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Abstract—Industrial internet of things (IIoT) is revolutionizing
many leading industries such as energy, agriculture, mining,
transportation, and healthcare. IIoT is a major driving force
for Industry 4.0, which heavily utilizes machine learning (ML)
to capitalize on the massive interconnection and large volumes
of IIoT data. However, ML models that are trained on sensitive
data tend to leak privacy to adversarial attacks, limiting its full
potential in Industry 4.0. This paper introduces a framework
named PriModChain that enforces privacy and trustworthiness
on IIoT data by amalgamating differential privacy, federated
ML, Ethereum blockchain, and smart contracts. The feasibility of
PriModChain in terms of privacy, security, reliability, safety, and
resilience was evaluated using simulations developed in Python
with socket programming on a general-purpose computer. We
used Ganache v2.0.1 local test network for the local experiments
and Kovan test network for the public blockchain testing. We
verified the proposed security protocol using Scyther v1.1.3
protocol verifier.

Index Terms—IIoT, Industry 4.0, IIoT trustworthiness,
blockchains, Ethereum, smart contract, federated learning, dif-
ferential privacy, machine learning, IPFS

I. INTRODUCTION

THE Industrial Internet of Things (IIoT) uses sensors and
actuators with computing and communication capabilities

to change the way data is collected, exchanged, analyzed, and
transformed into decisions. Their increasing pervasive ability
leads to innovative Industry 4.0 (also referred to as Industrial
Internet) applications for improved productivity and efficiency
in major industries such as energy, agriculture, mining, trans-
portation, and healthcare. Machine learning (ML) plays a sig-
nificant role in Industry 4.0, enabling predictive analytics, and
uncovering essential insights to transform industries. With the
advancement of computing and communication technologies,
ML enables the analysis of massive quantities of data such
as those produced by an IIoT-based system, and can use the
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extracted knowledge (e.g. trained models) to aid real-time
decision making in complex situations. Compared to other
areas of ML, deep learning (DL) shows remarkable accuracy
towards image classification, natural language processing, and
speech recognition. Fault detection and isolation in industrial
processes [1], real-time quality monitoring in additive manu-
facturing [2], and automatic fruit classification [3] are three of
the recent examples of DL in IIoT-based Industry 4.0 systems.
Consequently, IoT has become one of the enabling forces for
Industry 4.0, pushing companies towards a paradigm shift to
attain advantages in the competitive dynamic market [4].
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Fig. 1: Model knowledge sharing in IIoT-based Industry 4.0

A large scale IIoT-based Industry setup is composed of
a collection of vastly geographically distributed entities, as
depicted in Fig. 1. Consequently, the advanced Industry 4.0
features such as predictive maintenance and ML-based qual-
ity control and runtime reasoning need to be facilitated by
distributed data acquisition [4]. As shown in Fig. 1, in an IIoT-
based system such as smart healthcare, and open banking, data
and ML models trained within the local boundaries need to
be communicated with the intended users/branches to generate
organization-wide knowledge. Vendors often want to restrict
their internal insights on product development and improve-
ments within their organizational boundaries to increase their
business value against their contenders. Moreover, industries
such as smart healthcare and open banking are massively
convoluted with human-specific sensitive private data. This
complexity makes the processes of distributed data acquisition
quite challenging in an IIoT-based Industry 4.0 setting. ML
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models that are trained on sensitive data can reveal private or
confidential information to advanced adversaries [5], [6]. An
attack such as “man in the middle” conducted by an adversary
can cause changes to the original ML knowledge transferred
by the source. Malicious algorithms can be implemented,
offering them as part of the underlying training processes
to memorize the sensitive information. Adversaries can later
extract and approximate the memorized information, thereby
obtaining sensitive information to breach privacy [7]. Privacy
inference attacks, such as membership inference and model
inversion, show more vulnerability of machine learning models
trained on sensitive data [6], [8]. Hence, privacy and trustwor-
thiness are essential components of ML in IIoT systems.

