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A unified probabilistic monitoring framework for
multimode processes based on probabilistic linear

discriminant analysis

Abstract—This work develops a novel probabilistic monitoring
framework for industrial processes with multiple operational
conditions. The proposed method is based on the probabilistic
linear discriminant analysis (PLDA), which relies on two sets
of latent variables, i.e., the between-class and within-class latent
variables. In order to deal with the large within-class variations
in multi-mode industrial processes, this approach modifies the
original PLDA by introducing a separate within-class loading
matrix for each operational mode and designs an expectation
maximization (EM) algorithm to estimate the model parameters
from the training samples. Mode identification for test samples
is achieved by investigating the cosine similarity in the between-
class latent variables and two monitoring statistics corresponding
to within-class latent variables and the residuals are considered
for fault detection. To diagnose the process fault, this paper
further develops a sparse probabilistic generative model based
on PLDA for fault isolation. The enhanced performance of the
proposed method is illustrated by applications to numerical
examples and industrial processes.

Index Terms—Multi-mode process monitoring, probabilistic
linear discriminant analysis, latent variables, fault isolation.

I. INTRODUCTION

TO achieve improved system reliability and operational
safety, more and more attention has been paid on the

development of process monitoring methods. Thanks to the
advancement of information technology, process monitoring
methods, including data-driven techniques and model-based
approaches, have been extensively studied over the past few
decades [1]. In contrast to model-based approaches, data-
driven techniques do not require much priori knowledge and
have shown to be conceptually simple and with low imple-
mentation cost.

One type of data-driven techniques is based on the mul-
tivariate statistical process control (MSPC) [2]. The basic
idea of MSPC methods is to obtain a set of latent vari-
ables by mapping the process data onto a lower dimensional
subspace based on certain criteria. Once the latent variables
are obtained, monitoring statistics like Hotelling’s T 2 and
squared prediction error (SPE) can be constructed for fault
detection and isolation. It should be noted that the training
datasets for these methods are usually assumed to admit a
unimodal distribution. This can be problematic as practical
industrial processes often undergo frequent production shifts
due to changes in product quality specifications, manufacturing
strategies, and working environments [3]. Thus, process moni-
toring models trained under the unimodal assumption may fail
and produce significant number of false alarms. In order to
deal with the monitoring problem of multi-mode processes,
various methods have been developed, including adaptive

methods [4], [5], similarity analysis based methods [6], [7],
subspace separation [8], [9], and mixture models [10], [11].
More recently, monitoring of nonlinear processes using the
kernel trick has also been considered and good results have
been achieved [12], [13].

Among multi-mode process monitoring techniques, proba-
bilistic approaches have received considerable attention [14].
Comparing to conventional methods, probabilistic approaches
are advantageous in its capability of (i) incorporating prior
knowledge using appropriate distributions; (ii) better handling
of process uncertainty; (iii) easy accommodation of missing
data and outliers [15], [16]. Various probabilistic methods has
been reported in the literature, such as Gaussian mixture mod-
els [17], probabilistic principal component analysis [18], hid-
den Markov models [15], and conditional random fields [19].
They have been successful in detecting process fault and
diagnosing operational modes in a number of applications.
For fault isolation and diagnosis, however, possible solutions
include formulating the fault isolation and diagnosis problem
in a way similar to contribution analysis [20], or performing
an additional root cause diagnosis using causal models like
Bayesian networks [21], or transfer entropy [22]. Several prob-
abilistic methods like probabilistic contribution analysis [23]
and probabilistic reconstruction [24] have also been proposed.
Despite the research progress on probabilistic monitoring
methods, it still lacks a unified probabilistic framework which
combines the fault detection and isolation for multi-mode
processes.

In this paper, a novel probabilistic monitoring framework
is proposed based on the probabilistic linear discriminant
analysis [25]. However, the standard PLDA is not suitable
for handling datasets with significantly large within-class
variance [26], which is common in multi-mode industrial
processes. In order to accommodate multi-mode industrial
processes, this paper introduces a separate within-class loading
matrix for each operational mode and designs two monitoring
statistics, leading to better fault detection results. For mode
identification, a cosine similarity is developed based on the
between-class latent variables. In addition, a sparse proba-
bilistic generative model based on PLDA is developed to
isolate faulty variables. The contribution of this paper can be
summarized as follows: (i) A unified probabilistic monitoring
framework is developed for fault detection and isolation for
multi-mode processes; (ii) The standard PLDA is extended by
introducing a separate within-class loading matrix for each
mode to accommodate the dataset with large within-class
variance, leading to better fault detection results; (iii) A sparse
probabilistic generative model based on PLDA is proposed to
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isolate faulty variables.

II. PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS

In this section, the standard PLDA model [25], a prob-
abilistic version of linear discriminant analysis (LDA), is
briefly introduced. In PLDA, the j-th sample in the i-th class,
xi j ∈Rm, can be described by two sets of latent variables with
Gaussian priors. The corresponding probabilistic generative
model can be given as

xi j = µµµ +Fhi +Gwi j + εεε i j

hi ∼N (0,I)
wi j ∼N (0,I)
εεε i j ∼N (0,ΣΣΣ)

(1)

where 0 and I represent the zero vector and the identity
matrix with appropriate dimensions, µµµ = 1

N ∑i j xi j is the global
mean value vector, with N being the size of the whole
dataset. N (· , ·) denotes the Gaussian distribution with the
selected parameters. The assumption of Gaussian distribution
is based on the fact that the data in a specific mode of multi-
mode processes can be regarded as Gaussian or approximately
Gaussian. Such assumption has also been used in a series
of research work based on probabilistic models [15], [18].
hi ∈RDF is the between-class latent variable shared by all the
samples generated from the i-th class and wi j ∈ RDG is the
within-class latent variable which explains the sample varia-
tion. F ∈Rm×DF and G ∈Rm×DG are two low-rank loading
matrices. εεε i j is the stochastic Gaussian noise with zero mean
and a diagonal heteroscedastic covariance matrix ΣΣΣ. The model
parameters of PLDA can be grouped as θθθ = {µµµ,F,G,ΣΣΣ}.
An expectation maximization (EM) iteration procedure was
introduced to estimate the model parameters in Ref. [25].
Comparing to PPCA, PLDA has better flexibility and is able
to make probabilistic inferences about the class/mode identity.

