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 

Abstract—The optimal deployment of heterogeneous energy 
storage (HES), which mainly consists of electrical and thermal 
energy storage, is essential for increasing the holistic energy 
utilization efficiency of multi-energy systems. Consequently, this 
paper proposes a risk-averse method for HES deployment in a 
residential multi-energy microgrid (RMEMG), considering the 
diverse uncertainties and multi-energy demand-side management 
(DSM). Apart from the HES size, location planning, its optimal 
investment phase is also determined by maximizing the system 
equivalent daily profit (EDP) and minimizing the risk. To handle 
the system uncertainties from renewable energy sources (RES), 
power demands, outdoor temperature, and residential hot water 
needs, the multi-stage adaptive stochastic optimization (SO) 
approach is utilized. Then through the constraint linearization 
and stochastic scenario sampling, the original nonlinear 
deployment model is converted to a mixed-integer linear 
programming one and tested on an IEEE 33-bus distribution 
network based RMEMG. The effectiveness of the proposed 
method is verified by comparing it with the existing practices. The 
comparison results indicate that the proposed risk-averse 
deployment method can effectively increase the system EDP and 
more immune to the uncertainties. Besides, this method can be 
practically applied for the emerging RMEMGs, such as smart 
buildings, intelligent homes, etc., which get long-term DSM 
contracts.  

 
Index Terms—heterogeneous energy storage (HES), risk-averse 

deployment, residential multi-energy microgrid (RMEMG), 
multi-energy demand-side management (DSM), multi-stage 
adaptive stochastic optimization 

 

NOMENCLATURE 

Abbreviations 
CCHP Combined Cooling, Heat, and Power 
CVaR Conditional value-at-risk 
DSM Demand-side Management 
EB Electric Boiler 
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EC Electric Chiller 
EDP Equivalent Daily Profit 
EES Electrical Energy Storage 
GAMS General Algebraic Modelling System 
GB Gas Boiler 
HES Heterogeneous Energy Storage 
MILP Mixed-integer Linear Programming 
PBDR Price-Based Demand Response 
PV Photovoltaic Cell 
RES Renewable Energy Sources 
RMEMG Residential Multi-Energy Microgrid 
SO Stochastic Optimization 
TS Thermal Storage 
TST Thermal Storage Tank  
VaR Value-at-risk 
WT Wind Turbine 
Superscript 
b Index for branches, bϵ Br(i, i+1) 
j Index for the price levels 

m 
Index for the first year of each investment phase, 

m ∈p 

p/t/d/i Index for years/dispatch periods/days/buses 
ᴧ Set for {p, d, t, i} 
Constants and Parameters 

ɑBH 
Correction factor for envelopes like walls, 
doors, etc  

ɑCL Confidential level 
ACL Air volume that infiltrates into the room 
CAV Equivalent specific heat of the room 
CWR/CAir Specific heat capacity of water/air 
dr Discount rate 
ILE Gap length of the door or window crack 
KHT Heat transfer coefficient of the room 
LPL/LQL Active/reactive PBDR levels 
NF The normalized factor for Beta Distribution 
NM The total number of investment phases 

NP/NB/NT/N 
D 

Number of years/buses/dispatch periods/days a 
year  

P 
DG,REAL Available energy resource of RES 

P  
DL /H

  
HL /H

  
CL Power/heat/cooling demands 

P  
WT/P

  
PV 

The power output of wind turbines/photovoltaic 
cells 

P 
DL,Pr/Q

 
DL,Pr Active/reactive power demands before the DSM

R/X Branch impedance 

Smin 
ES /Smax 

ES    
Minimal/maximal HES capacity for each 
bus/group 

Optimal Stochastic Deployment of Heterogeneous 
Energy Storage in a Residential Multi-Energy 

Microgrid with Demand-Side Management 
Zhengmao Li, Student Member, IEEE, Yan Xu, Senior Member, IEEE, Xue Feng, Member, IEEE, and 

Qiuwei Wu, Senior Member, IEEE  

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 25,2020 at 11:23:21 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2971227, IEEE
Transactions on Industrial Informatics

TII-19-4943 
 

 

2

SBH Area of the building envelope 
SALL 

ES  Maximal energy capacity for the HES system 
T 

IW  The temperature of inlet water for water tanks 
Tset 

IN /Tset 
SW Temperature set-point for room/hot water  

V0/ΔVmax 
BUS Substation voltage/maximal voltage deviation 

VRB/V 
HW The volume of the room/hot water needed 

xs The generalized symbol for power outputs of 
WTs and PVs 

ys The generalized symbol for the outdoor 
temperature and multi-energy demands 

βcx/βjx 
Correction factor due to solar irradiation/wind 
blow 

γmin 
DG /γmax 

DG  Minimal/maximal DG output ratio 

γmax 
ES  

The maximal charging/discharging power ratio 
of the energy storage to its capacity 

γit 
The ratio of intrusion loss to basic thermal 
transfer loss  

γLL The leakage loss ratio of the energy storage 

γmin 
SOC/γ

max 
SOC 

Minimal/maximal state of charge for energy 
storage 

Δt Unit dispatch interval 

ΔTV /ΔTW 
Maximal temperature deviation for room/ hot 
water 

ε  
SAL 

The ratio of HES salvage value to its investment 
cost 

ηBC /ηBD 
Charging/discharging efficiency of battery 
storage 

ηMT Electrical efficiency of CCHP plants 

ηTC/ηTD 
Charging/ discharging efficiency of thermal 
storage 

ρRK The weighted risk factor 
θ/ψ Scale parameters for Beta Distribution 

κMT/κB 
Emission penalty price of CCHP plants/utility 
grid  

μ/σ Mean/standard deviation for Normal 
Distribution 

ρWR/ρAir Water/air density 
τT/τB The decay rate of thermal/battery storage 

χB/χS 
Power purchasing/selling price between MEMG 
and utility grid 

χM 
DG/χM 

ES The unit maintenance cost of generators/storage 
χINV 

ES  Unit investment cost of energy storage 
χNG Nature gas price 

χPS/χHS/χCS 
Power/heat/cooling retail prices to the local 
customers 

χPS/χHS/χCS 
Power/heat /cooling retail prices to the local 
customers 

χSUB The unit subsidy price for RES  
Variables  
ηVaR The project VaR 

ɑ 
Binary indicator for the state of price or load 
levels 

CEDP The project EDP  
C 

FC/C
 
TC  Fuel/power transaction cost 

C 
INV/C

 
SAL Investment cost/salvage value. 

C 
MC/C

 
EM Maintenance/gas emission cost 

C 
REV/C

 
SUB Revenue from local customers/RES subsidy 

C 
ST/C

 
SD Start-up/shut-down cost 

E 
T/E

 
B Energy stored in the thermal/battery storage 

H 
BH/H 

AH Basic/additional thermal transfer loss 
H 

CN/H
 
CR Infiltration/intrusion thermal loss 

H 
EB/H

 
EC Heat/cooling output of electric boilers/chillers. 

H 
MH /H 

MC Heat/cooling output of CCHP plants  
H 

TC/H
 
TD Charging /discharging power of thermal storage 

H 
TL/H

 
NET Total space thermal demands/net thermal  

P  
MT The power output of CCHP plants 

P 
BC/P

 
BD Charging/ discharging power of battery storage 

P 
BX /P

 
SX 

Purchasing/selling power between MEMG and 
utility  

P 
DG/ P 

ES Generalized power output for generators/storage
P 

EB/P
 
EC Power input for electric boilers/chillers. 

P 
PF/ Q

 
PF Active/reactive power flow 

P 
RL/Q

 
RL 

Active/reactive power loads after demand 
response 

Pp,d,t,0,b 
PF /Qp,d,t,0,b 

PF  Parallel active/ reactive power of branch b  
R  

DG,DN /R
  
DG,UP Maximal ramping down/up limits  

S 
ES The capacity of the energy storage 

S 
ES,Eq 

The effective capacity of energy storage 
considering the leakage loss  

T 
IN/T

 
OT Indoor/outdoor temperature 

T 
SW  

The temperature of the water inside the water 
tank  

U 
DG 

Binary state to indicate the on-off status of 
generators 

U 
ES 

Binary state to denote investment decisions for 
HES 

U 
ESC /U

 
ESD Binary charging/discharging states of HES 

V 
BUS Bus voltage  

I. INTRODUCTION 

NERGY storage is to capture the energy produced at one 
time for later use [1]. Its optimal deployment in the energy 

systems is essential for providing numerical benefits, such as 
tackling the intermittent power outputs from RES, achieving 
higher energy utilization flexibility, shaving peak energy 
demands, improving the voltage profile, etc. [2]-[3].  

