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Abstract—Existing techniques in emulsion quality eval-
uation are found to be highly subjective, time-consuming,
and prone to overprocessing. Other conventional droplet
analysis techniques such as laser diffraction, which require
dilution of samples, introduce an additional complexity to
industrial processes. The possibility of developing a fully
automated technique for droplet characterization during
emulsification holds remarkable potential for overcoming
the existing challenges. In this article, a histogram-based
image segmentation technique detects droplets from
emulsion micrographs. The evolution of droplet charac-
teristics and their significance are studied by performing
statistical analysis, and the significant characteristics are
selected. The principal component analysis is applied to
obtain a reduced set of uncorrelated components from the
selected characteristics. The linear discriminant analysis
classifies the micrographs into a set of quality categories
called target, acceptable, marginal, and unacceptable.
The model accuracy is validated using stratified five-fold
cross-validation and is successful in classifying the micro-
graphs obtained from two different manufacturing facilities
with high accuracy up to 100%. The histogram-based
technique is successful in detecting smaller droplets than
previously reflected in the literature. The current approach
is fully automated and is implemented as a soft-sensor,
which supports its real-time deployment into an industrial
environment. The entire approach has promising potential
in the in-line prediction of emulsion quality leading to more
efficient and sustainable manufacturing.

Index Terms—Emulsion manufacturing, image process-
ing, linear discriminant analysis (LDA), machine learn-
ing, machine vision, principal component analysis (PCA),
soft-sensor.
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I. INTRODUCTION

R ECENT advances in industrial automation have imposed
tremendous pressure on pharmaceutical industries to

rapidly improve the techniques applied for the evaluation of the
emulsification process [1]–[3]. Emulsions have a wide range of
applications in food, pharmaceutical, chemical, and biomedical
industries. A better understanding of droplet size has been
identified as the key factor in the control and optimization of
industrial emulsification processes [1].

Manual evaluation of emulsion samples is one of the tech-
niques currently employed in industries to identify the optimum
processing time of emulsification [1], [4]–[8]. Such evaluation
techniques were found to be significantly biased. Other conven-
tional techniques such as laser diffraction and spectroscopy have
also been applied to study the droplet size distribution and de-
termine the optimum processing time in food emulsions [7], [9].
However, those techniques were found incapable of delivering
reliable droplet size measurements and require time-consuming
sample preparation [8], [10], [11]. Such limitations have made
the automation of these conventional techniques difficult. Nu-
clear magnetic resonance (NMR) is another common technique
applied for emulsion droplet sizing. NMR is a well-established
technique used to find droplet size distributions in a noninva-
sive manner. However, the technique requires approximately
5–20 min to provide a single-droplet size distribution, which is a
very time-consuming procedure [12], [13]. Recent studies have
found image processing of micrographs (image taken through
a microscope) as a potential approach to rectify the existing
challenges in emulsion droplet size evaluation [1], [7], [10].

Emulsion stability studies have been performed using light
microscopy in conjunction with image processing and statistical
analysis from the early 21st century [14]–[17]. Jorin’s ViPA
and J.M. Canty provide commercially available image analy-
sis systems for the measurement of oil droplets from diluted
samples [18]. A few studies have reported inline droplet size
monitoring in emulsions using automated image analysis [1],
[19], [20]. The existing image processing techniques applied
for droplet characterization and emulsion quality evaluation
have also identified certain challenges. These include droplet
detection from highly concentrated emulsions and the detection
of smaller droplets from production systems [1], [8]. Studies
have also identified difficulty in using optical microscopy on
emulsion samples due to its opaque nature [21].
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ImageJ has been widely applied for image processing of
emulsion micrographs [13], [15]–[17]. The utilities of ImageJ
have been extended to Fiji, which is a “batteries-included” distri-
bution of ImageJ [22]. Image processing techniques integrated
with machine-learning classifiers have a long history of success
in product quality evaluation in industries such as automotive,
electronics, medical, pharmaceutical, and food. However, such
techniques are currently underexplored in the area of industrial
emulsification. It has been identified, in the literature, that de-
veloping inferential models using droplet data could benefit the
optimization of the emulsification process [23], [24]. A very
few studies have been reported in the literature, which have
developed classification or prediction models using droplet data
for the quality evaluation of emulsions [7], [25]. Wang et al.
[25] have provided a detailed review about the use of various
supervised and unsupervised machine learning models in the
quality evaluation of olive oil using spectroscopic data.