III. IMPROVED PROBABILISTIC LINEAR DISCRIMINANT
ANALYSIS

As is discussed in Section I, the standard PLDA is not
suitable for dealing with data with large within-class varia-
tions, which is common in industrial multi-mode processes.
To cope with this problem, in this section, an improved PLDA
(I-PLDA) model is considered.

A. Model Structure

To better deal with multi-mode processes, the standard
PLDA is modified by replacing the within-class loading matrix
G by Gi for i = 1, · · · , I, with each Gi corresponding to a
specific process mode/class. Hence, the generative model of
I-PLDA can now be written as

xi j = µµµ +Fhi +Giwi j + εεε i j (2)

Note that in Eq.(2), by integrating out the latent variable wi j,
the within-class variances are now obtained as Si = GiGi +ΣΣΣ,
in contrast to Si = GG+ΣΣΣ of PLDA, which is the same for all
classes. This renders I-PLDA better flexibility, as it introduces
a specific variance for data in each mode. Now the parameter

set of I-PLDA is extended as θ̃θθ = {µµµ,F,Gi,ΣΣΣ, i = 1, · · · , I}.
The above treatment introduces significant flexibility to I-
PLDA and leads to improved effectiveness in handling indus-
trial multi-mode processes.

B. Model Estimation

Assume a dataset X=X1
⋃

X2
⋃
· · ·
⋃

XI has been collected,
with Xi =

{
xi j
}J

j=1 storing all J samples belonging to the
i-th class, so that the size of X becomes N = IJ. In order
to learn the parameter set θ̃θθ for I-PLDA, an iterative EM
algorithm is developed. The EM algorithm is an optimization
method particularly suitable for problems with some variables
unobservable but whose probability distributions are known.
It is a powerful and widely used tool for estimation of latent
variable models [14]. The EM algorithm mainly consists of an
E-step and a M-step as follows [27].

Part I: E-step. To facilitate the joint inference of the latent
variables, the probabilistic generative model for the dataset Xi
can be written as

xi1
xi2
...

xiJ


︸ ︷︷ ︸

X̃i

=


µµµ

µµµ

...
µµµ


︸ ︷︷ ︸

µ̃µµ i

+


F Gi 0 · · · 0

F 0 Gi · · ·
...

...
...

...
. . . 0

F 0 0 · · · Gi


︸ ︷︷ ︸

Ãi


hi

wi1
wi2

...
wiJ


︸ ︷︷ ︸

yi

+


εεε i1
εεε i2
...

εεε iJ


︸ ︷︷ ︸

εεε i

(3)
Here X̃i is the data matrix storing all samples belonging to
class i, µ̃µµ i and Ãi are the concatenated mean and parameter
matrices. According to Eq.(1), both the concatenated hidden
variable matrix yi and the concatenated noise matrix εεε i follow
a Gaussian distribution, with yi ∼N (0,I) and εεε i ∼N

(
0, Σ̃ΣΣ
)
.

Σ̃ΣΣ is a block diagonal matrix with each diagonal block being
ΣΣΣ. With the distributions of hidden variable and noise terms
determined, the parameters in Eq.(3) can be estimated using
the EM algorithm. According to Ref. [25], the posterior
expectation of yi =

[
hT

i wT
i1 · · · wiJi

]
is obtained by

〈yi〉= ΞΞΞiÃT
i Σ̃ΣΣ
−1 (X̃i− µ̃µµ

)
ΞΞΞi =

(
ÃT

i Σ̃ΣΣ
−1Ãi + I

)−1 (4)

where 〈 · 〉 denotes the expectation of a latent variable. ΞΞΞi is
the posterior covariance of Σ̃ΣΣ . Note that the matrix inversion
in Eq.(4) is usually intractable due to the high dimension.
Fortunately, this problem can be efficiently solved by the
partitioned inverse formula [28] as

ΞΞΞi =

[
Ai Bi
Ci Di

]−1

=

[
Ui −UiBiD−1

i
−D−1

i CiUi D−1
i CiUiBiD−1

i +D−1
i

] (5)

where Ui, Bi, Ci, and Di are obtained from Eq.(3) and Eq.(4)
as follows.