For the existing research on the deployment of energy 
storage, currently, it focuses mainly on electrical energy 
storage (EES). Ref. [4] formulates an optimal placement model 
for the EES in a power network to shift loads and minimize the 
generation cost. In [5], a cost-effective method for EES sizing 
in the distribution system is proposed. This method decides the 
optimal EES capacity regarding its operating cost under 
different RES penetration levels. Ref. [6] presents a model for 
integrating EES in a microgrid at the minimum cost, to analyze 
its potential advantages with different conceivable regulatory 
services. Ref. [7] determines the optimal EES size in the 
RES-integrated power system to get the minimal system 
operating cost. However, in the above research, the EES only 
facilitates RES integration without considering a system-wide 
operation. Hence, their deployment solutions may not be 
optimal from the system perspective. Therefore, ref. [3] studies 
the EES deployment in a microgrid based on cost-benefit 
analysis. The time series and neural network techniques are 

E
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used to forecast the wind speed and solar radiations, 
respectively. In [8], to determine the optimal EES size and 
location, the probabilistic load model is adopted to incorporate 
more load scenarios. The above research has utilized the 
deterministic optimization method by assuming that there is 
perfect information about the RES generation and end-user 
energy consumption. Nonetheless, the RES and energy 
consumption are intrinsically uncertain, which makes the 
solutions from the deterministic method unreliable. 

In the literature, to deal with system uncertainties in the 
deployment of energy storage, various approaches are 
employed. In [9], the optimal EES deployment is obtained by 
the deterministic optimization tool with the uncertainties 
addressed by the model predictive control method. Ref. [10] 
studies the optimal EES sizing problem to minimize the annual 
cost by a bi-level programming method. The uncertainties are 
managed by the system reserve. Though the uncertainties are 
considered, both works still use deterministic models, which 
fail to provide a reliable or robust deployment plan. Regarding 
this, the stochastic and rubout optimization approaches have 
been employed. Authors in [11] propose a stochastic 
optimization (SO) method for EES sizing in a wind-diesel- 
based isolated grid. In [12], the optimal EES sizing problem in 
microgrids with highly penetrated wind energy is solved by the 
unit-commitment-based robust optimization method. Authors 
in [13] investigate an efficient cost-reliability optimization 
method to obtain the optimal EES location and size in a 
microgrid considering the DSM for electricity. To handle the 
uncertainties from wind turbines (WTs), the SO method is 
utilized. Ref. [14] introduces the SO approach for EES 
deployment in remote systems, to reduce the system operating 
cost. Authors in [15] propose a joint robust capacity 
optimization method for EES and distributed generators to save 
the operating cost under the fluctuating RES outputs. For the 
long-term planning research, the worst-case-oriented robust 
optimization method tends to be too conservative compared 
with the stochastic one, and highly depends on the predefined 
uncertainty budgets. As for the stochastic approach, currently, 
the majority are risk-neutral [13], [14], however, neglecting the 
risk will result in a threat to the reliability of microgrids. In this 
regard, the project managers would be willing to choose a 
solution with higher operational costs but lower risk [16].  

Besides, most of the existing research work focuses only on 
the deployment of EES in the power system. Nonetheless, 
recent years have seen a dramatic development of multi-energy 
systems, which integrate the increasing power, heat, and 
cooling energy carriers [17]. At the distribution network level, 
multi-energy systems are usually realized in the form of 
RMEMGs, such as smart buildings, intelligent homes, etc [18], 
which require plenty of thermal demands. In this regard, to 
effectively enhance the holistic energy efficiency and operation 
flexibility, the EES deployment is shifted to HES deployment 
in the RMEMGs, with the uncertainties from only the power 
system to multi-energy systems, such as the outdoor 
temperature or thermal demands [19]. However, in the 
literature, very limited research work has been done in this area. 
Ref. [20] plans the HES size aiming to minimize the project 

cost and gas emissions by a two-stage solution method. The 
first stage uses the genetic algorithm to solve the planning 
problem and the second stage applies the MILP solvers to get 
the operating solution. In [21], both the system structure and 
HES capacity configuration are studied in a planning 
framework of the smart microgrid. Then, a MILP based 
planning model was proposed to minimize the total operating 
cost. The study in [22] proposes a novel optimal design model 
for a microgrid that involves HES. To reduce the computational 
burden, the model uses the typical design days to represent the 
yearly horizon. Though the above research investigates the 
HES deployment, the network constraints and the effects of 
multi-energy uncertainty sources are totally ignored. In this 
regard, the system reliability cannot be guaranteed, and their 
solutions are not practical for the real application. 

Furthermore, as the DSM is a promising and effective 
solution to support the system operation as well as save energy 
bills for residents, currently, there is a widespread installation 
of the smart meters in residential buildings with a long-term 
DSM contract [18]. Compared with the electricity, thermal 
energy (heat or cooling) gets higher inertia, as residents can be 
comfortable within a tolerable temperature range [23]. In this 
sense, though the DSM for electricity is widely studied in the 
areas such as power grid transmission planning [24], robust 
operation [25], low-carbon sustainability [26], etc., its 
coordination with the thermal energy is rarely studied 
especially for the HES deployment of RMEMGs. 

Last but not least, most of the existing deployment works, 
either for EES or HES only consider the one-off installation at 
the beginning of the project as they ignore the increasing load 
growth. Thus, their deployment decisions would be probably 
far from enough, given the annual load growth in reality [27]. In 
this regard, the multi-phase deployment, in which the HES can 
be invested at different years of the project, is critical for the 
more comprehensive and flexible planning research. 

To fill the research gap, in this paper, an optimal risk-averse 
stochastic HES deployment method is proposed in a grid-tied 
RMEMG under diverse uncertainties. Compared with the 
existing research works, the contributions in this paper are 
summarized as follows. 

1) A new risk-averse HES deployment model in the grid-tied 
RMEMGs is proposed. Instead of focusing merely on EES, its 
integration with the thermal storage (TS) and different energy 
properties are also investigated.  

2) For more comprehensive and flexible HES deployment 
work, in addition to the traditional size and location planning, 
the investment phase selection is also considered, given in 
reality that there is annual load growth.  

3) Diverse uncertainties not only from RES and power loads 
of the traditional power system but from the outdoor 
temperature and hot water needs of the thermal system are also 
taken into full account. Then, a scenario-based multi-stage 
adaptive SO approach is proposed to tackle all the 
uncertainties. 

4) The DSM for multiple energies is incorporated in the HES 
deployment, given its advantage in flexibilizing the system 
operation and reducing the energy bills. Especially for the 
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thermal system, the DSM in terms of specific thermal modeling 
for the local residential buildings is built with thermal dynamics 
and thermal inertia combined.  

For the practical implications of this work, with the 
increasing number of green buildings and smart homes, that are 
partially powered by the RES and have signed long-term 
multi-energy DSM contracts, the proposed method can be 
directly applied to the deploy their HES system. 

The rest of this paper is organized as follows. Section II 
describes the basic structure of the RMEMG with the specific 
modeling of all its units. Section III introduces the proposed 
risk-averse HES deployment model and its scenario-based 
multi-stage adaptive SO form. Section IV presents a detailed 
case study and simulation results of the HES deployment. At 
last, Section V concludes the whole paper.  

