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Efficient Multi-Task Structure-Aware Sparse
Bayesian Learning for Frequency-Difference

Electrical Impedance Tomography
Shengheng Liu, Member, IEEE, Yongming Huang, Senior Member, IEEE, Hancong Wu, Member, IEEE,

Chao Tan, Senior Member, IEEE, and Jiabin Jia, Senior Member, IEEE

Abstract—Frequency-difference electrical impedance tomogra-
phy (fdEIT) was originally developed to mitigate the systematic
artifacts induced by modeling errors when a baseline data set
is unavailable. Instead of fine anatomical imaging, only coarse
anomaly detection has been addressed in current fdEIT research
mainly due to its low spatial resolution. On the other hand, there
has been not much study on fdEIT reconstruction algorithm as
well. In this paper, we propose an efficient and high-spatial-
resolution algorithm for simultaneously reconstructing multiple
fdEIT frames corresponding to inject currents with multiple
frequencies. The EIT reconstruction problem is considered within
a hierarchical Bayesian framework, where both intra-task spatial
clustering and inter-task dependency are automatically learned
and exploited in an unsupervised manner. The computation is
accelerated by adopting a modified marginal likelihood maxi-
mization approach. Real-data experiment are conducted to verify
the recovery performance of the proposed algorithm.

Index Terms—Inverse problem, electrical impedance tomogra-
phy (EIT), sparse Bayesian learning (SBL), image reconstruction,
frequency difference.

I. INTRODUCTION

THE reconstruction problem in electrical impedance to-
mography (EIT) is to determine the spatially-varying

conductivity distribution inside an object given the boundary
current-voltage measurements. As an emerging agile tomo-
graphic imaging technique and compared with other popular
imaging modalities [1], [2], EIT shows immense potential in
medical applications due to its in vivo and in situ capabilities,
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which can be exploited in understanding the physiological
dynamics and pathological conditions. EIT imaging techniques
can be divided into two categories, i.e., static and differen-
tial imaging [3]. The goal of static imaging is to recover
the absolute conductivity distribution based on the data set
from a single voltage measurement, which generally suffers
from systematic artifacts resulted from various modeling error
sources such as boundary geometry, electrode positions, body
movement, and inter-individual anatomy [3], [4]. Differential
imaging, in contrast, reconstructs the changes in the conduc-
tivity by inferring from the difference between two measured
states [5], where the systematic artifacts can be readily reduced
through measurement cancellation.

While the overwhelming majority of EIT clinical images
have been produced using time-difference data, frequency-
difference EIT (fdEIT) has received fewer attention in the
literature and is at an earlier stage of development [6]–
[10]. fdEIT uses voltage data sets with multiple excitation
frequencies to calculate an image of the corresponding changes
of conductivity. As such, not only is it capable of effectively
eliminating common boundary geometry errors as in time-
difference EIT (tdEIT) [11], it also allows for removing body
movement induced artifacts provided data collection is fast. In
addition, fdEIT is more suitable for breast tumor or stroke type
classification, where time reference data are not available, and
frequency-dependent conductivity spectra of specific tissues
are able to provide additional diagnostic information to current
EIT systems [10]–[12]. However, as changes of conductivity
with frequency are generally insignificant compared with
conductivity changes during a moderate time interval in tdEIT,
the measurements in fdEIT are very sensitive to noise [13].
Another well-known drawback of fdEIT is the inherent low
spatial resolution. In regard to this, previous research on fdEIT
mainly focuses on anomaly detection instead of imaging [14].

To counteract the severe ill-poseness and constrain the
solution of fdEIT, structural a priori knowledge can be incor-
porated to rule out the wild variations behind the instability.
One natural and convenient mechanism to accomplish this is
to employ Bayesian approaches [15], [16], which are aimed to
characterize the posterior distribution, e.g., computing poste-
rior moments or other posterior expectations. Sparse Bayesian
learning (SBL) framework has drawn much attention due
to its unique capability to flexibly modelling and adaptively
explore exploit underlying data structures. In addition, SBL
is more advantageous than other competitive signal recovery
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algorithms in the sense that it is more robust in noisy environ-
ments, and offers better performance when the columns of the
dictionary matrix are highly correlated and/or the image to be
reconstructed is not highly sparse [17], which is particularly
attractive to EIT applications.