Ui =
(
I+ JFT QiF

)−1

Bi =
[

FT ΣΣΣ
−1Gi · · · FT ΣΣΣ

−1Gi
]

Di = diag
([

Vi · · · Vi
]) (6)
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with Vi =
(
I+GT

i ΣΣΣ
−1Gi

)−1
, Qi =

(
ΣΣΣ+GiGT

i
)−1, and Ci =

BT
i . Based on the formulas of Eqs.(4∼6), the posterior expec-

tations of the between- and within-class latent variables can
be updated by

〈hi〉= UiFT Qi

J

∑
j=1

(xi j−µµµ) (7)〈
wi j
〉
= ViGT

i ΣΣΣ
−1 (xi j−µµµ−F〈hi〉) (8)

The second order moments of these two latent variables are
estimated by〈

hihT
i
〉
= 〈hi〉

〈
hT

i
〉
+ cov(hi,hi) (9)〈

wi jwT
i j
〉
=
〈
wi j
〉〈

wT
i j
〉
+ cov(wi j,wi j) (10)〈

hiwT
i j
〉
= 〈hi〉

〈
wT

i j
〉
+ cov(hi,wi j) (11)

where “cov” is the covariance function and

cov(hi,hi) = Ui,

cov(hi,wi j) =−UiFT
ΣΣΣ
−1GiVi,and

cov(wi j,wi j) = ViGT
i ΣΣΣ
−1FUiFT

ΣΣΣ
−1GiVi +Vi.

Part II: M-step. For the purpose of parameter updating
given the observed dataset and the posterior expectations, the
EM auxiliary function from the complete log-likelihood is
firstly extracted as

Q(ΘΘΘ,ΘΘΘold) = 〈ln p(X |ΘΘΘold ,H )〉q(H|X,ΘΘΘ )

≡−1
2

I

∑
i=1

{
J
(
tr
(
ΣΣΣ
−1

ΓΓΓi
)
+ ln |ΣΣΣ|

)
+

J

∑
j=1

〈
x̃T

i j
〉

ΣΣΣ
−1 〈x̃i j

〉}
(12)

where q( · ) denotes the posterior distribution, ≡ indicates
equality up to an additive constant, and H the collection
of all latent variables. The other terms can be expanded
as
〈
x̃i j
〉
= xi j − µµµ − F〈hi〉 − Gi

〈
wi j
〉

and ΓΓΓi = FUiFT +
Gicov(wi j,wi j)Gi

T +2Fcov(hi,wi j)Gi
T .

The parameter set θ̃θθ for I-PLDA is then updated by taking
the corresponding derivatives. For example, by setting the
derivative with respect to F as zero, parameter matrix F can
be updated as

F =
I

∑
i=1

J

∑
j=1

[
x̄i j
〈
hT

i
〉
−Gi

〈
wi jhT

i
〉]
×

[
I

∑
i=1

J
〈
hihT

i
〉]−1

(13)

where x̄i j = xi j−µµµ and
〈
wi jhT

i
〉
=
〈

hiwT
i j

〉T
. Similarly, other

parameters are updated as follows.

Gi =
J

∑
j=1

[
x̄i j
〈
wT

i j
〉
−F

〈
hiwT

i j
〉]
×

[
J

∑
j=1

〈
wi jwT

i j
〉]−1

(14)

ΣΣΣ = diag

[
1
N

I

∑
i=1

J

∑
j=1

〈
εεε i j
〉〈

εεε
T
i j
〉
+ cov(εεε i j,εεε i j)

]
(15)

where
〈
εεε i j
〉
= xi j− µµµ −F〈hi〉−Gi

〈
wi j
〉

and cov(εεε i j,εεε i j) =
Fcov(hi,hi)FT +2Fcov(hi,wi j)GT

i +Gicov(wi j,wi j)GT
i .

Let k denote the iteration number, the full training scheme
based on the joint updating EM algorithm can be summarized
here.

Algorithm 1. EM for I-PLDA
Input: training data set X, dimension sizes DF and DG.
1. Randomly initialize parameters F, Gi, and ΣΣΣ;
2. Compute the parameters Ui, Vi, and Qi using Eq.(6);
3. Update the posterior expectations of

{
hi,wi j

}
and the

related second order moments using Eqs.(7∼11);
4. Update parameters F, Gi, and ΣΣΣ using Eqs.(13∼15);
5. Calculate the likelihood of the total dataset as L(k+1) =

∑i j lnN
(

xi j

∣∣∣µµµ +F(k+1)〈hi〉(k+1), S(k+1)
i

)
;

6. If
∣∣∣L(k+1)−L(t)

L(k)

∣∣∣ > ε , set k = k+1 and go back to Step 2,
otherwise terminate the iteration and go to Step 7;

7. Output the model parameters and posterior expectations
of all latent variables.

C. Parameter Selection

Note that the dimension sizes DF and DG for latent variables
should be determined first in Algorithm 1. Usually, the natural
constrains for them are 1 ≤ DF ≤ m and 1 ≤ DG ≤ m, where
m is the number of process variables. Although it has been
suggested that these two parameters should be consistent [29],
1≤DF ≤m≤DG ≤ 2m is adopted in this paper, as a smaller
value of DG will lead to a lower dimensional multivariate
Laplace prior in the subsequent fault isolation, which tends to
produce biased estimates and can be easily affected by outliers
for high dimensional data [30]. The optimal values of DF and
DG can be experimentally determined using trial and error.

IV. PROCESS MONITORING STRATEGY

Until now, the estimations of model parameters and latent
variables have been obtained. In order to construct a monitor-
ing model for industrial processes with multiple conditions,
this section develops a process monitoring strategy consisting
of a mode identification step, a statistics construction step, and
a fault isolation step.