II. RESIDENTIAL MULTI-ENERGY MICROGRID MODELLING 

A. Residential Multi-energy Microgrid Structure  

The structure of a typical RMEMG is shown in Fig.1. Its 
main components are the distributed generators, HES system, 
and multi-energy demands. The RMEMG is grid-tied, which 
means its power can be transacted with the main grid [18]. 
Further, the residents are assumed to have signed a long-term 

contract with the RMEMG to save their energy bills. 
The inner distributed generators can be classified as [27]: 
1) dispatchable generators, which are in small sizes, flexible 

control, and high ramp rates: electric boilers (EBs), combined 
cooling, heat, and power (CCHP) plants with the main 
generator as micro-turbines, and electric chillers (ECs);  

2) non-dispatchable generators, whose energy outputs are 
highly uncertain and volatile: WTs and photovoltaic cells 
(PVs).  

For the HES system, it is mainly composed of the power 
energy type, i.e., battery storage, and thermal energy type, i.e., 
thermal storage tank.  

All the units are coordinated to satisfy the multi-energy 
demands as well as maintain the system reliability and 
economy [19]. The RES generation, power demands, outdoor 
temperature, residential hot water needs, and demand response 
pattern data can all be collected by the smart meters equipped in 
each building. The collected data is then applied in the 
computation procedure as optimization parameters.  

The detailed computation procedures are described in 
Section. III and IV. The deployment decisions can be obtained 
from those procedures. 

 
Fig.1 Typical Structure of a RMEMG. 

B. Battery Storage (BS) 

The BS is a kind of prevailing EES widely used in power 
system planning and operation. Compared with other types of 
EES such as the pumped storage and compressed air energy 
storage with capacities up to 100 MW, its power density range 
starts from a few kW to several MW. This makes BS more 
suitable for the application in microgrid or community level [2], 
[6].  

The relationship between energy and power of BS can be 
denoted as: 

1(1 )t
B B B BC BC

t t
BD BD
tE E P t P t       

              (1) 

C. Thermal Storage Tank (TST)  

The typical TST model is shown in Fig. 2. Its walls are 
composed of stainless steel, concrete, and heat insulation 
materials from inside to outside. The tank is well insulated for 
high operating efficiency [17]. The temperature in the tank can 

be roughly stratified into the hot water layer (Temperature: Th, 
Volume: Vh) and cooling water layer (Temperature: Tc, 
Volume: Vc). In both layers, the temperature is the same as the 
corresponding water networks and remains constant. The TST 
absorbs or releases thermal energy by controlling the volume of 
hot or cold water. When it produces heat, the temperature of the 
supply water becomes higher, in this light, the TST is called a 
heat storage tank; while for the cooling supply, the TST should 
be called a cooling storage tank with a higher temperature of 
return water. 
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Fig.2 Structure of the TST. SI, SO: inlet and outlet switch for supply water; RI, 
RO inlet and outlet switch for return water. 

The absorbing and releasing power of TST can be expressed 
as follows: 

( )t t
TC WR WR H H CH C V T T    

                   (2) 

( )t t
TD WR WR C C HH C V T T     

                 (3) 
The relationship between its energy and power is: 

1(1 )t
T T T TC TC

t t
TD TD
tE E H t H t       

          (4) 

D. Price-based Demand Response (PBDR) for Electricity  

The PBDR is adopted for electricity DSM in the RMEMG. 
The reason lies in twofold: first, it allows customers to manage 
demand freely without partial loads being controlled directly by 
the system operator. In the PBDR, electricity prices of the 
following day are designed and delivered to the customers a 
day ahead, then the customers adjust their demands based on 
the prices. When the prices are high, the customers would 
reduce their demands to save bills. When they are low, 
customers would be incented to increase their demands; second, 
it contributes to the system reliability enhancement when there 
is a large penetration level of fluctuating RES [25].  

Currently, the PBDR has been widely applied in the power 
system planning, power market regulation, and economic 
dispatch, etc. In the PBDR model, the relationship between the 
electricity price and demands can be expressed as follows:   

             
( )t

DL PSP A  
  (5) 

In Eq.(5), ε is the price elasticity of power demands, 
representing the sensitivity of customer demand to the price of 
electricity; A is a constant. The specific calculation methods of 
ε and A are given by [28]. 

E. Thermal Loads Modelling with Thermal Inertia 

To comprehensively model the thermal energy in a typical 
residential building, its typical structure is demonstrated in 
Fig.3 [29]. 

 
Fig.3 Typical structure of a room in a residential building. 

For the residents, their thermal demands mainly come from 
the following two parts:  

1) space thermal demands, i.e., space heating (usually in 
winter) and cooling (usually in summer) [19]. 

2) residential hot water needs (usually in spring, autumn, and 
winter) [30].  

All the above thermal demands can be modeled considering 
the thermal dynamics. 
    1) Thermal Demand Classification 

For space thermal demands, the thermal generation should 
compensate for any thermal loss to maintain the suitable room 
temperature. The total thermal demands are calculated as [31]: 

t t t t t
TL BH AH CN CRH H H H H                     (6) 

The basic thermal transfer loss mainly includes the heat 
transfer from the building envelope such as doors, windows, 
walls, floors, and so on, which can be denoted as Eq.(7): 

( )t t t
BH BH HT BH IN OTH K S T T                   (7) 

The additional thermal loss considers the loss brought by the 
wind blow, solar irradiation, and height of the building. It is 
calculated as:  

jx( )t t
AH BH cxH H                            (8) 

The infiltration thermal loss denotes the thermal demands to 
heat the cold air (mainly in winter) or cool the hot air (mainly in 
summer) from outside to inside via the door or window crack. It 
is formulated as: 

0.364 ( )t t t
CN LE CL IN OTH I A T T                   (9) 

The intrusion thermal loss describes the thermal demands 
that cool the hot air (mainly in summer) or heat the cold air 
(mainly in winter) from the casual opening of the doors or 
windows. It can be demonstrated as: 

t t
CR BH itH H                                  (10) 

All the above thermal loss is related to the difference 
between inside and outside temperature, then the total thermal 
demands can be rewritten in a general form as: 

( )t t t
TL AV IN OTH C T -T                           (11) 

    2) Dynamic Thermal Demand Modelling 
According to the first law of thermodynamics, the thermal 

demands in Eqs. (6)-(11) can be modeled as a dynamic model 
with the temperature change as: 

/t t
Air Air RB IN NETC V dT dt H                         (12) 

Due to the thermal inertia, the indoor temperature would 
vary slowly. Its variations during each short-term period, e.g., 1 
hour can then be neglected [19], [29]. In this regard, the thermal 
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dynamic model in Eq. (12) can be converted into an hourly state 
model as: 

1/ ( )t t
IN NET Air Air RB I

t
NT H t C V T                     (13) 

Note that human activities, power appliances, etc., may also 
impact the space thermal demands, but as the impact is little, 
they are ignored in this work [2], [31].  
    3) Hot water demands  

The hot water is mainly used for the showering or washing 
needs of the residents. The corresponding thermal demands for 
hot water can be calculated as [29]: 

( )t t t t
HW WR WR HW SW IWH C V T T                  (14) 

F. The DSM for Thermal Energy 

Apart from the slow variation rate of thermal energy during 
short periods, the fact that residents can be comfortable within a 
certain indoor or hot-water temperature range constitutes 
another aspect of the thermal inertia [30]. This part is regarded 
as the DSM for thermal energy. It can be modeled as Eqs.(15) 
and (16).  

set set
IN V IN IN VT T T T T                           (15) 
set set

SW W SW SW WT T T T T                          (16) 

III. MATHEMATIC MODELLING FOR HES DEPLOYMENT  

A. Multi-stage HES Deployment Framework  

In this study, the HES deployment can be decomposed into 
two main stages as Fig.4 with respective decisions:  

 
Fig. 4 Multi-stage HES deployment framework. 

1) Investment stage: decisions at this stage are related to the 
investment aspects, namely the HES location, size, and 
investment phase. As shown in Fig.4, 3 years is taken as a unit 
investment phase, and after every 3 years, there can be new 
HES investment decisions. 

2) Operation stage: decisions at this stage include the 
optimal dispatch of the HES system, distributed generators and 
DSM scheme. The diverse uncertainties are handled via a 
further two-substage coordinated operation method. The first 
substage is the day-ahead dispatch stage; the second substage is 
the intraday online dispatch stage. The details for the two 
substages are given in Section. IV. 