In some recent works [18], [19], EIT image reconstruction
was formulated as a Bayesian statistical inversion problem
[20], [21], and a novel structure-aware sparse Bayesian learn-
ing (SA-SBL) based method was presented to obtain an signif-
icantly improved spatial resolution. In this paper, we expand
upon the SA-SBL algorithm for difference EIT imaging, and
consider fast multiple frame reconstruction. High temporal
resolution of EIT benefits practical applications but also re-
sults in massive frames to be reconstructed. To facilitate, for
example, low-cost and prompt-response early stroke diagnosis
in emergency scenarios, more efficient algorithm is in high
demanding. The contributions of this work on the basis of
the recent work in [18], [19] is fourfold: (a) fdEIT image
reconstruction is investigated within the multiple measurement
vector (MMV) SBL framework, which is fundamentally differ-
ent from the single measurement vector problem in [18], [19];
(b) The inter-task dependency between frames with different
frequencies is considered to yield an enhanced recovery perfor-
mance; (c) Instead of derive the maximum a posteriori (MAP)
estimates using expectation maximization (EM) method, we
employ an efficient marginal likelihood maximization (MLM)
approach to achieve much more efficient computation. (d) Two
measurable metrics based on regional relative cardinalities are
designed to draw a objective and quantitative comparison of
the competitive methods.

Following this introductory section, Section II presents the
signal model used in this paper. Section III then elaborates the
proposed sequential reconstruction algorithm based on multi-
task structure-aware sparse Bayesian learning (MT-SA-SBL).
The experimental results using real collected data is provided
in Section IV. The paper is concluded in Section V.

Notations: Lower-case (/upper-case) bold characters are
used to denote vectors (/matrices). (̄·) and |·| respectively
return the average of a given vector and the modulus of a given
complex number. diag{A} returns a column vector consisting
of the main diagonal entries, whereas and diag{A, 1} returns
one corresponding to the first-diagonal entries above the main
diagonal. IN denotes an N × N identity matrix. tr(·) and
(·)> respectively represent the trace and transpose operation
of a matrix. ‖·‖p represents the `p-norm of a vector, and ‖·‖F
represents the Frobenius norm of a matrix. E(·) returns the
expected value of a discrete random variable. p(·) denotes
the probability density function. N (·) denotes Gaussian dis-
tribution. R is the set of real numbers. ∪ and ∩ respectively
denote union and intersection of two sets. card {·} returns the
cardinality of a set.

II. PROBLEM FORMULATION

In fdEIT, it is essential to use the weighted voltage
difference between two frequencies to produce an image
of frequency-dependent changes of the internal conductivity
distribution [11]. In doing so, the conductivity change of

background substance is suppressed while the magnitude of
inclusion is enhanced. The weighted normalization form can
be expressed as

δy = (yω2
− αyω1

) / (αyω1
) , (1)

where α is a weight which equals to the inner product ratio
between two voltages vectors at different frequency:

α = 〈yω2 ,yω1〉 / 〈yω1 ,yω1〉. (2)

Typically, the following linear approximation is used to
relate the internal conductivity changes δκ ∈ RN×1 to the cor-
responding boundary voltage changes δy ∈ RM×1 (M < N):

δy = Jδκ, (3)

where J ∈ RM×N is the sensitivity matrix, a matrix defined by
mesh, electrode positions and current injection and measure-
ment protocol. An extension of the inverse model described in
(3) for simultaneously recovering EIT images from multiple-
frequency channels can be expressed as

δY = JδK, (4)

where δY is an M × L matrix containing the multiple-
frequency measurement vectors δY:,l of size M × 1, and δK
is an N × L matrix containing the solution images δK:,l of
size N × 1. (l = 1, 2, . . . , L, and L is the number of channels
to be recovered.) This extended model is termed MMV model
in compressive sensing community.