Principal component analysis (PCA) and linear discriminant
analysis (LDA) were described as the most widely used unsu-
pervised and supervised methods for exploratory data analysis
and classification, respectively [25]. PCA projects the variation
in the original multivariate data set across an equal number of
uncorrelated components onto an orthogonal subspace [26]. It
aids in reducing the dimensionality of a multivariate dataset
into a set of principal components (PCs) ordered hierarchically
based on their explained variance. PCA has been extensively
used as an efficient method for dimensionality reduction and
pattern recognition in the field of computer vision and image
classification [27], [28].

LDA is a supervised machine-learning method used for multi-
level classification of a categorical response [29]. LDA is trained
using a set of observations, taken from a multivariate dataset, in
order to build a classification model. The model is then used to
predict the category of unknown (new) data based on a priori
knowledge.

Bertani et al. [30] achieved a partly automatic multivariate
classification of hyperspectral micrographs of living cells using
PCA followed by LDA. Application of computer vision inte-
grated with a LDA classification model was investigated for the
automated evaluation of durum wheat quality and their study
has achieved 96% accuracy in classifying the wheat kernels into
four categories [31]. A similar classification study of barley milk
samples, obtained by blending barley grain, was conducted by
Kljusuric et al. [7] to find the optimum processing time in barley
milk production. Their study concluded with 45 s as the optimal
blending time because the droplets appeared to form aggregates
after that point according to the analyses conducted. However,
their study concluded with a limited set of samples and lacked
detailed analysis of the findings using independent barley milk
samples. In addition to that, their PCA results were not extended
to any supervised learning techniques to develop a predictive
classification model or to optimize the process on an industrial
scale.

In addition, there have been no previous studies reported in
the supervised classification of in-process emulsion samples
through fully automated image processing and droplet charac-
terization. In this article, we have used a histogram-based image

Fig. 1. Schematic representation of the TAMU classification of in-
process micrographs.

segmentation technique and investigated its potential in droplet
characterization from micrographs acquired at fixed intervals
from an emulsification process. A supervised machine-learning
model is developed and integrated with the automated vision
technique to classify the micrographs into four quality cate-
gories. This is a novel approach in emulsion manufacturing.

II. METHODOLOGY

This article involved the industrial production of a topical
skincare emulsion. The emulsion was continuously mixed for
30 min using a homogenizer at a tip speed of 25 m/s for the
first 15 min and at a tip speed of 15 m/s for the last 15 min,
respectively. Micrographs were acquired from the emulsion
samples at 5-min intervals. A schematic representation of the
applied methodology is shown in Fig. 1.

Automated image processing of the micrographs was per-
formed to detect the oil droplets and their corresponding charac-
teristics using a histogram-based technique (HBT). The droplet
characteristics were then statistically analyzed to investigate
their variation throughout the emulsification process and their
impact on emulsion quality. Based on the analysis, the char-
acteristics suitable for the classification of micrographs were
identified. The micrographs were categorized into a set of quality
categories ranging from unacceptable to target, based on the
droplet characteristics. PCA of the selected set of characteristics
was performed and a PC based LDA (PC-LDA) model was
developed to classify the micrographs into four groups named
target, acceptable, marginal, and unacceptable (TAMU).