A. Process Mode Identification

As shown in Eq.(1), the between-class latent variable hi
is used to indicate the class label. In order to identify the
mode of a test sample xt , it is important to see how the test
sample interacts with hi. Note that the estimation of hi in
Eq.(7) can be obtained by summing up the contribution of
J samples in mode/class i, i.e., 〈hi〉 = ∑

J
j=1
〈
hi j
〉
, with

〈
hi j
〉

being expressed as〈
hi j
〉
= UiFT Qi (xi j−µµµ) (16)

Thus, if a test sample xt belongs to class/mode i, the corre-
sponding contribution can be obtained by replacing xi j with
xt in Eq.(16), resulting in a temporary between-sample latent
variable ht|i , with the expectation of〈

ht|i
〉
= UiFT Qi (xt −µµµ) (17)

On the other hand, the average contribution to 〈hi〉 from all
the samples in class/mode i can be defined as h̃i, with the
expectation of 〈

h̃i
〉
=

1
J

J

∑
j=1

UiFT Qi (xi j−µµµ) (18)
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Identification of the mode label of a test sample xt can be
achieved by investigating the similarity between h̃i and hi|t .
The closer hi|t is to h̃i, the more probable xt can be assigned
into mode/class i. To capture the similarity between h̃i and
hi|t , the cosine similarity is adopted here as

cos
(
h̃i,hi|t

)
=

〈
h̃T

i
〉〈

hi|t
〉∥∥〈h̃i

〉∥∥
2

∥∥〈hi|t
〉∥∥

2

(19)

Consequently, the mode of xt can be identified as

s = argmax
i

cos
(
h̃i,hi|t

)
(20)

B. Process Monitoring Statistics

Once the mode label of a test sample is determined, it is
required to construct monitoring statistics for fault detection.
Here, conventional T 2 and SPE statistics are used. For I-
PLDA, these two statistics are constructed as follows.

T 2 =
〈

wT
t|s

〉〈
wt|s

〉
(21)

SPE =
〈

εεε
T
t|s

〉〈
εεε t|s
〉

(22)

where
〈
wt|s

〉
can be obtained using Eq.(8).

〈
εεε t|s
〉

can be
derived by the difference between the test sample xt and the
related estimation µµµ + F〈hs〉+ G

〈
wt|s

〉
. The control limits

of the two statistics can be obtained using kernel density
estimation (KDE).

C. Fault Isolation Method

Once a fault is detected, it becomes important to timely
and accurately localize the faulty variables. In this subsection,
a sparse probabilistic generative model based on I-PLDA is
proposed to isolate faulty variables.

1) Sparse Probabilistic Generative Model: Assume a fault
has been detected by the T 2 statistic, the following sparse
probabilistic generative model (SPGM) is considered as

xt|s = µµµ +Fhs +Gsw∗t|s︸ ︷︷ ︸
x∗t|s

+∆Gw∗t|s + εεε t|s

= x∗t|s +∆Gw∗t|s + εεε t|s

(23)

Here xt|s indicates that xt has been assigned to mode s and
x∗t|s denotes the expected normal replica of xt|s . Note that xt|s
is equal to x∗t|s and ∆G = 0 if xt is normal. Hence the faulty
components are totally incorporated into the term ∆Gw∗t|s . The
reason for not using F to isolate the fault is that the term Fhi
represents the between-class variation. Once a test sample is
assigned into a specific mode and determined to be faulty, the
dominant variations will be focused on within-class variation.

In order to isolate faulty variables from a faulty sample xt ,
it is desired to obtain the estimation of matrix ∆G. An appro-
priate assumption on ∆G is that it is a matrix with row-wise
sparsity. That is to say, the nonzero rows of ∆G correspond
to faulty variables while the zero rows correspond to normal
variables [31]. Let ∆G =

[
∆gT

1 ∆gT
2 · · · ∆gT

k · · · ∆gT
m
]T , with

∆gk being the k-th row of ∆G. The row-sparsity assumption

can be achieved by imposing a multivariate Laplace prior [30]
on ∆gk

∆gk |ak ,ck ∼ ck exp(−
√

ak‖∆gk‖2) (24)

where ak and ck are unknown parameters. As pointed out
by Babacan et al. [30], this prior is sharply peaked at zero
vector, indicating that a row corresponding to normal variable
will be shrunk to zero, whilst the rows corresponding to
faulty variables will be nonzero. It is a common practice to
decompose the multivariate Laplace prior into a hierarchi-
cal prior, consisting of a scaled Gaussian and two Gamma
distributions [30]. Eqs.(25∼27) show how to decompose the
multivariate Laplace prior.

∆gk |zk ∼N (0,zkI) (25)

zk |ak ∼
a(DG+1)/4

k z(DG−1)/2
k exp

(
−akzk

/
2
)

2(DG+1)/2Ga
(
(DG +1)

/
2
) (26)

ak |λ ,η ∼ Gamma(λ ,η) (27)

where Gamma(ak |λ ,η ) = ηλ aλ−1
k exp(−ηak)

/
Ga(λ ) with

the Gamma function, Ga(x) =
∞∫
0

yx−1 exp(− y)dy and {λ ,η}

are pre-determined hyperparameters.
To get a full Bayesian inference framework for the SPGM,

the priors for other parameters are given by

x∗t|s ∼N
(

µµµ +Fhs +Gw∗t|s ,νI
)

(28)

ν |ρ,κ ∼ Gamma(ρ,κ) (29)
w∗t|s ∼N (0,I) (30)

εεε t|s |γ ∼N (0,γI) (31)

γ |α,β ∼ Gamma(α,β ) (32)

where ν and γ are the variances of x∗t|s and εεε t|s respectively.
As suggested by Yang et al. [32], these noise variances can be
estimated by placing different Gamma hyperpriors over ν and
γ . For these Gamma hyperpriors, ρ,κ,α,β are pre-determined
hyperparameters.