For notational convenience, in the following discussion, we
simplify the notations δK and δY as K and Y, respectively.
In addition, we also include additive noise matrix with i.i.d.
Gaussian entries V ∼ N (0, γ0I) in the signal model. Now
(4) is simplified as

Y = JK + V. (5)

As depicted in Fig. 1, we assume in this work that all
reconstructed EIT images in different frequency channels share
similar or identical sparse support, i.e., inter-channel correla-
tion exists, which is a reasonable assumption in EIT since the
variations of pixel amplitudes are moderate among different
frequency channels. On the other hand, the non-zero entries
in each channel are also assumed to exhibit intra-channel
clustering. Note that as shown in Fig. 1, the neighborhood
entries in the frames are not necessarily mutually adjacent in
the reconstructed conductivity matrix K. Therefore, a mapping
module is required to automatically find the dependent pixels
for each pixel under investigation. To solve the SMV problem
formulated in (3), a single conductivity solution vector δκ
is reconstructed from the single voltage measurement vector
δy. By comparison, in this work, we consider simultane-
ously recovering multiple EIT frames in multiple-frequency
channels. Accordingly, all the voltage measurement vectors
from different frequency channels constitute a measurement
matrix δY. Now the task turns into reconstructing the solution
matrix K (right hand side of Fig. 1) comprised of multiple
EIT frames from the measurement matrix, which becomes an
MMV problem.

For we have no a priori knowledge on the intra-channel
clustering partition pattern, by following the methodology in
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Fig. 1. Illustration of continuous structure considered in the fdEIT signal model.

the related work [18], we consider overlapping clusters with
an equal size h and arbitrarily distributed nonzero entries, and
the real pattern is learned by revoking and merging the preset
clusters during the SBL process. To facilitate the utilization of
SA-SBL framework, we factorize the l-th column of K as

K:,l , ΨX:,l ,
[
Ψ:,[1], . . . ,Ψ:,[g]

] [
X>[1],l, . . . ,X

>
[g],l

]>
,

(6)
where g = N − h + 1 is the total number of clusters. In
addition, for ∀i = 1, 2, . . . , g, X[i],l = [xi,l, . . . , xi+h−1,l]

> ∈
Rh×1 denotes the i-th preset cluster, and Ψ:,[i] ,[
0>(i−1)×h, I

>
h×h,0

>
(N−i−h+1)×h

]>
∈ RN×h. The underlying

linear model in (5) can then be rewritten as

Y = JΨX + V , ΦX + V. (7)

For the sake of consistency with our previous work [18],
we still assume

{
Bi ∈ Rh×h}g

i=1
controls the intra-channel

block structure. In addition, A ∈ RL×L is defined to capture
the inter-channel correlation in each row of X. Then, the
prior of the vectorized weights vec(X>) follows a zero-
mean Gaussian distribution with vec(X>) ∼ N (0,Σ0 ⊗A),
where the stretched covariance matrix is expressed as Σ0 =
diag {γ1B1, . . . , γgBg} ∈ Rgh×gh. In modelling the group
sparsity, independent hyperparameter for each group is used to
moderate the strength of the prior. The vectorized noise matrix
vec(V>) is assumed to follow the distribution vec(V>) ∼
N (0, γ0I⊗A).

III. SEQUENTIAL RECONSTRUCTION ALGORITHM

Directly reconstructing unknowns in the inverse model (7)
can lead to very inefficient estimation because of the mutual
coupling between A and Bi. This problem can be tackled by
adopting the switching-learning approach [22], i.e., whitening
towards one before estimating another, and then perform the
other way around. We first whiten the inverse model towards

the matrix A that controls the inter-channel correlation. To
this end, let Ỹ = YA−1/2, X̃ = XA−1/2, Ṽ = VA−1/2.
Therefore, the prior probability distributions of the whitened

model become X̃ ∼
L∏

l=1

N (0,Σ0) and Ṽ ∼
L∏

l=1

N (0, γ0I).

Thus, the a posteriori belief for the l-th column of the
whitened weights X̃ is subject to the following Gaussian
distribution

p
(
X̃:,l

∣∣∣Ỹ:,l; Θ
)

= N
(
µ:,l,Σ

)
, (8)

where Θ , {γ0, {γi,Bi}gi=1} denotes the hyperparameters
with mean vector

µ:,l = Σ0Φ
>
(
γ0I + ΦΣ0Φ

>
)−1

Ỹ:,l, (9)

and covariance matrix

Σ =

(
Σ−10 +

1

γ0
Φ>Φ

)−1
= Σ0 −Σ0Φ

>C−1ΦΣ0, (10)

with
C , γ0I + ΦΣ0Φ

> ∈ RM×M . (11)