B. Mathematical Formulation  

In this study, it is assumed there is a steady growth rate for 
the multi-energy demands every year. To evaluate the 
effectiveness of the method, the maximization of “mean-risk”, 
which is equal to the subtraction of EDP and risk cost is set as 
the objective. In finance, the EDP is defined as the profit per 
day of owning and operating an asset over its entire lifespan. It 
is calculated by dividing the net present value of a project by 

the present value of the daily factor. The risk cost can be 
measured by the conditional value-at-risk (CVaR) [16], [32]. 
Then, the risk-averse HES deployment model can be 
formulated as:    

1) Objective: 

, ,
max [ ( )]

VaR
EDP RK EDP

z Z x X
C CVaR C




  
                 (17) 

s.t., 
1 (1 )

[ ( ) ( ) ]
365 (1 ) 1

P

p

N

EDP N
P OperationStageInvestment Stage

dr dr
C F z G x

N dr


    

    (18) 

1
( ) + [ ( ,0)]

1
EDP VaR EDP VaR

CL

CVaR C max C  


  


     (19) 

1 1(1 ) (1
(

)
z)=

P

P

P

Np
INV SAL

N
p

p
N dr d

C C
F

r
 


 
                (20) 

( )

(1 )
( )

P

p p p p p p p
SUB FC TC MC EM ST SD

p N

p
REV

p

C C C CC C C

dr

C
G x



   


  


  (21) 

P

P

N p p
SAL SAL INV

p N

C C


                             (22) 

, 1,
, ( )

B

p p i p i
INV ES INV ES ES

i N

C S S 



                      (23) 

  ( + )
D T B

p
REV PA DL HS HL CS CL

d N t N i N

C P H H     

  

         (24) 

( )
D T B

p
SUB SUB WT PV

d N t N i N

C P P  

  

                  (25) 

( / )
D T B

p
FC NG MT MT

d N t N i N

C P 

  

                   (26) 

( )
D T B

p
TC B BX S SX

d N t N i N

C P P  

  

                  (27) 

,

B D T

p M
MC DG DG ES M ES

i N d N t N

C P P  

  

                 (28) 

D T B

p
EM MT MT B BX

d N t N i N

C P P  

  

                  (29) 

, , ,{0 }
d T B

p p d t -1 i U
ST DG DG DG

d N t N i N

C max ,U U C

  

       (30) 

, , ,{0 }
d T B

p p d t -1 i D
SD DG DG DG

d N t N i N

C max ,U U C

  

       (31) 

2) Constraints: 
                                    Eqs.(1) -(16)                                 (32) 

, 1,p i p i
ES ESS S                                   (33) 

, , ,p i min p i p i max
ES ES ES ES ESU S S U S                       (34) 

    ,

B

p i ALL
ES ES

i N

S S


                               (35) 

, , ,
, = ( )(1 ) ,

M

p i m i m 1 i p m
ES Eq ES ES LL

m N

S S S p m 



           (36) 

,
,0 max p i

ESC ES ESC ES EqP U S                         (37) 

,
,0 max p i

ESD ES ESD ES EqP U S                         (38) 

1ESC ESDU U                                  (39) 
, 0

B

p i
ES

i N

U


                                   (40) 

, ,
, ,

min p i max p i
SOC ES Eq ES SOC ES EqS E S                        (41) 

, , ,, ,0, Tp d N ip d i
ES ESE E                               (42) 
, ,min p i max p i

DG DG DG DG DGS P S                            (43) 
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        ,DG DG REALP P                                   (44) 

    , , ,
, ,

p d t -1 i
DG DN DG DG DG UPR t P P R t      

             
 (45) 

, . , 1 , , , , , ,0, 1p d t b p d t b p d t b
PF PF PF DL MT EP

CP WT PV EB EC

P P P P P P

P P P P P

    

    

     

   
      (46) 

, , , 1 , , , , , ,0, 1 , , ,p d t b p d t b p d t b p d t i
PF PF PF DLQ Q Q Q                     (47) 

, , , 1 , , , , , , , , ,
0( ) /p d t i p d t b b p d t b b p d t b

BUS BUS PF PFV V R P X Q V           (48) 
max , , , max1 1+p d t i

BUS BUS BUSV V V                          (49) 

+TL WR MH EB MC EC TD TCH H H H H H H H                (50) 

Eq.(17) denotes the objective of the risk-averse HES 
deployment model [32]. Eq.(18) is the mathematical 
formulation of the system EDP in which z and x denote the set 
of investment- and operation-stage decisions; Eq. (19) denotes 
the system risk cost in terms of CVaR. F(z) in Eq.(20) and G(z) 
in Eq.(21) denote the cost from the investment- and operation- 
stage, respectively; Eq.(22) denotes the salvage value of the 
HES system; Eq.(23) presents the investment cost of the HES 
system; Eqs.(24) is the revenue from selling power and thermal 
energy to local residents; Eqs.(25) is the subsidy from RES 
utilization; Eqs.(26)-(29) denote the CCHP fuel cost, power 
transaction cost, maintenance cost from all the units as well as 
emission cost from CCHP plants and utility grid; Eqs.(30)-(31) 
are the start-up and shut-down cost for dispatchable generators; 
Eq.(33) means that the size of the HES system in the present 
year should be no less than that of the last year. It is assumed 
that HES can be available in all variable sizes [19]; Eqs.(34) 
denotes HES size limits for each bus or thermal group. Eqs. (35) 
describes the HES size limits for the RMEMG; Eqs.(36) is the 
effective capacity of the energy storage considering the leakage 
loss. It can be seen that the capacity of the energy storage is 
decreasing gradually after the investment [33]; Eqs.(37)-(42) 
denote all the HES operating constraints (subscript ES denotes 
the generalized abbreviation for BS and TST); Eqs.(37) and (38) 
mean that the charging (absorbing) or discharging (releasing) 
power of HES should be within the capacity limits; Eq.(39) 
shows that HES cannot charge (absorb) and discharge (release)  
at the same time; Eq.(40) denotes that the HES can only be 
installed at the candidate buses or thermal groups; Eq.(42) 
means that the HES starting energy is equal to its ending energy 
for the same scheduling flexibility of each dispatch horizon 
[19]; Eq.(43) denotes that the power output of each generator 
should be within their capacity limits (subscript DG is the 
generalized abbreviation for all the generators), while Eq.(44) 
shows that the RES power output should be less than available 
sources; Eq.(45) presents the ramp up and down rate limits for 
the controllable generators; Eqs.(46)-(48) are the distribution 
network’s power flow, which is modeled based on the 
linearized Dist-Flow equations in [2], [19]; Eq.(49) denotes that 
bus voltage should be maintained in a secure range; Eq.(50) 
denotes that thermal generation should be equal to its 
consumption [17], [27].  

Note that, in the short-term operation, there would be 
degradation cost for energy storage [34], [35], however, it is 
ignored in this long-term deployment work as we aim to find 
the rough planning decisions for the HES [12], [20], [22]. 

In the HES deployment model, there are a number of 
nonlinear items such as Eqs.(5), (19),(30)-(31) and (37)-(38). 
To reduce the computation burdens as well as improve the 
solution quality, those nonlinear items are linearized in 
Appendix A. After linearization, the proposed HES deployment 
model becomes a MILP problem. 

IV. SOLUTION METHOD  

A. Typical Seasonal Day Selection   

Given that there are 365 days in a year, the HES deployment 
model is in excessively high dimension and thus 
computationally demanding. To prune the model’s size, a set of 
typical seasonal days is chosen to represent the yearly horizon. 
For example, the EDP can be converted as: 

1 (1 )
[ ( ) ( | ) ]

365 (1 ) 1

P

p

C

N
c

EDP DN
c NP Investment Stage

OperationStage

dr dr
C F z N G x c

N dr 


     

  



 (51) 

where Nc 
D is the number of days in season c; NC is the number 

seasons; G(x|c) is the objective of operation-stage in season c. 

B. Scenario-based Stochastic Operation Model 

To handle the diverse uncertainties, a two-substage adaptive 
SO method is proposed as Fig.5.  

 
Fig. 5 Two-substage coordinated operation framework. 