If a faulty sample causes violation in the SPE statistic, a
similar probabilistic generative model can be considered as

xt|s = x∗t|s + rt|s + εεε t|s (33)

rt|s |τ ∼N (0,τI) (34)

τ |b ∼
√

b
2

exp
(
−bτ

/
2
)

(35)

In this case, the faulty components are incorporated in the
vector rt|s . For the purpose of fault isolation, this time, a
univariate Laplace prior can be imposed on each element
of rt|s . Similarly, the Laplace prior can be decomposed
hierarchically into a Gaussian distribution in Eq.(34) and a
Gamma distribution in Eq.(35), with b being a pre-determined
parameter. Faulty variables now correspond to the nonzero
elements of rt|s and normal variables correspond to zero
elements.
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2) Moving Window Technique for Online Application: For
a robust fault isolation as well as to alleviate the effect of
noise/disturbance, a moving window approach is commonly
applied in fault isolation. Assume a window of l faulty sam-
ples causing violations in the monitoring statistics have been
collected as x̃t|· = [xt−l+1|· , · · · ,xt|· ], with “·” representing the
identified mode for a sample. Let x̃∗t|· = [x∗t−l+1|· , · · · ,x

∗
t|· ] de-

note the expected normal replicas of x̃t|· . The two probabilistic
generative models described in Eq.(23) and Eq.(33) can be
rewritten as follows.

x̃t|· = x̃∗t|· +∆Gw̃∗t|· + ε̃εε t|· (36)

x̃t|· = x̃∗t|· +R+ ε̃εε t|· (37)

where w̃∗t|· = [w∗t−l+1|· , · · · ,w
∗
t|· ], R = [rt−l+1|· , · · · ,rt|· ], and

ε̃εε t|· = [εεε t−l+1|· , · · · ,εεε t|· ]. Again, the rows of ∆G and the
elements of R admit multivariate and univariate Laplace priors
, respectively. By including the latest and discarding the oldest
sample, faulty variables can be isolated online by identifying
the non-zero rows of ∆G and R sequentially.

To estimate the model parameters, a variational Bayesian
(VB) inference method is applied, which considers the com-
plete log-likelihood of Eq.(36)

ln p
(

x̃t|· , x̃∗t|· ,∆G, w̃∗t|· ,γ,ν ,ak,zk,k = 1, · · · ,m
)
≡

− 1
2

t

∑
j=t−l+1

1
γ

∥∥∥∆x j|· −∆Gw∗j|·
∥∥∥2

2
+

1
ν

∥∥∥x̄∗j|· −G·w∗j|·
∥∥∥2

2

+
∥∥∥w∗j|·

∥∥∥2

2
+

t

∑
j=t−l+1

m

∑
k=1
−1

2
‖∆gk‖2

2

/
zk +φ (zk,ak)+ϕ (γ,ν)

(38)

where ∆x j|· = x j|· − x∗j|· , x̄∗j|· = x∗j|· − µµµ − Fh·, φ (zk,ak) =(
λ +DG

/
4− 3

/
4
)

lnak−
(
zk
/

2 + η)ak+
(
DG
/

2− 1
/

2
)

lnzk,
and ϕ (γ,ν) = (α − l

/
2− 1) lnγ +(ρ − l

/
2− 1) lnν −βγ −

κν . The posterior expectation of each latent variable can be
obtained by taking the expectation of Eq.(38) on an approxi-
mate joint posterior distribution as

p
(

x̃∗t|· , w̃
∗
t|· ,∆G,γ,ν ,ak,zk,k = 1, · · · ,m

∣∣x̃t|·

)
≈ q(γ)q(ν)

t

∏
j=t−l+1

q
(

x∗j|·
)

q
(

w∗j|·
) m

∏
k=1

q(∆gk)q(ak)q(zk).

Using Bayesian rule, Eq.(39) updates the posterior expectation
of ∆gT

k as

〈
∆gT

k
〉
= ΦΦΦk

t

∑
j=t−l+1

〈
γ
−1〉〈

∆x jk|·
〉〈

w∗j|·
〉

ΦΦΦk = 〈zk〉
[

I+
t

∑
j=t−l+1

〈
γ
−1〉〈zk〉

〈
w∗j|·w

∗T
j|·

〉]−1 (39)

where
〈
∆x jk|·

〉
is the k-th element of

〈
∆x j|·

〉
= x j|· −

〈
x∗j|·
〉

.
Similarly, the posterior expectations of x∗j|· and w∗j|· can be

estimated by:〈
x∗j|·
〉
=

1
ϑ

[〈
γ
−1〉〈x̂ j|·

〉
+
〈
ν
−1〉(

µµµ ·+G·
〈

w∗j|·
〉)]

(40)〈
w∗j|·

〉
= P·

[〈
γ
−1〉〈

∆GT 〉〈
∆x j|·

〉
+
〈
ν
−1〉GT

·

〈
x̄∗j|·
〉]

(41)〈
w∗j|·w

∗T
j|·

〉
=
〈

w∗j|·
〉〈

w∗Tj|·
〉
+P· (42)〈

x∗j|· x
∗T
j|·

〉
=
〈

x∗j|·
〉〈

x∗Tj|·
〉
+ϑI (43)

where ϑ =
〈
γ−1
〉
+
〈
ν−1

〉
, µµµ · = µµµ +F〈h·〉,

〈
x̂ j|·
〉
= x j|· −

〈∆G〉
〈

w∗j|·
〉

,
〈

x̄∗j|·
〉
=
〈

x∗j|·
〉
−µµµ ·, and

〈
∆GT

∆G
〉
=

m

∑
k=1

〈
∆gT

k
〉
〈∆gk〉+ΦΦΦk,

P· =
(
I+
〈
γ
−1〉〈

∆GT
∆G
〉
+
〈
ν
−1〉GT

· G·
)−1

.