The MAP probability estimate of X in the original model (7)
is obtained from the estimated posterior mean as X← µA1/2,
prior to which, the hyperparameters Θ must be estimated first.
We use the following logarithmic cost function as in [18]:

L (Θ) = log |C|+
L∑

l=1

Ỹ>:,lC
−1Ỹ:,l. (12)

The improved efficiency of the proposed method is achieved
by conditioning the marginal likelihood on an individual
hyperparameter associated with the group under investigation,
which significantly reduces the problem dimension. Con-
cretely, we rewrite C from (11) in a convenient form to analyze
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the dependence on group i (i = 1, . . . , g):

C = γ0I +
∑
j

γjΦ:,[j]Φ
>
:,[j]

=

(
γ0I +

∑
j 6=i

γjΦ:,[j]Φ
>
:,[j]

)
+ γiΦ:,[i]Φ

>
:,[i]

= C\i + γiΦ:,[i]Φ
>
:,[i],

(13)

where C\i is defined as the covariance matrix without the in-
fluence of basis Φ:,[i]. By using established matrix determinant
and Woodbury identity, the cost function (12) is pruned to the
following form:

L (Θ) = log |I + γiBiSi|−Q>i

(
(γiBi)

−1
+ Si

)−1
Qi, (14)

where Si , Φ>:,[i]C
−1
\i Φ:,[i] ∈ Rh×h and Qi , Φ>:,[i]C

−1
\i Ỹ ∈

Rh×L. To avoid the exhaustive matrix inversion of C−1\i with
i varying from 1 to g, we first obtain C−1 from (11) using
Woodbury identity as

C−1 = γ−10 I− γ−20 ΦΣΦ>. (15)

Then we replace the term C−1\i with C−1 in the definition of
Si and Qi, i.e.,

S̃i , Φ>:,[i]C
−1Φ:,[i]

= γ−10 Φ>:,[i]Φ:,[i] − γ−20 Φ>:,[i]ΦΣΦ>Φ:,[i]
(16)

and
Q̃i , Φ>:,[i]C

−1Ỹ

= γ−10 Φ>:,[i]Ỹ − γ−20 Φ>:,[i]ΦΣΦ>Ỹ.
(17)

Assume that the matrix S̃i can be factorized as S̃i =
Pidiag(si,k)P>i , where Pi represents the eigenmatrix of S̃i,
and si,k, (k = 1, . . . , h) denotes the k-th eigenvalue of S̃i.
We can then obtain Si and Qi by using the eigenvalue
decomposition of S̃i as

Si = Pidiag

(
si,k

1− γisi,k

)
P>i (18)

and

Qi = Pidiag

(
1

1− γisi,k

)
P>i Q̃i. (19)

The updating rules for the hyperparameters can be obtained
by setting their corresponding derivative of (14) to zero. Simi-
lar to [18], regularization is introduced to avoid the overfitting
problem, where Bi is updated by averaging an intermediate
variable B̃i, i.e.,

B̃new
i = B̃i +

1

γiL

L∑
l=1

(
S−1i

(
Qi,lQ

>
i,l − Si

)
S−1i

)
, (20)

where Qi,l represents the l-th column of Qi. A robust estima-
tion of Bi is then obtained by constraining it to the following
Toeplitz form:

Bnew
i =

Toeplitz
([
r0i , r

1
i , . . . , r

h−1
i

])∥∥Toeplitz
([
r0i , r

1
i , . . . , r

h−1
i

])∥∥
F

(21)

where
ri = sign(r̃i) ·min {|r̃i| , 0.99} , (22)

r̃i =
diag(B̃i, 1)

diag(B̃i)
. (23)

Also taking into account the pattern coupling between the
hyperparameter γi and the hyperparameters {γi+, γi−} of its
neighboring clusters, where subscripts i+ and i− respectively
indicate the neighboring clusters of the i-th cluster with larger
and smaller indices, the updating rule for γi can be derived as

γnewi =
1

hL
(γi + βγi+ + βγi−)·
L∑

l=1

tr
(
B−1i S−1i

(
Qi,lQ

>
i,l − Si

)
S−1i

)
.

(24)

We can also obtain the updating rule for γ0 as

γ0 =
1

ML

∥∥∥Ỹ −Φµ
∥∥∥2
F

+
1

M

∑g

i=1
tr
(
Σ[i]Φ

>
:,[i]Φ:,[i]

)
.