In Fig.5, the operation-stage is further decomposed into the 
day-ahead and intraday online dispatch substages. Given that 
the HES system and PBDR are dynamic and sensitive to the 
holistic price information, their 24-hour dispatch decisions (one 
hour as the unit dispatch interval [2]) are made in the day-ahead 
dispatch substage. At this substage, the diverse uncertainties 
are not revealed in real-time. In the intraday online dispatch 
substage, where the diverse uncertainties are realized, all the 
dispatchable generators that have faster response speeds are 
coordinated (15 minutes as the unit dispatch interval) to 
maintain the real-time balance of multi-energy generation and 
consumption. 

1) Uncertainty Modelling  
For the energy outputs of WTs and PVs, their stochastic 

variations or forecasting errors usually follow the Beta 
distribution as:  

1 1( ) (1 )
sx s s Ff x x N                            (52) 

As for the power demands, outdoor temperature and 
residential hot water needs, Normal distribution can be 
employed to represent their forecasting errors [19]: 

2 21/ ( 2 ) [ ( ) / (2 )]
sy sf exp y                  (53) 

2) Scenario Generation and Reduction 
Based on the probability distributions of diverse uncertain 

variables in Eqs.(52)-(53), Latin hypercube sampling method 
can be used to generate a large number of near-random samples 
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of parameter values for the stochastic model [27].  
However, the generated number of scenarios would lead to a 

significant computational burden. In this regard, the 
simultaneous backward reduction method is implemented to 
choose a much smaller but rather representative set of scenarios 
for the practical applications. 

The scenario generation and reduction method employed in 
this work have already been applied in the scenario processing. 
The specific details can be referred to [13],[19], [27]. 

After the scenario generation and reduction, the stochastic 
model is modeled as a MILP problem as Eqs.(54)-(55):  

1 2, , ...,
( ) [ ( ) ( )]

q
Q

q q
x w y y y

q N

MinG x Min S w c L y


            (54) 

. . |

( , ),

w

q q

s t w CS z

y CL w q



 
                       (55) 

where q is the index of the forecasted scenarios; NQ is the total 
number of scenarios; cq is the scenario possibility; S(w) is 
objective of investment stage and day-ahead dispatch stage; w 
denotes the decision variables for size, location, investment 
phase and corresponding dispatch of HES system as well as 
PBDR scheme; CSw is constraints associated with w; E[L(yq)] 
is the expectation of cost from the dispatchable generators and 
power transaction between the RMEMG and utility grid; yq 

denotes the corresponding decision variables for power flow, 
dispatchable generators, and temperature for the rooms and hot 
water; ωq is stochastic variation of system uncertain sources; 
CL(w, ωq) is the constraints associated with yq.  

V. SIMULATION RESULTS 

A. Test System 

The test grid-tied RMEMG is built with reference to the real 
conditions in Tianjin (38֯ N, 117֯ E), China, as shown in Fig.6. 
Its lifetime is 9 years with 3 years as the unit investment phase. 
The multiple energies are served mainly for the neighboring 
aggregated residential buildings, which are in three regions. 
The heat networks among different thermal groups are not 
considered in this work since the long-distance thermal 
transmission will result in substantial thermal loss [36]. The 
predefined configuration of all the generators is shown in Table. 
I, while the substation capacity is set as 1.5 times of the peak 
power in RMEMG [2] to guarantee that there is enough power 
supply when the faults occur inside. The technical details for 
the HES system are listed in Table. II. The studied RMEMG in 
Fig.6 is built based on the IEEE 33-bus standard test system in 
[37] with all the system data. 

 
Fig. 6 The IEEE 33-bus radial distribution system based RMEMG. 

Three typical days from the transition seasons (spring and 
autumn), summer and winter are used to represent the year. 
Based on the data of the year 2018 (Jan.-Dec.), Fig. 7 shows the 
forecasting value of all the uncertain sources in the year 2019.  

 
(a) Transition seasons                                  (b) Summer 

 
                    (c) Winter                                    (d) Temperature and water needs 

Fig. 7 Forecasted RES output, outdoor temperature, and multi-energy demands. 
TABLE I  

CONFIGURATION OF DISTRIBUTED GENERATORS (KW) 

Node  WT PV CCHP EB EC 

3 150 40 1200 650 500 
6 187.5 80 0 0 0 

10 187.5 64 1000 500 450 
13 112.5 64 0 0 0 
17 187.5 96 0 0 0 
19 150 128 0 0 0 
25 187.5 144 0 0 0 
28 0 0 800 500 350 
31 187.5 80 0 0 0 

The system energy tariffs are shown in Table. III, which are 
extracted from [17], [19],[20], [38]. For the thermal and power 
energy supplied to residents, the fixed pricing scheme is 
applied [2]. According to the electricity price and usage data in 
[39], the price elasticity of electricity demands is estimated as 
-0.75. 

TABLE II  
TECHNICAL DETAILS FOR THE HES SYSTEM [19],[20] 

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19 21 23

P
ow

er
(k

W
)

Period (h)

WT PV Power Load

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19 21 23

P
ow

er
(k

W
)

Period (h)

WT PV Power Load

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19 21 23

P
o
w

er
(k

W
)

Period (h)

WT PV Power Load

-20

-10

0

10

20

30

40

50

60

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23

T
em

ep
er

at
u

re
(℃

)

V
o

lu
m

e(
k

L
)

Period (h)

Water needs in winter
Water needs in transition seasons
Temperature in summer
Temperature in winter

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 25,2020 at 11:23:21 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2971227, IEEE
Transactions on Industrial Informatics

TII-19-4943 
 

 

9

Energy Storage χES, INV χES,M  S 
ES,MIN/S

 
ES,MAX   

Battery storage 100 ($/kWh) 0.03 ($/kWh) 0/1500(kWh) 
Heat storage tank 36.7 ($/kWh) 0.025 ($/kWh) 0/1800(kWh) 

Cooling storage tank 36.7 ($/kWh) 0.025 ($/kWh) 0/1800(kWh) 

In the RMEMG, there are 16 buildings oriented South with 
12 floors in each building; On each floor, there are two identical 
apartments, each with a floor area of 150 (15*10) m2; The area 
of north/south and east/west facing walls are 42 (15*2.8) m2 
and 28 (10*2.8) m2 respectively; The south and north walls are 
equipped with the double-glazed windows to the outside 
environment with areas of 10.5(3.75*0.7) m2 and 8.4 (3*0.56) 
m2; All the windows are of casement types without any blinds 
or shading devices; The area of the door on the east side is 2 
(2*1) m2; All the walls and flat roofs of the house are comprised 
of the same structural insulated panels [31].  

The discount rate is 6% and load growth rates for power and 
thermal demands are set as 6.7% and 5% respectively [5], [27].  

TABLE III  
ENERGY TARIFFS AND EMISSION PRICES [17], [19], [27] 

Type 
Price 

($/kW) 
Type 

Price 
($/kWh) 

Period(h) 

Local Power 0.18 
Power  

Transaction 

0.0468 0-6,23-24 
Local Thermal  0.022 0.1029 6-8,11-17 

Natural Gas  0.039 0.1785 8-11,17-22 
Emission Price  CCHP 0.0057 ($/kW) Utility Grid 0.028($/kW) 

Without loss of generality, any other real-world data can also 
be applied in the proposed without changing its effectiveness. 
The mathematical model is realized in General Algebraic 
Modelling System (GAMS) and solved by the Cplex solver. 

B. Investment-stage Simulation Results & Discussion  

In the simulation, 2000 scenarios are initially generated and 
then reduced to 5 representative ones with the corresponding 
possibilities. After the simulation, the HES deployment results 
are shown in Tab. IV and V. The gray blocks mean that there 
are investment decisions at this phase and its subtraction with 
the corresponding size in the last phase denotes the newly 
installed capacity.  

