 67.43 81.35 68.87 73.52 75.20 79.16
Two-level
privacy

72.32 82.90 77.76 78.34 80.41 82.03

techniques, are promising. The model achieves approxi-
mately 95.2% accuracy and a 0.17% loss using the dataset
of the power system. This is depicted in Figure 8. On the
UNSW-NB15 dataset as shown in Figure 9, the results are
slightly higher, achieving a 98.1% accuracy and a 0.19% loss
while testing the model.

Table 4
LSTM parameters for anomaly detection

Settings Hyper-parameters
Input layer encoded features resulted from the VAE model
Hidden layers Two hidden layers:

1) Layer 1: 80 units, a tanh activation function

2) Layer 2 (output): 40 units a tanh activation
function

Output layer 2 units (normal/attack), a softmax activation
function

LSTM model loss= ‘binary_correntopy’ , optimizer= ‘adam’
batch_size= 50, epochs=100, metrics= ’accuracy’
’

5.3 Comparisons and discussions

The LSTM model is compared with the other four tech-
niques demonstrated in Table 5. The detection accuracy and
False Alarm Rate (FAR) show that the anomaly detection
technique outperforms others after applying the proposed
two-level privacy models. On the dataset of the power
system, the proposed anomaly detection-based LSTM tech-
nique achieves the highest accuracy (96.27%) and the lowest
FAR (2.93%) that are close to the results of the PPAD-CPS
framework [6] while the proposed technique achieves signif-
icantly better results (i.e., a 99.8% accuracy and a 0.01 FAR)
compared with others on the UNSW-NB15 dataset. The
LSTM technique is also applied to the two datasets before
applying the two-level privacy module. The results revealed
that the module can achieve optimum accuracy (100%) on
both datasets. However, the results are better than other
techniques while applying the proposed privacy-preserving
modules which is the aim of the study for preventing data
poisoning and inference attacks while applying a utility
system such as anomaly detection.

We also evaluate the computational processing time of
the framework with the other competing approaches, in
order to determine how the time required by each approach
to process data. Based on the findings, we determine that
the proposed framework (i.e., LSTM-based privacy) requires
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Figure 8. The accuracy of the Anomaly detection based RNN LSTM
model after applying privacy-preservation on the dataset of power sys-
tem.

Figure 9. The accuracy of the Anomaly detection based RNN LSTM
model after applying privacy-preservation on the power system dataset.

approximately 73 seconds to build a normal profile by
training around 14,000 data observations. This performance
is relatively close to that of the PPAD-CPS technique. How-
ever, the other three approaches require an average of 80 to
87 seconds, as shown in Table 5.

To explain why the proposed framework outperforms
other techniques for preserving privacy and identifying
attack behaviours, we consider several perspectives based
on its potential design. The two-level privacy modules can
achieve full protection by authenticating data transactions
and transforming the original data into a new format for

Table 5
Comparison of anomaly detection based LSTM with four techniques.

Techniques
Datasets TimePower System UNSW-NB15

DR (%) FPR (%) DR (%) FPR (%) Sec
NNR [26] 88.35 9.45 86.76 11.63 83
FSVM [27] 94.44 3.98 91.73 8.48 87
CART [28] 94.93 4.61 93.45 6.53 80
PPAD-CPS
[6]

96.26 3.52 93.82 6.75 70

LSTM-
based
Privacy

96.27 2.93 99.80 0.01 73

training and validating machine learning techniques. In the
first-level privacy-based blockchain, the ePoW technique
achieves the goal of verifying the data integrity, and if data
poisoning attacks alter any record, the record can be easily
discovered based on the proof and hash chain utilised in the
ePoW technique.

The second-level privacy based the VAE technique can
protect data by transforming it into another shape and using
the encoded data for validating anomaly detection as an
example of measuring the efficiency of detecting anomalies.
Due to the high performances of deep learning in detecting
attack behaviours, the LSTM technique is selected due to
its norm of classifying time-series data such as datasets of
smart power networks. The results highlight that the LSTM
technique can efficiently classify legitimate and suspicious
records after encoding the data using the two-level privacy-
preserving techniques.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced a privacy-preserving frame-
work based on blockchain and deep learning methods, in
order to protect datasets of smart power networks and
detect potential attacks. Our framework comprises two-
level of privacy mechanisms. The first level includes an
ePoW technique for verifying data integrity while the sec-
ond level involves a VAE technique for encoding data and
transforming it to a new format. The use of two levels of
privacy achieves better performance compared with recent
methods, and we demonstrated that it is also effective in
preventing data poisoning and inference attacks from ma-
nipulating original datasets of smart power networks. An
anomaly detection method based Long Short Term Memory
(LSTM) was then evaluated on the datasets before and
after applying the two-level privacy techniques. The results
revealed that the technique can outperform other techniques
in terms of accuracy and false alarm rate.

Future extension will include applying the framework
on different real-world datasets from smart power net-
works, in order to evaluate its scalability and utility.
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