(25)
Similarly, matrix A can be estimated by whitening the inverse
model towards B. The resulting updating rule for A is given
as follows

Ãnew =
(Y −ΦX)

>
(Y −ΦX)

γ0
+

g∑
i=1

X>[i],:B
−1
i X[i],:

γi
,

(26)

Anew =
Ã∥∥∥Ã∥∥∥

F

. (27)

A pseudo-code implementation of the proposed MT-SA-
SBL-based algorithm for EIT image reconstruction is provided
in Algorithm 1. In initializing Algorithm 1, parameters εmin

and ϑmax are selected according to the accuracy and runtime
constraints. As suggested in [18], we set h = 4 and β = 0.25.
Other initial values such as γ0 and Bi are empirically chosen
according to extensive numerical simulations, which has little
impact on the algorithm performance since they will be learned
and altered afterwards.

Remark 1: It is worth pointing out that, in the proposed
algorithm, if any γi = 0, its corresponding basis Φ:,[i] is
excluded from the current model. For in a sparse recovery
generally most of γi is zero, only a small fraction of the
g clusters contribute to the computational load. Hence, the
overall computational complexity is reduced since it heavily
depends on the size of the utilized basis set in each iteration.
With the parameter settings in our experiment, the proposed
algorithm in this paper can achieve a speedup ratio of ∼10 in
comparison with EM-based approach.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

The proposed MT-SA-SBL-based algorithm was tested
against the real recorded data from a planar wideband EIT
sensor system designed to monitor biological process named
SWEIT [23]. The SWEIT system integrates 16 electrodes to
realize excitation and measurement over 1 kHz – 1.1 MHz.
The average signal-to-noise ratio is 56 dB in each channel and
a good consistency is achieved. A photograph taken during
the phantom experiment is shown in Fig. 2(a). The internal
diameter and height of the sensor are respectively 125 mm
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Algorithm 1: Pseudo-code for fdEIT image recon-
struction based on MT-SA-SBL algorithm.
Input : Y, J, h, β, εmin, ϑmax

Initialize : Set ε = 1, ϑ = 0, µ = 0gh×L,
Σ = 0gh×gh, γi = 1g×1,

γ0 = 0.01
L ×

L∑
l=1

√
1

M−1

M∑
i=1

|yi,l − ȳ:,l|2,

Bi = Toeplitz([0.90, . . . , 0.9h−1]).
Iterations:

1 while ε > εmin and ϑ ≤ ϑmax do
2 Update A using (26), (27);
3 Update µ:,l using (9);
4 Update Σ using (10);
5 Update Si and Qi using (18) and (19);
6 Update γi using (24);
7 Update γ0 using (25);
8 Update Bi using (20)–(23);
9 ε = ‖µnew

x − µx‖F / ‖µnew
x ‖F ;

10 ϑ = ϑ+ 1.
11 end

Output : σ̂ = Ψµ̂

and 30 mm. The background substance in this test was 0.1%
(w/v) salt solution, whose conductivity was 0.2± 0.001 S/m
throughout the frequency range measured. Multi-frequency
voltage measurements of a chopped carrot cylinder and an
electrically insulating nylon rod were collected at different
frequencies varying from 10 KHz to 300 KHz. The mea-
sured bioimpedance spectrum of the carrot cylinder using an

impedance analyzer is given in Fig. 2(c). The selection of the
stimulation frequency was based on the three dispersion mech-
anisms [24], [25], which illustrated the frequency response
of biological materials. 20–100 KHz is located within the β-
dispersion, where the conductivity variation of the materials
is mainly attributed to the interfacial polarization due to the
existence of the insulating membrane surrounding the cells.
The evaluation of electrical properties within this range is
useful for many industrial applications such as food quality
control. The diameter of the carrot cylinder and nylon rod
are approximately 25 mm and 30 mm. The finite element
method (FEM) is employed to numerically solve the EIT
inverse problem. The FEM mesh adopted in this paper is
provided in Fig. 2(b). The FEM mesh is provided in Fig. 2(b).
As we can see from Fig. 2(b), a total of N = 812 square
simplices constitute the senor domain with an approximate
circular boundary, and the diameter consists of 32 pixels. As
such, the size of each pixel is approximately 15.11 mm2.