TABLE IV 
 DEPLOYMENT RESULTS FOR BATTERY STORAGE (KWH) 

Year/Bus 3 6 18 22 25 27 30 33 

1-3 1500 0 0 1500 1500 0 0 0 

4-6 1500 466.0 101.7 1500 1500 0 0 473.2 

7-9 1500 466.0 101.7 1500 1500 378.0 81.19 473.2 

TABLE V  
DEPLOYMENT RESULTS FOR THERMAL STORAGE (KWH)  

Year 1-9 Group 1 Group2 Group3 

Cooling storage tank 0 0 0 
Heat storage tank 1800 1800 1800 

From the HES deployment results, it can be seen that: 
1) There is a widespread investment of BS in the RMEMG, 

and most capacities are installed on the candidate buses with 
RES, i.e., Bus 3, 6, 22, 25, etc. This is because, firstly, the 
sufficient BS capacity installed on those buses could contribute 
to the risk reduction rising from the stochastic power outputs of 
RES-based generators. Secondly, as the RES are intermittent, 
the investment of BS on those buses could guarantee enough 
power supply and avoid voltage violations. Further, in the 
system operation, BS can also shift energy from the 
valley-price periods to peak-price ones to gain profits. This 

function is mainly taken by the BS on bus 18, 27, 30, 33, but on 
those buses, the dispatchable generators can play the role for 
the voltage regulation, there is not so much BS investment.   

2) There is no installation of the cooling storage tank but a 
full installation of the heat storage tank from the first 
investment phase in each thermal group. This is because to 
avoid the risk from the uncertainty sources and remain enough 
capacity after the internal leakage loss, the system chooses to 
install sufficient capacity of the energy storage, i.e., BS and 
heat storage. However, the cooling storage tank works only in 
summer but the heat storage tank contributes to supplying heat 
both in transition seasons as well as winter days. In this regard, 
given the larger amount of heat demands, more utilization rate 
but the same unit installation cost with the cooling storage tank, 
the invested capacity of the heat storage tank is much larger and 
more widespread than the cooling one. 

3) The investment phase selection plays a necessary role in 
the HES deployment scheme. For example, on bus 6, 18, 27 and 
33, BS is installed at different phases. This contributes to 
avoiding any capacity redundancy at the early stage of the 
project, and thus enables a more economical and flexible HES 
deployment. 

C. Operation-stage Simulation Results & Discussions  

To verify the effectiveness of the proposed method in the 
operation stage, the system dispatch results in the year 2026 are 
shown in Fig.8: 

 
(a) Power balance in transition seasons 

 
(b) Heat balance in transition seasons 

 
(c) Power balance condition in summer 

 
(d) Cooling balance condition in summer 
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   (e) Power balance in winter 

 
(f) Heat balance in winter 

Fig. 8 Energy balance condition in the year 2026.  

It can be seen that all the units are coordinated to supply the 
multi-energy demands to maximize the EDP and reduce the risk 
at the same time: when the transaction prices are low, the 
thermal energy is transferred by electricity via EBs or ECs 
instead of the CCHP plants, to save the total fuel cost; when the 
transaction prices are high, the system thermal energy is served 
by the CCHP plants, and then the corresponding surplus power 
is sold to the utility grid to gain profits. As for the HES system, 
the BS charges at the low-price periods and discharges at high 
price periods to gain more profits from utility grid; For the TS, 
it makes the dispatch of the CCHP plants more flexible by 
absorbing its surplus thermal energy when there is more power 
generation than required from the CCHP plants, and releasing 
thermal energy when not so much power is needed from CCHP 
plants. Besides, the DSM scheme shifts the multi-energy 
demands to other periods for increasing the system profits. Its 
function for the cost-saving is verified in the next section.  

The final result for the mean-risk model is $417.9, with the 
EDP is positive as $712.1 per day. It means that this project 
should be implemented as it will gain profit under risk.  

In terms of the solution speed, there are 1128586 continuous 
and 138915 discrete variables, the solution time is 11.63 hours, 
which is efficient enough for a 9-year project planning 
problem.  

D. Methods Comparison  

To fully demonstrate the advantage of the proposed method, 
three conventional deployment methods for energy storage are 
compared:  

Method #1: Separate energy storage deployment method, 
i.e., the energy storage is installed in the respective 
single-energy microgrids. The gas boilers (GBs) are utilized 
instead of CCHP plants, ECs and EBs for supplying the thermal 
demands, while the RES-based generators and transacted 
power from the utility grid serve the system power demands 
[17].  

After the simulation, the results indicate that there is no TS 
installation and the deployment results for the BS are shown in 
Table. V.  

TABLE V 
 DEPLOYMENT RESULTS FOR BATTERY OF METHOD #1 (KW) 

Year/Bus 3 6 18 22 25 33 

1-3 1500 535.4 0 1500 1500 0 
4-9 1500 535.4 124.3 1500 1500 964.6 

From the simulation results, under the mean-risk model, the 
BS is largely installed in the early phases to gain more profit 
and avoid risk from the diverse uncertainties. Further, the units 
for electricity generation in the microgrid are only RES-based 
ones, whose outputs are intermittent and fluctuate, thus the BS 
is mainly installed on the buses with RES to maintain the bus 
voltage in a secure range. At the same time, the BS could shift 
energy to gain profits. For the TS investment, as the GBs can 
just burn natural gas to generate thermal energy flexibly in the 
thermal system, there is no need to install TS given that it will 
bring extra installation and operating cost.  

Since in single-energy microgrids, most of the power energy 
is obtained from the utility grid with a high price, besides, the 
efficiency of GBs for generating thermal energy is much lower 
than CCHP plants, the result for the mean-risk model of 
Method #1 is $102.4 per day. The final EDP is much lower that 
only $203.7 per day. 

Therefore, the simulation results show that the HES 
deployment in multi-energy systems can gain much more 
profits than the single-energy ones.  

Method #2: The HES deployment without the multi-energy 
DSM, i.e., the system power demands, indoor room 
temperature, and hot water temperature are set as constant and 
fixed. The corresponding simulation results are shown in Table. 
VI and VII.  

TABLE VI  
DEPLOYMENT RESULTS FOR BATTERY OF METHOD #2 (KWH) 

Year/Bus 3 6 22 25 27 33 

7-9 1500 562.7 1500 1500 428.4 508.9 

TABLE VII  
RESULTS FOR THERMAL STORAGE OF METHOD #2 (KWH) 

Year 1-9 Group 1 Group2 Group3 

Cooling storage tank 0 0 0 
Heat storage tank 1800 1800 1800 

Compared with our proposed method, as the power demands 
are not flexible anymore without the DSM scheme in Method 
#2, all the BS are installed at the first investment phase with 
lower salvage value, to shift the system power energy, reduce 
the risk and maintain a safe voltage range for all the buses; As 
the thermal demands are not as flexible when the system is 
operating, there is the full installation of the heat storage tank to 
flexbilize the overall thermal energy operation and no 
installation of the cooling storage tank given its low usage rate 
as well as lower cooling demands. In this case, the result for the 
mean risk model is $348.6 and the EDP is $674.2 per day. The 
results show that without the DSM, the system would suffer 
from lower profit and higher risk, as the multi-energy DSM 
could provide additional flexibility for the system operation by 
actively responding to the energy prices and load conditions.   

In this regard, involving the multi-energy DSM in the HES 
deployment is effective in increasing system profits and reduce 
the risk. 

Method #3: Deterministic HES deployment method, i.e., the 
forecasting of the outputs from RES-based generators, outdoor 
temperature, and residential hot water needs are assumed as 
accurate. Then after the simulation, the HES deployment 
results are shown in Table.VIII and IX.  

TABLE VIII  
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DEPLOYMENT RESULTS FOR BATTERY OF METHOD #3 (KWH)   

Year/Bus 3 6 18 22 25 27 33 

1-3 1500 0 0 1500 678.4 0 0 
4-6 1500 428.6 0 1500 1137.2 0 487.5 
7-9 1500 578.3 179.3  1500 1500 254.8 487.5 

TABLE IX  
RESULTS FOR THERMAL STORAGE OF METHOD #3 (KWH) 

Year 1-9 Group 1 Group2 Group3 

Cooling storage tank 0 0 0 
Heat storage tank 1800 1800 1800 

From the results, without considering the system 
uncertainties, i.e., there is no system operating risk, the BS is 
stilled largely installed at different phases to shift the power for 
more profits and maintain the system voltage stability; though 
there are the same TS deployment decisions, which play the 
same function as our method, the final EDP for Method #3 is 
$729.7 per day, which is higher than our method. This is 
because considering the diverse uncertainties will result in a 
large amount of risk. Hence, the corresponding EDP is lower. 
The cost difference between the proposed method and the 
deterministic approach is called Value of Perfect Information, 
which is used to immune against the system uncertainties as 
well as the potential risk.  