Finally, the posterior expectations of scaled factors and other
parameters are obtained as follows.

〈zk〉=
√
〈ak〉

/
tr
(〈

∆gT
k

〉
〈∆gk〉+ΦΦΦk

)
(44)

〈ak〉=
(
λ +(DG +1)

/
2
)/(

η + 〈zk〉
/

2
)

(45)〈
γ
−1〉= ml

/
2+α

β +

〈∥∥∥x̃t|· − x̃∗t|· −∆Gw̃∗t|·
∥∥∥2

F

〉 (46)

〈
ν
−1〉= ml

/
2+ρ

κ +

〈∥∥∥x̃∗t|· − µ̃µµ ·− b̃t|·

∥∥∥2

F

〉 (47)

where b̃t|· =
[
G·w∗t−l+1|· , · · · ,G·w

∗
t|·

]
, µ̃µµ · = [µµµ ·, · · · ,µµµ ·], and〈∥∥∥x̃t|· − x̃∗t|· −∆Gw̃∗t|·

∥∥∥2

F

〉
=

∥∥x̃t|·
∥∥2

F +
t

∑
j=t−l+1

tr
[〈

x∗j|· x
∗T
j|·

〉]
+ tr

[〈
∆GT

∆G
〉〈

w∗j|·w
∗T
j|·

〉]
−2
[
xT

j|·

(〈
x∗j|·
〉
+ 〈∆G〉

〈
w∗j|·

〉)
−
〈

x∗Tj|·
〉
〈∆G〉

〈
w∗j|·

〉]
,〈∥∥∥x̃∗t|· − µ̃µµ ·− b̃t|·

∥∥∥2

F

〉
=

‖µ̃µµ ·‖
2
F +

t

∑
j=t−l+1

tr
[〈

x∗j|· x
∗T
j|·

〉
+G·

〈
w∗j|·w

∗T
j|·

〉
GT
·

]
−2
[〈

x∗Tj|·
〉(

µµµ ·+G·
〈

w∗j|·
〉)
−µµµ

T
· G·

〈
w∗j|·

〉]
.

In summary, the alternating updates of all listed posterior
expectations constitute the VB algorithm. At each update
step, the posterior distribution of each variable is inferred
conditioned on the fixed distributions for the other variables.
As for the estimation of R, a similar VB inference algorithm
can be developed.

3) Fault Scoring: To facilitate the characterization of differ-
ent fault levels, two fault scores for each variable are defined
as

δk = ‖∆〈gk〉‖1 (48)

δ̃k = ‖〈r̃k〉‖1 (49)
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where r̃k is the k-th row of R, ‖ · ‖1 denotes the l1-norm of
a vector, δk corresponds to fault score obtained from faulty
samples violating the T 2 statistic, and δ̃k corresponds to those
causing violations in the SPE. For faulty samples violating the
T 2 statistics, a fault score vector δ = [δ1, · · · ,δm]

T is obtained
via Eq.(48), which can be normalized by its maximum value.
If faulty samples violate the SPE statistics, another fault score
vector can be obtained.

V. NUMERICAL SIMULATION EXAMPLE

This section illustrates the proposed process monitoring
strategy based on I-PLDA. A process with six variables driven
by two hidden variables is generated as follows.

x = ΩΩΩυυυ + e
ΩΩΩ = [κκκ1,κκκ2]

κκκ1 = [0,0,0.9835,0.8979,0,0.7482]T

κκκ2 = [0.8921,0.5856,0,0,0.9154,0.0581]T

(50)

Here x= [x1,x2,x3,x4,x5,x6]
T are process variables to be mon-

itored, 2 hidden variables are denoted as υυυ = [υ1,υ2]
T . The

observation noise e = [e1,e2,e3,e4,e5,e6]
T follows a Gaussian

distribution of e ∼N (0,diag(0.01× I)). To simulate a pro-
cess with multiple operation modes, three different Gaussian
distributions are imposed on the hidden variables as

Mode 1: υ1 ∼N
(
10,0.82) , υ2 ∼N

(
12,1.32);

Mode 2: υ1 ∼N
(

5 ,1.42) , υ2 ∼N
(
20,1.52);

Mode 3: υ1 ∼N
(
16,2.02) , υ2 ∼N

(
30,2.52).

For the purpose of model training, 400 samples are gener-
ated from each mode and a total of 1200 training samples
have been collected and stored in X0 ∈ R1200×6. The first
400 samples are generated from Mode 1, followed by the 800
samples generated from Mode 2 and Mode 3. In addition, a
test dataset Xf1 ∈R1200×6 is generated from the 3 modes in
a similar way and a sensor fault is introduced in the hidden
variable for samples from 101∼ 400 as

Samples 101∼ 400 : Xf1 = ΩΩΩ

(
υυυ +[2,0]T

)
+ e;

Based on the training data, Algorithm 1 is used to estimate
the model parameters of the I-PLDA model. For parameters
setting, the dimensions of loading matrices are set as DF =
2 and DG = 6. For other parameters, according to Yang et
al. [32], large α and ρ encourage small noise variances and
the hyperparameters setting includes α = ρ = 0.5 and β =
κ = 10−6. Also, Yang et al. [32] demonstrates that a larger
λ results in a more sparsity-encouraging prior and the similar
settings for the other hyperparameters are λ = 0.5 and η =
10−6.