Remark 2: Salt solution is among the most commonly used
background substances in the EIT tank experiments (See, e.g.,
[26], [27]). By adjusting the saline hydrolysis concentration,
its conductivity can be flexibly regulated to mimic the back-
grounds in various industrial/biomedical applications, such
as multi-phase flow and cell culture medium. Additionally,
salt solution provides a homogeneous background so that the
performance of different algorithms can be directly compared
and the modelling errors are negligible. It is noteworthy that
complex background substances such as cucumber, potato,
and banana mashes have also been utilized in some studies
[28], [29]. Those backgrounds exhibit reasonable permittivities
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Fig. 2. Phantom experiment settings. (a) Experimental EIT measurement system. (Adapted from Fig. 27 of [23]. Reuse with the permission from IEEE
and the authors.) (b) Inverse mesh consisting of 812 pixels. (c) Conductivity truth of carrot cylinder. (d) Reconstructed tdEIT frames in different frequency
channels.
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TABLE I
ILLUSTRATIVE EXAMPLES OF FDEIT FRAME RECONSTRUCTION OF A BIOLOGICAL PHANTOM.
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and better simulate certain realistic biomedical scenarios. The
induced imaginary part of the background conductivity clearly
increases the problem complexity for the inverse solvers. But
as the objective of this work is to introduce the MT-SA-SBL
algorithm for general fdEIT imaging, we only consider salt
solution background. The adoption of complex backgrounds
will be investigated in our future work.

As a reference for the fdEIT reconstruction later in this
section, Fig. 2(d) shows the reconstructed tdEIT frames of
the two phantoms in different frequency channels using the
standard Tihonov regularization. Note that in all the following
reconstructed tdEIT/fdEIT frames, the approximate region of
the carrot cylinder is marked with a white circle to facilitate
better demonstration. We can observe from Fig. 2(d) that, the
cross-section profiles of the nylon rod remain clear and almost
stationary within the frequency range. In contrast, the tdEIT
frames of the carrot cylinder gradually become blurred and
unidentifiable with the increase of excitation frequency. From
the electrical characteristics of the two phantoms shown in
Fig. 2(d) it is not difficult to speculate that, the nylon rod
will be hardly visible in all the fdEIT frames, while the carrot
cylinder will gradually emerge and become more distinct with
the increase of frequency.

Table I shows the fdEIT reconstruction results of the phan-
tom, where the voltage data measured at 10 KHz serves as the

baseline. Several state-of-the-art methods, including `1 regu-
larization [30], total variation (TV) regularization [31], and
Nissinen’s Bayesian method [32], [33], are considered in the
comprehensive performance comparison. The target objective
parameter in the `1 regularization is set to 0.1, and the iteration
step of the TV regularization is set to 0.01. The iteration
termination conditions for the iterative methods are set as
εmin = 1 × 10−5 and ϑmax = 200. In the absolute imaging
mode, reconstructed conductivity values is important. Whereas
in difference imaging we are more interested in the contrast
of inclusion to background. As such, we follow the common
practice [7] to normalize the conductivity values within the
range 0 to 1. The fdEIT reconstruction results presented in
Table I and our speculation are in a good agreement: The
conductivity difference between the target and the baseline
increases with frequency. Also, the inter-channel correlation
can be directly observed from the reconstruction results, since
the variations of pixel amplitudes are small between adja-
cent frequency channels. The proposed MT-SA-SBL-based
EIT inverse solver achieves the best edge/shape preservation
performance compared with the reference methods. On the
other hand, some artifacts appear near the sensor boundary
with the reference methods. In contrast, clear and accurate
phantom image with correct anomaly location can be obtained
with the proposed MT-SA-SBL approach.
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Fig. 3. Generated position truth.