A. Micrograph Acquisition

A Zeiss Microscope Axio imager A2m was used to obtain
the micrographs. Samples were acquired from the production
process at 5-min intervals. Ten bright field (BF) 40x micro-
graphs were acquired from each sample and were saved as
tagged file format files. The emulsification process was stopped
after 30 min, as any further processing was considered as over
processing. This represented a total of 60 micrographs. A sample
micrograph obtained at every 5-min interval is shown in Fig. 2.

B. Image Processing and Droplet Detection

The image processing of the micrographs was performed in
Fiji version 1.51 h, which is an extended distribution of ImageJ
with additional functionalities. An automated image segmen-
tation procedure named HBT was developed in Fiji to detect
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Fig. 2. BF 40x micrographs of the emulsion after (a) 5 min, (b) 10 min,
(c) 15 min, (d) 20 min, (e) 25 min, and (f) 30 min of processing.

the droplets in the micrographs by Unnikrishnan et al. [32].
The existing image segmentation techniques, as described in the
literature, for droplet detection from emulsion micrographs are
mainly border-based edge detection methods. Such techniques
have demonstrated potential only in the case of high-quality
images, droplets with pronounced borders, less overlap, and in
emulsions with low dispersed phase fraction ≤15%. The HBT
technique is based on computing the histogram of the pixel
intensity values (grey values) in the image, observing the number
of peaks, and thresholding the image using the peak intensity
value. The HBT technique also detects various size and shape
characteristics of the detected droplets. The steps involved in the
HBT technique are programmed as a macro and are presented
schematically in Fig. 3.

The image processing and droplet detection steps given in
Fig. 3 can be explained as follows.

1) The micrographs were calibrated to a scale of 4 pixels/µm.
2) These images were then converted to 8-bit greyscale,

which provides 2^8 = 256 levels of intensity values for
each pixel.

3) A histogram of the pixel intensity values was computed
for each image.

4) The number of peaks of the histogram was observed and
the peak intensity value was stored in a variable.

5) Each image was then thresholded using the calculated
peak intensity value.

6) The images were then converted to binary, and watershed
segmentation was applied to separate the droplets that
touch/overlap each other.

7) Finally, each micrograph was analyzed for a droplet area
range ≥1 µm2 and a circularity range of 0.00–1.00 to
extract the droplet characteristics.

Thirteen characteristics were extracted for each droplet from
the 60 micrographs. These are the following:

1) Size features: area (µm2), perimeter (µm), maximum
Feret diameter (Feret in µm), minimum Feret diameter
(MinFeret in µm);

2) Centroid coordinates: X and Y;
3) Starting coordinates of Feret diameter: FeretX and

FeretY;
4) Orientation characteristic: Feret angle;

Fig. 3. Schematic showing the detection of oil droplets and their char-
acteristics from an emulsion micrograph using the HBT image segmen-
tation macro in Fiji.

5) Shape features: Circularity, roundness, aspect ratio, and
solidity.

The droplet characteristics were automatically exported, by
the macro, into a CSV file in the user-specified directory.

C. Statistical Analysis

The droplet characteristics were statistically analyzed to in-
vestigate their variation at every 5-min interval throughout the
30-min emulsification process. The analysis was performed in
RStudio, which is an integrated development environment for
programming using the R language. R 3.4 is the version used
in this article. The mean values of the droplet characteristics
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Fig. 4. Droplet detection. (a) Micrograph obtained from an emulsion
sample processed for 5 min. (b) Output image with the droplets detected
using the HBT.

were calculated, and box plots were generated to identify the
characteristics that varied significantly over the emulsification
period. The R data visualization package ggplot2 was used to
create the plots. The variation in the mean and median of each
characteristic and the correlation between them were also inves-
tigated. A reduced set of droplet characteristics, deemed suitable,
was finalized as the input feature space for the classification of
micrographs. This analysis and feature selection are presented
in detail in Section III.