However, to check the performance of the deterministic 
approach when the system uncertainties are realized, a set of 
1000 random scenarios of typical days every year are utilized. 
The average EDP of Method #3 is $682.6 per day, while our 
method is $701.3 per day. It means that, when the system is 
practically exposed to the uncertainty sources, the proposed 
adaptive SO method has a higher potential in gaining more 
profits than the deterministic one. This is because it already 
immunizes against the diverse uncertainties through the 
risk-averse stochastic process.  

The results show that the proposed method can guarantee a 
more robust deployment plan. 

VI. CONCLUSION 

This paper presents a risk-averse multi-stage stochastic HES 
deployment method in a RMEMG considering multi-energy 
DSM as well as diverse uncertainties from RES-based 
generators, outdoor temperature, power loads and hot-water 
needs. The deployment scheme is decomposed into three 
investment phases with the “mean-risk” as the objective. By 
using the scenario-based multi-stage adaptive SO method, the 
diverse uncertainties are handled. The case study shows that the 
proposed risk-averse HES deployment can help gain profits 
while avoiding the risk effectively. Thus, it should be 
implemented. Further, the comparisons with the three 
conventional deployment methods are done. The comparison 
results indicate that the system expected profit is around 3 times 
the separate energy storage deployment method. This means 
that deploying the HES in the multi-energy scheme is definitely 
necessary as the CCHP plants are highly efficient; Compared 
with the HES deployment approach without the multi-energy 
DSM, there is a rate of increment 5.62% in the system profit. 
This demonstrates the effectiveness of the DSM in the HES 
deployment; Further, compared with the deterministic HES 
deployment method, though there is a 2.47% rate of decrement 

in the expected profit, however, when the system is exposed to 
the real-life uncertainties, there is a rate of increment of 2.74% 
in the profit. This shows that the proposed method is effective 
in handling the uncertainties and avoid the risk to the system. 

For the practical application, with the increasing penetration 
level of renewables and widespread installation of smart meters, 
this work could provide beneficial references for deploying the 
electric and thermal energy storage in the emerging smart 
homes, green buildings, etc., which have signed long-term 
contracts for the multi-energy DSM.  

In the future, on the one hand, to conduct more 
comprehensive operation research for energy storage, the 
degradation model [34], [35] can be incorporated. On the other 
hand, as the solution dimension for the multi-energy planning 
and operation scheme is usually high, more advanced 
algorithms can be explored to improve the solution efficiency. 

APPENDIX 

A. Model Linearization 

In this paper, the nonlinear equations are linearized as: 
    1) Linearization of the power demand under the price-based 
demand response: the stepwise price-elastic demand curve uses 
different price level rates to represent the price elasticity of 
power demands, with these price and demand response levels, 
the real and reactive power demands can be 
calculated/linearized as (assuming power factors are fixed) [2]:  

 

, ,

1
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t t t j t j

DL DL,Pr PL
j
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

  
                       (A1) 

, ,
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DL DL,Pr QL

j
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  
                      (A2) 

    2) Linearization of Maximum function, i.e., Eqs. (19), 
(30)-(31): separating the max function into two individual parts 
will do, and we take A ≥ max (B, C) as an example as: 

A≥ B;                 A≥C                           (A3) 
    3) Linearization of the bilinear item, i.e., Eqs. (35)-(36): 
Take z=Ax as an example in which A is a continuous variable 
and x is a binary variable, and A is bounded below by zero and 
above by A (or any Big M), then it can be linearized as: 

; ; (1 ) ; 0z A x z A z A x A z              (A4) 

REFERENCE 

[1] P. Poonpun and W. T. Jewell, "Analysis of the cost per kilowatt-hour to 
store electricity," IEEE Trans. Energy. Convers., vol. 23, no. 2, pp. 
529-534, Jun. 2008. 

[2] C. Zhang, et al, "Robustly Coordinated Operation of A Multi-Energy 
Microgrid with Flexible Electric and Thermal Loads," IEEE Trans. Smart. 
Grid., vol. 10, no. 3, pp. 2765 - 2775, May. 2018. 

[3] Chen, H. B. Gooi, et al, "Sizing of energy storage for microgrids, "IEEE 
Trans. Smart. Grid., vol. 3, no. 1, pp. 142-151, Mar. 2012. 

[4] C. Thrampoulidis, et al, "Optimal placement of distributed energy storage 
in power networks," IEEE Trans. Automat. Contr., vol. 61, no. 2, pp. 
416-429, Feb. 2016. 

[5] Y. Yang, H. Li, A. Aichhorn, et al, "Sizing strategy of a distributed 
battery storage system with high penetration of photovoltaic for voltage 
regulation and peak load shaving," IEEE Trans. Smart. Grid., vol. 5, no. 2, 
pp. 982-991, Mar. 2014. 

[6] G. Carpinelli, et al, "Optimal integration of distributed energy storage 
devices in smart grids," IEEE Trans. Smart. Grid., vol. 4, no. 2, pp. 
985-995, Jun. 2013. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 25,2020 at 11:23:21 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2971227, IEEE
Transactions on Industrial Informatics

TII-19-4943 
 

 

12 

[7] P. Xiong et al, "Optimal planning of storage in power systems integrated 
with wind power generation," IEEE Trans. Sustain. Energ., vol. 7, no. 1, 
pp. 232-240, Jan. 2016. 

[8] A. S. Awad, T. H. El-Fouly, et al, "Optimal ESS allocation for a load 
management application," IEEE Trans. Power. Syst., vol. 30, no. 1, pp. 
327-336, Jan. 2015. 

[9] I. Miranda, N. Silva, et al, "A holistic approach to the integration of 
battery energy storage systems in island electric grids with high wind 
penetration," IEEE Trans. Sustain. Energ., vol. 7, no. 2, pp. 775-785, Apr. 
2016. 

[10] J. Zhang et al., "A bi-level program for the planning of an islanded 
microgrid including CAES," IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 
2768-2777, Oct. 2016. 

[11] C. Abbey and G. Joós, "A stochastic optimization approach to the rating 
of energy storage systems in wind-diesel isolated grids," IEEE Trans 
Power Syst, vol. 24, no. 1, pp. 418-426, Feb. 2009. 

[12] H. Khorramdel, et al, "Optimal Battery Sizing in Microgrids Using 
Probabilistic Unit Commitment," IEEE Trans Ind. Informat., vol. 12, no. 
2, pp. 834-843, Apr. 2016. 

[13] S. Nojavan, M. Majidi, et al, "An efficient cost-reliability optimization 
model for optimal siting and sizing of energy storage system in a 
microgrid in the presence of responsible load management," Energy, vol. 
139, no. 15,  pp. 89-97, Nov. 2017. 

[14] E. Hajipour, M. Bozorg, et al, "Stochastic capacity expansion planning of 
remote microgrids with wind farms and energy storage," IEEE Trans. 
Sustain. Energ., vol. 6, no. 2, pp. 491-498, Apr. 2015. 

[15] P. Yang et al, "Joint optimization of hybrid energy storage and generation 
capacity with renewable energy," IEEE Trans. Smart. Grid., vol. 5, no. 4, 
pp. 1566-1574, Jul. 2014. 

[16] M. Roustai, et al, "A scenario-based optimization of Smart Energy Hub 
operation in a stochastic environment using conditional-value-at-risk," 
Sustain. Cities. Soc., vol. 39, pp. 309-316, May. 2018. 

[17] Z. Li and Y. Xu, "Optimal coordinated energy dispatch of a multi-energy 
microgrid in grid-connected and islanded modes," Appl. Energy, vol. 210, 
pp. 974-986, Jan. 2017.  