As in this work we attempt to alleviate the inherent
low spatial resolution of fdEIT. Customarily, spatial resolu-
tion/accuracy of tdEIT is characterized and quantitatively eval-
uated by metrics such as correlation coefficient and relative re-
construction error [18], [34]. Other commonly used evaluation
criteria include figures of merit (FoM) [35], which has been
integrated into the EIDORS software package. However, a
quantitative evaluation for fdEIT is challenging compared with
tdEIT, because the conductivity is changing with frequency
and the ground truth is unknown. In this context, to facilitate
convenient comparison, we have generated one position truth
according to the position of the inclusion in Fig. 2(a), which is
shown in Fig. 3. Although this position truth does not represent
the exact true frequency-dependent conductivity distributions,
approximate and objective quantitative evaluation can still be
obtained by using the following two measurable metrics [18]:

cor =

N∑
n=1

(κn − κ̄) (ςn − ς̄)√√√√ N∑
n=1

(κn − κ̄)
2

N∑
n=1

(ςn − ς̄)2
, (28)

and

err =
‖κ− ς‖2
‖ς‖2

, (29)

where ς and κ respectively denote the position truth and the
reconstructed image. n represents the n-th pixel. The above
two metrics are respectively termed correlation coefficient and
the relative reconstruction error.

We can readily see that the former metric measures the
similarity between the reconstruction result and the position
truth, while the latter one measures the severity of distortions
and/or artifacts. However, it is important to keep in mind
that, as the conductivity images fade at lower frequencies
and the position truth is not the real truth, these two metrics
only give a rough assessment in these cases. The performance
comparisons with respect to the correlation and error metrics
are provided in Figs. 4(a) and (b). The 20 KHz result
was discarded since the phantom is completely invisible at
such a low frequency. Inspired by the FoM, we also design
two complementary metrics for algorithm evaluation, i.e., the
contrast accuracy and the shape deformation. The contrast
accuracy is formally similar to the amplitude response (AR)
in the FoM, which is deigned to compare the amplitudes of

the reconstructed background/anomaly differences.

cst =

∑
n∈T

κn

St
κt − κr
∆κmax

, (30)

where St represents the size of the target area T . κt and
κr are the conductivities of the target and the reference.
∆κmax denotes the maximum difference between the target
and the reference. From the reconstructed image κ, a one-
fourth amplitude binary image κq is defined as all pixels
exceeding 1

4 of the image maximum. On this basis, shape
deformation is defined to describe fraction of the reconstructed
one-fourth amplitude set which does not fit within the shape
of the target area:

shp =

∑
n/∈T [κq]n∑
n [κq]n

, (31)

The performance comparisons with respect to the two
complementary metrics are shown in Figs. 4(c) and (d). Note
that the desired behavior of contrast accuracy metric should
be equal to 1, which indicates that the reconstructed back-
ground/anomaly difference matches the conductivity truth.
Thus, we can tell from Fig. 4(c) that, each method achieves
a best amplitude contrast accuracy at a specific frequency
and none of them shows an overwhelming advantage with
respect to this metric. However, the result of shape deformation
analysis suggests an evident superiority of the proposed algo-
rithm, which is quite similar to the result in Fig. 4(b). We can
summarize from Figs. 4 that, the proposed method is able to
achieve a significantly enhanced fidelity of the phantom shape
and it can also yield a remarkably reduced reconstruction error,
which tallies with the EIT results in Table I.

Remark 3: The phase value of the measured conductivity
is useful for revealing the properties of biological subjects.
However, the experiments in this study are mainly designed
to compare the performance of different algorithms in general
fdEIT image reconstruction, so we only use the magnitude
value to reduce the complexity in the sensitivity computation.
This is a common practice in many similar studies (See, e.g.,
[5], [7], [18]). We also feel that accurate estimation of the
phase value requires joint optimization of measurement system
and the reconstruction algorithm, which is beyond the scope
of this paper. We certainly will investigate the phase value of
the measured conductivity in our future research.

V. CONCLUSION

In this paper, fdEIT is addressed in the MMV SBL frame-
work for the first time. A novel MT-SA-SBL algorithm was
developed for fdEIT exploiting the multiple-task and 2D struc-
ture dependencies. The feasibility of the proposed approach
is studied through real-data experiments, where significant
improvements in terms of spatial resolution and artifact sup-
pression over previous efforts are observed. In addition, by
employing the modified MLM approach for MMV model,
the computational complexity required is substantially reduced
compared with directly applying previously proposed SA-
SBL algorithm for each individual frequency channel. Two
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Fig. 4. Quantitative evaluation using objective metrics. (a) Correlation coefficient. (b) Relative reconstruction error. (c) Contrast accuracy. (d) Shape deformation.

objective and quantitative evaluation criteria for fdEIT imaging
are also designed in this work. Our future work will focus
on accommodating for the complexity of human anatomy for
practical clinical application.
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