The process monitoring strategy proposed in Section IV
is now tested on the faulty samples. For fault detection, the
monitoring statistics T 2 and SPE of both I-PLDA/PLDA and
PPCA are provided. For fault isolation, based on the analysis
by Liu et al. [31], the interval of 5≤ l ≤ 20 for window length
is suggested. Here it is set as l = 10 through experiments.
For comparison, the standard PLDA, reconstruction based
contribution (RBC) [33], and PPCA are considered.
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Fig. 1. Mode identification results based on I-PLDA for Xf1
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Fig. 2. Monitoring results using I-PLDA, PLDA, and PPCA for Xf1

For each of the test samples, the mode identification method
proposed in Section IV-A is applied and the results are
shown in Figure 1. The upper plot of Figure 1 shows the
cosine similarities, with the black line, red line, and blue line
corresponding to those of Mode 1, Mode 2, and Mode 3,
respectively. The lower plot shows the assigned mode for each
sample. It can be seen from the upper plot of Figure 1 that the
maximal cosine similarity always corresponds to the correct
process mode. A clearer inspection shows that the cosine
similarity cos(h̃1,ht|1 ) fluctuated more significantly from the
101-st to the 400-th samples, this is due to the introduction of
the sensor bias in the hidden variable. Despite the fluctuations,
faulty samples can still be correctly assigned into Mode 1,
which shows the good performance of the proposed method
in mode assignment.

After the mode identification step, the monitoring results
based on I-PLDA, PLDA, and PPCA are presented in Figure 2.
The fault only affects the T 2 statistics and not the SPE
statistics of all methods. Hence only the SPE statistics of
I-PLDA are shown, and those of PLDA and PPCA are not
shown as they do not produce significant alarms. As can
be seen from Figure 2, significant number of violations are
observed in the T 2 statistics of all three models after the
101-st sample, indicating the occurrence of a process fault in
Mode 1. A clearer inspection of Figure 2, however, yields that
higher sensitivity can be observed for I-PLDA. This is verified
by the fault detection rates (FDR) of I-PLDA being 53.3%,
comparing to those of 29.3% for PLDA and 43.3% for PPCA.
This is expected, as the flexibility is enhanced by introducing
a specific within-class loading matrix for each mode.

After the fault is successfully detected, it is essential to
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Fig. 4. Aggregated fault scores using I-PLDA, PLDA, PPCA, and RBC for
Xf1

localize the faulty variables. The moving window based fault
isolation strategy proposed in Section IV-C is now applied on
the 300 faulty samples and the results are shown in Figure 3,
where deeper color indicates greater fault score. This time,
comparison is made between I-PLDA, PLDA, PPCA, and
RBC. In Figure 3, the sample-by-sample fault scores obtained
from I-PLDA are recorded in the left-upper plot and those for
PLDA, PPCA, and RBC are shown in the left-lower, right-
upper, and right-lower plots, respectively. Figure 4 presents
the aggregated fault scores for the 101 ∼ 400-th samples.
Comparing the plots in Figure 3, one can observe that I-
PLDA/PLDA shows better isolation capability. This can be
confirmed by the plots of Figure 4 as the aggregated fault
scores for I-PLDA/PLDA clearly indicate that x3, x4, and x6
are faulty variables. In contrast, the aggregated contribution of
PPCA and RBC also identify x3, x4, and x6 as faulty, however,
the contributions of x1, x2, and x5 cannot be neglected.

VI. APPLICATION TO INDUSTRIAL PROCESSES

This section demonstrates the performance of the proposed
method using its applications to the Tennessee (TE) process
and a blast furnace ironmaking process, in comparison with
PLDA/PPCA. Comparisons with other methods showed simi-
lar results and hence are not included.

A. TE process application

The TE process involves five units including an exothermic
reactor, a stripper, a flash separator, a recycle compressor, and
a condenser. In the TE process, 41 measured variables and
12 manipulated variables are collected. In this paper, a total
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Fig. 5. Mode identification results based on I-PLDA for Xf

of 16 continuous variables are selected and listed in Table I.
According to [6], there are six normal operation conditions,

TABLE I
PROCESS VARIABLES AND DESCRIPTIONS

Variable Description Variable Description

x1 A Feed, kscmh x9 Separator temperature, ◦C
x2 D Feed, kg

/
h x10 Separator pressure, kPa

x3 E Feed, kg
/

h x11 Separator underflow, m3
/

h
x4 A+C Feed, kscmh x12 Stripper pressure, kPa
x5 Recycle flow, kscmh x13 Stripper underflow, m3

/
h

x6 Reactor feed, kscmh x14 Stripper temperature, ◦C
x7 Reactor temperature, ◦C x15 React. cool temperature, ◦C
x8 Purge rate, kscmh x16 Cond. cool temperature, ◦C

each corresponding to a different process mode. To obtain the
training dataset, a normal dataset X0 consisting of 3000 data
points are sampled every 3 minutes under the 6 modes, so that
each mode involves 500 samples. In addition, a faulty dataset
Xf undergoing two random variations is introduced. For the
sake of simplicity, the first three modes are included in Xf, with
each mode containing 1000 samples. For Mode 1, a Gaussian
variation with zero mean and variance of 10 is added to the
reactor temperature from 201-st time instance. For Mode 2,
another Gaussian variation with zero mean and variances of 5
are added to both the purge rate and stripper pressure at the
1161-st sample. The parameters of I-PLDA are set as DF = 4
and DG = 20 via trial and error. The other parameters remain
the same as before. For PPCA, the number of retained PCs is
set as 4.