[18] S. Sharma, Y. Xu, A. Verma, and B. K. Panigrahi, "Time-Coordinated 
Multi-Energy Management of Smart Buildings under Uncertainties," 
IEEE Trans. Ind. Informat., vol.15, no.8, Aug. 2019. 

[19] Z. Li, et al., "Temporally-coordinated optimal operation of a multi-energy 
microgrid under diverse uncertainties," Appl. Energy, vol. 240, pp. 
719-729, Apr. 2019. 

[20] L. Guo, W. Liu, et al, "A two-stage optimal planning and design method 
for combined cooling, heat and power microgrid system," Energy 
Convers. Manag, vol. 74, pp. 433-445, Oct. 2013. 

[21] T. Ma, J. Wu, L. et al, ‘‘The optimal structure planning and energy 
management strategies of smart multi-energy systems,’’ Energy, vol. 160, 
pp. 122–141, Oct. 2018. 

[22] P. Gabrielli, M. Gazzani, E. Martelli, and M. Mazzotti, ‘‘Optimal design 
of multi-energy systems with seasonal storage,’’ Appl. Energy, vol. 219, 
pp. 408–424, Jun. 2018. 

[23] W. Gu, J. Wang, et al, "Optimal operation for integrated energy system 
considering thermal inertia of district heating network and buildings," 
Appl. Energy, vol. 199, pp. 234-246, Aug. 2017. 

[24] C. Li, et al, "Flexible transmission expansion planning associated with 
large-scale wind farms integration considering demand response," IET 
Gener. Transm. Dis., vol. 9, no. 15, pp. 2276-2283, Jul. 2015. 

[25] C. Zhang, et al, "Robust coordination of distributed generation and 
price-based demand response in microgrids,” IEEE Trans. Smart. Grid., 
vol. 9, no. 5, pp. 4236 - 4247, Sep. 2018. 

[26] B. Zeng, et al, "Integrated planning for a transition to the low-carbon 
distribution system with renewable energy generation and demand 
response," IEEE Trans Power Syst, vol. 29, no. 3, pp. 1153-1165, May. 
2014. 

[27] Z. Li, Y. Xu, et al, "Optimal placement of heterogeneous distributed 
generators in a grid-connected multi-energy microgrid under 
uncertainties," IET Renew. Power. Gener., vol.13, no.14, Oct. 2019. 

[28] P. R. Thimmapuram, et al, "Modeling and simulation of price elasticity of 
demand using an agent-based model," in Proc. IEEE ISGT, Jan. 2010, pp. 
1-8. 

[29] M. Tasdighi, H. Ghasemi, et al, "Residential microgrid scheduling based 
on smart meters data and temperature-dependent thermal load modeling," 
IEEE Trans. Smart. Grid., vol. 5, no. 1, pp. 349-357, Jan. 2014. 

[30] W. Gu et al., "Residential CCHP microgrid with load aggregator: 
Operation mode, pricing strategy, and optimal dispatch," Appl. Energy, 
vol. 205, pp. 173-186, Nov.2017. 

[31] S. Yao, et al, "Hybrid timescale dispatch hierarchy for combined heat and 
power system considering the thermal inertia of heat sector," IEEE Access, 
vol. 6, pp. 63033-63044, Oct. 2018. 

[32] R. Schultz and S. Tiedemann, "Conditional value-at-risk in stochastic 
programs with mixed-integer recourse," Math. Program., vol. 105, no.1, 
pp. 365-386, Apr. 2006. 

[33] “Battery Capacity; https://www.sciencedirect.com/topics/engineering/ 
battery capacity,” 2017. 

[34] A. Ahmadian, et al, "Cost-benefit analysis of V2G implementation in 
distribution networks considering PEVs battery degradation," IEEE 
Trans. Sustain. Energ., vol. 9, no.2, pp. 961-970, Apr. 2017. 

[35] S. Sharma, et al, "Time-Coordinated Multi-Energy Management of Smart 
Buildings under Uncertainties," IEEE Trans. Ind. Informat., vol.15, no.8, 
Aug. 2019. 

[36] J. Wang et al., "Economic benefits of integrating solar-powered heat 
pumps into a CHP system," IEEE Trans. on Sustain. Energ., vol. 9, no. 4, 
pp. 1702-1712, Otc. 2018. 

[37] M. E. Baran and F. F. Wu, "Network reconfiguration in distribution 
systems for loss reduction and load balancing," IEEE Trans. Power. 
Deliver., vol. 4, no. 2, pp. 1401-1407, Apr. 1989. 

[38] "Power prices for the Tianjin Grid; http://fzgg.tj.gov.cn/gzcx/syjgcx/gd/ 
201307/t20130705_30044.shtml#," 2019. 

[39] A. Faruqui and S. Sergici, "Household response to dynamic pricing of 
electricity: a survey of 15 experiments," J. Regul. Econ., vol. 38, no. 2, pp. 
193-225, Jan. 2010. 

 Zhengmao Li (S’16) received the B.E. 
degree in 2013 and the M.E. degree in 
2016, both from Shandong University, 
Ji’nan, China, and Ph.D. degree at the 
School of Electrical and Electronic 
Engineering, Nanyang Technological 
University, Singapore, 2020. Currently, he 
is a visiting scholar at the Stevens Institute 
of Technology.  

His research interests include renewable energy integration, 
microgrid and multi-energy system, and optimization 
techniques such as the approximate dynamic programming, 
robust optimization, stochastic optimization. 

 Yan Xu (S’10-M’13-SM’20) received the 
B.E. and M.E degrees from South China 
University of Technology, Guangzhou, 
China in 2008 and 2011, respectively, and 
the Ph.D. degree from The University of 
Newcastle, Australia, in 2013. He is now 
the Nanyang Assistant Professor at School 
of Electrical and Electronic Engineering, 

Nanyang Technological University (NTU), and a Cluster 
Director at Energy Research Institute @ NTU (ERI@N), 
Singapore. Previously, he held The University of Sydney 
Postdoctoral Fellowship in Australia.  

His research interests include power system stability and 
control, microgrid, and data-analytics for smart grid 
applications.  

Dr. Xu is an Editor for IEEE Transactions on Power Systems, 
IEEE Transactions on Smart Grid, IEEE Power Engineering 
Letters, CSEE Journal of Power and Energy Systems, and an 
Associate Editor for IET Generation, Transmission & 
Distribution. 

 Xue Feng obtained her Ph.D. degree in 
electrical and electronic engineering from 
Nanyang technological university in June 
2016. Her specialization is on energy 
storage system modeling and control for 
renewable energy systems and electric 
vehicles. During her course of Ph.D. study 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 25,2020 at 11:23:21 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2020.2971227, IEEE
Transactions on Industrial Informatics

TII-19-4943 
 

 

13 

from 2011 to 2015, she was also involved in electric vehicle 
research with tum create. She joined land transport authority of 
Singapore and worked in e-mobility office from September 
2015 to June 2017. her job scope in LTA involved project 
management and coordination for EV related projects, 
technical consultation for EV charging infrastructure 
development, formulation of new research directions and 
policy-making for the better introduction of EVs. Since 
September 2016, she has been working as an assistant professor 
in Singapore Institute of Technology.  

Her research interests include microgrid operation and 
planning, integration of distributed resources, energy storage 
system modeling, planning and control. 

 Qiuwei Wu received the B.Eng. and 
M.Eng. in power system and its automation 
from Nanjing University of Science and 
Technology, Nanjing, China, in 2000 and 
2003, respectively, and the Ph.D. in power 
system engineering from Nanyang 
Technological University, Singapore, in 
2009.  

He has been associate professor since 
September 2013 in the Centre of Electric Power and Energy 
(CEE), Department of Electrical Engineering, Technical 
University of Denmark (DTU), Kongens Lyngby, Denmark. 
He is an Editor of IEEE Transactions on Smart Grid and IEEE 
Power Engineering Letters. He is also the Deputy Editor-In- 
Chief of International Journal of Electrical Power and Energy 
Systems. He is an Associate Editor of Journal of Modern Power 
Systems and Clean Energy, and the Regional Editor for Europe 
of IET Renewable Power Generation. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on March 25,2020 at 11:23:21 UTC from IEEE Xplore.  Restrictions apply. 