D. Multivariate Classification

The total set of 60 micrographs were categorized manually
into four groups named unacceptable (U), marginal (M), accept-
able (A), and target (T) by micrograph analysts from industry.
An unsupervised cluster analysis of the droplet characteristics
was performed using PCA to observe the patterns in the data. The
PCA technique also helped to reduce the dimensionality of the
data and to obtain a set of uncorrelated components. A scree plot
was used to select the most significant PCs. Scree plot shows the
percentage of total variance in the data as explained by each PC.
The score plots of the first three PCs were also graphed. The
PCs, which explained a significant percentage of the variance
in the data and were also identified as the most relevant for
classification, were selected as the predictor variables to build
the supervised classification model using LDA. The PC-LDA
model accuracy was evaluated using stratified five-fold cross-
validation. The model results are presented in Section III.

III. RESULTS AND DISCUSSION

The results of droplet detection and characterization are dis-
cussed in this section.

A. Selection of Feature Space

Approximately 1500–2000 droplets were detected from a
typical micrograph after the first 5 min of emulsification pro-
cessing, using HBT segmentation, and their characteristics were
obtained. The droplets detected from a sample micrograph ac-
quired after the initial 5 min of processing are shown in Fig. 4.
Similarly, the droplet characteristics of all the 60 micrographs
were extracted automatically, in an iterative loop, by the macro.

The HBT method presented good detection of both large and
small droplets. An R function was written to read the droplet
characteristics of each micrograph from the CSV file (saved by

Fig. 5. Box plots of mean droplet size characteristics and droplet count
obtained from the HBT: (a) area, (b) perimeter, (c) Feret, (d) MinFeret,
and (e) droplet count. Each box plot represents ten micrographs.

the macro) in a sequential loop and create box plots showing
their evolution over the emulsion processing time. A plugin was
developed in Java language, as a soft sensor, to integrate the Fiji
macro with the R function.

The variation in the droplet characteristics throughout the
process was statistically analyzed using the box plots presented
in Fig. 5. Among the 13 characteristics obtained from each
droplet, only the size features such as area, perimeter, Feret, and
MinFeret as well as droplet count showed significant variation
during the emulsification process (see Fig. 5). The remaining
droplet characteristics such as orientation, shape, and centroid
were not considered relevant for this article, as they showed no
variation throughout the emulsification process.

Each box plot, from Fig. 5(a) to (d), represents the mean
droplet size obtained from the ten micrographs at every 5-min
interval. A sharp decrease was observed in the mean droplet
size during the first 10 min followed by a progressive decrease
throughout the remaining emulsification process. In the last
15 min, i.e., from 20 to 30 min on the x-axis of Fig. 5(a)–(d),
minimal variation was observed in the droplet size, which indi-
cated the process approaching a steady state. The droplet count
presented in Fig. 5(e) shows a sharp increase initially followed
by minimal variation during the last 10 min of the emulsification
process. The overall variation in the mean droplet characteristics
during the whole 30-min process can be summarized as follows.

1) Area decreased from 27.1 to 5.6 µm2.
2) Perimeter decreased from 20.6 to 10.3 µm.
3) Maximum Feret diameter (Feret) dropped from 6.7 to

3.6 µm.
4) Minimum Feret diameter (MinFeret) dropped from 4.5 to

2.3 µm.
5) Droplet count increased from 1500 to 8500.

The 60 micrographs were manually grouped into four quality-
based categories referred to as TAMU based on the variation
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TABLE I
MICROGRAPH CATEGORIES NAMED FROM 5 TO 30 MIN BASED ON THE

VARIATION IN THE DROPLET CHARACTERISTICS

TABLE II
CORRELATION MATRIX OF THE DROPLET SIZE CHARACTERISTICS SELECTED

AS THE INPUT FEATURE SPACE FOR THE CLASSIFICATION MODEL

presented by the mean droplet size as well as the droplet
count characteristics, including the guidance obtained from the
industrial collaborator. The processing intervals to which the
categories belonged to are shown in Table I.