The I-PLDA parameters are then determined using Algo-
rithm 1 based on X0 and the results of mode identification for
Xf are shown in Figure 5. It can be seen from Figure 5 that
the samples in Xf are successfully identified into the correct
modes using the cosine similarity. As the mode assignments
in the lower plot of Figure 5 are exactly the same as the initial
mode settings.

Next, the monitoring procedures proposed in Section IV-B
are used to detect the faults and the results are shown in
Figure 6. It can be seen from Figure 6 that the fault of random
variation in Mode 1 is successfully detected by the SPE
statistics of both I-PLDA and PPCA. The random variation
in Mode 2, on the other hand, are also successfully detected
by both the T 2 and SPE statistics. For fault isolation, the
procedures proposed in Section IV-C are used. This time, for
simplicity, only the aggregated fault scores are presented in
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Fig. 7. Aggregated fault scores using I-PLDA and PPCA for Xf

Figure 7. The fault isolation results in Figure 7 demonstrate
that x7 to be the dominant faulty variables in Mode 1 and
x8, x12 for Mode 2. A clearer inspection, however, shows
that the contributions of other variables are not negligible for
PPCA. This shows the better fault isolation performance of
the proposed method.

B. Application to a blast furnace ironmaking process

A blast furnace is used to produce hot metal for steelmaking.
During the operation of a blast furnace, iron ore and coke
dropping from the top meet hot air and coal powder blowing
from the bottom, resulting in a series of chemical reactions and
gradually forming the product-liquid hot metal. Meanwhile,
slag exits from the bottom and the flue gas escapes from
the top. In this example, practical data collected from a blast
furnace with 2500 m3 in China is considered and a total of 10
process variables related to gas flow are considered and listed
in Table II. The dataset consists of 1500 samples covering 3
different operation conditions and an abnormal dataset with
1000 samples. This fault involves a fluctuation in the CO
concentration in the flue gas after the 500-th sample due to
excessive blast of coal powder.

TABLE II
MONITORED BLAST FURNACE PROCESS VARIABLES

Variable Description Variable Description

x1 Quality of blast x6 Permeability index
x2 Temperature of blast x7 Quantity of blasted oxygen
x3 Pressure of blast x8 Coke ratio
x4 Quantity of coal powder x9 CO concentration in the flue gas
x5 Top gas pressure x10 CO2 concentration in the flue gas
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Fig. 8. Mode identification using I-PLDA, PLDA, and PPCA for blast furnace
data
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The sampling period for these samples is 2 min. Based on
the normal dataset, the model parameters of I-PLDA are ob-
tained with DF = 3 and DG = 10 via trial and error. The other
parameters are the same as the TE process, and the retained
PCs for PPCA is set as 3. After model training, the mode
identification for the faulty dataset is carried out. For PPCA,
the modes of test samples are identified using the maximum
likelihood criterion. The results of mode identification using
I-PLDA/PLDA and PPCA are shown in Figure 8, from which
it can be seen that the mode identification results of all the
three methods are very similar, indicating the identifications
are appropriate. A clearer inspection shows that the identified
modes of the 500∼ 1000-th samples shows higher fluctuation
than the first 500 samples. This is expected, as the fault
may affect the process characteristics and hence the mode
identification. With the mode identified, fault detection are
performed and the corresponding results are presented in
Figures 9.

From the monitoring results in Figure 9, it can be seen
that the fault is successfully detected by all three methods.
The fault detection rates of the T 2 and SPE statistics for I-
PLDA are 69.2% and 100%. In contrast, the FDRs of the
T 2 and SPE statistics for PLDA are 35.2% and 96.2% and
those for PPCA are 84% and 11.8% respectively. This can be
explained, as the introduction of separate within-class loading
matrices enhances the fault detection capability. After the
fault is detected, fault isolation is performed. The sample-by-
sample fault scores are shown in Figures 10 and the aggregated
fault scores are shown in Figure 11. It is clearly shown in
Figure 10 that I-PLDA identifies x4 and x9 as the dominant
faulty variables in both T 2 and SPE statistics. This is in
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Fig. 10. Isolation results using I-PLDA, PLDA, and PPCA for blast furnace
fault
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Fig. 11. Aggregated fault scores using I-PLDA, PLDA, and PPCA for blast
furnace fault

accordance with the later finding that excessive coal injection
caused increased CO concentration in the flue gas after the
500-th sample. In contrast, PLDA and PPCA also identify
x4 and x9 as the dominant faulty variables. However, the
contribution of other variables cannot be neglected. This is
further confirmed by the aggregated fault scores shown in
Figure 11.The application to blast furnace data demonstrates
the advantages of the proposed method in monitoring of multi-
mode process over PLDA and PPCA.

VII. CONCLUSIONS

This paper proposed a unified probabilistic monitoring
framework for multi-mode processes based on probabilistic
linear discriminant analysis. To better handle large within-
class variance, an improved PLDA is developed by introducing
a separate within-class loading matrix for each mode. For
mode identification, the cosine similarity is applied and a fault
detection and isolation strategy is proposed. The fault isolation
procedures involve solution of two sparse probabilistic gener-
ative models. Application studies to simulation examples and
industrial processes show the proposed method has better fault
detection and isolation performance than competitive methods.
Future work can be focused on extending the developed
framework to monitoring of nonlinear processes using kernel
trick.
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