The ten sample micrographs obtained from the first 5 min
were categorized as “U,” another ten micrographs obtained after
ten min of emulsification were labeled as “M,” the next 10
obtained after 15 min, in total, were categorized as “A,” and
the 30 micrographs acquired after 20 min until the end of the
process were grouped as “T.”

The five droplet characteristics—area, perimeter, Feret, Min-
Feret, and count—were selected as the input features for building
the classification model. A correlation matrix of the droplet
characteristics was obtained and is presented in Table II.

The droplet size characteristics were found to be highly
correlated (r = 0.84–0.98). The next major step in the analysis
was to covert the correlated feature space into a reduced set
of uncorrelated PCs. This was followed by an unsupervised
cluster analysis of the components to distinguish the TAMU
patterns identified by the micrograph analysts of the industrial
collaborator.

B. Principal Component Analysis

PCA was performed to transform the five variable feature
spaces into an equal set of uncorrelated PCs. The first three
PCs (PC1, PC2, and PC3 explained as 77%, 17.4%, and 4.1%,
respectively) together explained a cumulative variance of 98.5%,
which represented a significant proportion of the total vari-
ance in the original feature space. A graphical representation
of the variance explained by the PCs is shown by the scree
plot presented in Fig. 6. An unsupervised clustering pattern
of the four response categories (TAMU) was also explored

Fig. 6. Scree plot of the five PCs.

Fig. 7. PCA score plots using the first three PCs. “U” is represented
by red circles, “M” by green, “A” by blue, and “T” by purple, respectively.

using the score plots of the first three PCs. This is presented
in Fig. 7.

The droplets obtained from the TAMU categories, represented
by the four different colors, were separated into four clusters
along the PC1-PC2 plane as shown in Fig. 7. PCA also helped
to reduce the dimensionality and the correlation of the original
feature space from five correlated variables down to three un-
correlated components. PC1, PC2, and PC3 were selected as the
predictor variables for developing the LDA classification model.

C. Supervised Classification Model

The PC-LDA model was developed as a linear combination of
the first three PCs, PC1, PC2, and PC3. The number of predictive
discriminant functions derived from the model is calculated as
the minimum of G-1 and p, where G is the number of response
categories (i.e., four) and p is the number of predictor variables
(i.e., three). In the current case, the values of p and G-1 are equal
and, therefore, the PC-LDA model resulted in three discriminant
functions, LD1, LD2, and LD3, as given by (1)–(3). The model
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Fig. 8. LDA and the classification presented by the three discriminant
functions. (a) LD1. (b) LD2. (c) LD3.

Fig. 9. TAMU classification presented by LD2 vs LD1 scatter plot.

formula is represented by (4)

LD1 = 1.03PC− 0.31PC2− 0.35PC3 (1)

LD2 = −4.68PC1− 0.29PC2− 0.35PC3 (2)

LD3 = 0.13PC1+ 1.70PC2− 1.46PC3 (3)

Category ∼ LD1+ LD2+ LD3. (4)

The classification presented by each discriminant function
was observed by plotting the histograms shown in Fig. 8(a)–(c).
The first discriminant function, LD1, was found to best separate
the four TAMU categories. The percentage of classification
achieved by each discriminant function is explained by the
proportion of trace given by the model, which was 99.86% for
LD1. A two-dimensional scatter plot of LD2 vs LD1 was also
plotted to see the overall separation between the four categories
(see Fig. 9).

The scatter plot in Fig. 9 presented very good classification
between the four TAMU categories along the LD1 axis. In
summary, the number of canonical variables selected for the
PC-LDA model was reduced to one (LD1).

Fig. 10. Confusion Matrix of PC-LDA model from five-fold cross-
validation. The sum of five confusion matrices from the five models is
represented. The green cells represent the correct classification from
each category. The blue cell at the bottom right-hand corner represents
the total number of correct classifications.

A stratified five-fold cross-validation was performed to evalu-
ate the classification accuracy of the PC-LDA model. Ten micro-
graphs from each category were selected for the cross-validation.
In each fold, the micrographs were randomly split into 70% for
training and the remaining 30% for testing. Five models were
created in such a way that each model consisted of a training set
of 28 micrographs (seven from each category) and a test set of
12 micrographs (three from each category), respectively. For
each model, the classification score was recorded, and a confu-
sion matrix was created. A summation of all the five confusion
matrices is shown in Fig. 10.

Each micrograph was classified into a particular category, by
the model, based on the highest percentage of droplets classified
from that micrograph. In the five-fold cross-validation, the test
sets of micrographs (12 in each model) in all the five folds (mod-
els) achieved 100% correct classification of their corresponding
droplets. The green cells, in Fig. 10, represent the sum of the
correct classification in each category obtained from the five
models (3 × 5 = 15). The blue cell at the bottom right-hand
corner represents the overall sum of the correct classification
(12 × 5 = 60).

The models were further validated using a set of six mi-
crographs (two from “U” category, two from “M,” one from
“A,” and one from “T,” respectively). These micrographs were
obtained from a laboratory, in a different country, under varying
illumination settings. All the five models successfully classified
five out of the six micrographs into the correct category except
the T one, which was classified as A. This gives an overall
accuracy of 83%.

This article has investigated the application of microscopic
image analysis, combined with a supervised machine-learning
algorithm, for the classification of in-process emulsion samples.
The HBT image segmentation approach demonstrated signifi-
cant potential in the detection of droplets and their corresponding
characteristics throughout the emulsification process. The HBT
has provided a progressive evolution of decreasing droplet
size and increasing droplet count as the emulsification process
progressed. This was a very promising result compared to the
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edge-based detection techniques reported in previous studies
[33]. The majority of the existing conventional droplet analysis
techniques such as laser diffraction and spectroscopy require
time-consuming sample preparation of emulsion samples, which
introduce additional time and complexity to industrial processes
[10], [11]. Such techniques have also presented inconsistency in
droplet size measurement. The current HBT approach provided
consistent droplet size measurements and is entirely automated.
It has also identified the completion of the emulsification pro-
cess, when the droplets have attained their target characteristics.
Any further processing was identified as over-processing.

The supervised classification model, in the current research,
has demonstrated significant potential in classifying the micro-
graphs at various stages of the emulsification process from un-
acceptable to target. The benefit of developing such supervised
classification models using droplet characteristics has been iden-
tified as vital in food, pharmaceutical, and biomedical industries
to meet the increasing demand for high-quality product [23].
There have been no systematic studies reported in the litera-
ture, which have investigated machine-learning models using
in-process emulsion droplet data acquired through automated
image segmentation.

In the current article, the validation of the machine-learning
model presented 100% accuracy in the classification of 60 mi-
crographs obtained from an emulsion manufacturing facility and
83% accuracy with an independent set of micrographs obtained
from a different facility. The micrograph droplet characteristics
and the classification were confirmed by the industrial collab-
orator using their existing validation technique. The approach
reported in this article is developed as a soft-sensor, which
supports the real-time deployment of the technique into an
industrial environment.

IV. CONCLUSION

In this article, the histogram-based droplet detection
and micrograph classification approach indicated that the
time when the emulsification process is completed can be
automatically determined from an emulsion micrograph. The
HBT correctly characterized the droplet evolution throughout
the emulsification process. Droplet characteristics such as count,
area, perimeter, minimum, and maximum Feret diameters were
identified as the emulsion quality indicators that vary with the
process. The PC-LDA-based machine-learning approach pre-
sented 83% to 100% accuracy in the micrograph classification
of the studied emulsion. Future work was planned to integrate
the current methodology, implemented as a soft-sensor,
with real-time image acquisition to execute in-line quality
assessment in emulsion manufacturing. The proposed approach
has significant potential in streamlining production, avoiding
over-processing, and enabling efficient utilization of resources
leading to efficient and sustainable emulsion manufacturing.
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