Fig. 2 illustrates the five pillars/parameters of trustworthi-
ness in IIoT systems [9]. Enforcing these parameters, guaran-
tees a safe and trustworthy IIoT platform that avoids the threats
(e.g. spoofing, tampering, repudiation, information disclosure,
denial of service and elevation of privilege) identified by the
STRIDE threat model [9].
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Spoofing Identity

Data Tampering

Repudiation
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Denial of Service (DoS)

Elevation of Privilege

Fig. 2: Five pillars of a trustworthy IIoT system vs. STRIDE
model of threats

Our contribution is a framework named as PriModChain
(Privacy-preserving trustworthy machine learning model
training and sharing framework based on blockchain) that
addresses the privacy and trust issues of machine learning
in IIoT systems. PriModChain blends differential privacy,
federated learning (FedML), smart contracts and Ethereum
blockchain (EthBC). PriModChain uses the interplanetary file
system (IPFS) for off-chain data management.

The proposed framework (PriModChain) uses FedML to
generate a global representation of the distributed machine
learning knowledge in a distributed IIoT environment. FedML
provides the capability of training an ML model against both
static data and data streams. As the original models do not
leave the model owners, FedML provides a certain level
of privacy in its default setting. In order to strengthen the
privacy of input data, we apply differential privacy on the
locally generated models. The federation of the differentially
private models is coordinated using a smart contract on the
EthBC to introduce security, safety, and resilience. The smart
contract provides transparency to PriModChain in generating
the global ML model once an agreement between the central
authority (CENTAUTH) and the distributed entities (DISTEN)
is established. EthBC makes sure this agreement is supported
by the highest level of data encryption to enforce security.
The transparent and autonomous nature of the agreements in
the EthBC enforces unbiased and error fee data manipula-
tions, improving the trust in terms of safety and reliability.
Traceability and immutability are two other vital properties

of EthBC, where the essential details of the transactions are
permanently stored for future reference. This property allows
verifiable computation in PriModChain, enforcing safety and
resilience over IIoT data. Due to the high capacity of large
ML models, we use IPFS as the off-chain storage module of
PriModChain. IPFS introduces immutability, low latency, and
fast decentralized archiving with secure P2P content delivery.
We apply encryption over the differentially private ML model
parameters to enhance the security of data stored in IPFS. We
tested the trustworthiness of PriModChain in terms of security,
privacy, reliability, safety, and resilience. The experiments
show that PriModChain is a feasible framework for privacy-
preserving trustworthy machine learning and model sharing in
IIoT systems.

The rest of the paper is organized as follows. The underlying
concepts used in PriModChain are presented in Section II.
Section III explains the steps employed in the proposed
approach. The results of PriModChain are discussed in Section
IV. Section V provides a summary of existing related work.
The paper is concluded in Section VI.

II. BACKGROUND

This section provides brief discussions on the underlying
concepts used in PriModChain. We discuss the basic princi-
ples related to differential privacy, federated machine learn-
ing, interplanetary file system (IPFS), blockchain technology,
Ethereum, and smart contracts.

A. Differential Privacy

Differential privacy (DP) is a privacy model that provides
a strong level of privacy by minimizing the likelihood of
individual record identification [10]. In principle, DP defines
the limits to how much information about a data item can be
made available to a third party for analysis. Traditionally, ε
(epsilon) and δ (delta) are used to define these limits. Laplace
and Gaussian mechanisms are the two most commonly used
perturbation approaches in DP [11].

1) Definition of differential privacy: Let’s take the dataset,
D and two of its adjacent datasets, x and y, where y differs
from x only by one data item. Assume, datasets x and y
as being collections of records from a universe X , where N
denotes the set of all non-negative integers including zero.
Then the randomized algorithm M satisfies (ε, δ)-differential
privacy if it holds Eq. (1).

Definition 1: A randomized algorithmM with domainN |X |
and range R is (ε, δ)-differentially private for δ ≥ 0 if for
every adjacent x, y ∈ N |X | and for any subset S ⊆ R

Pr[(M(x) ∈ S)] ≤ exp(ε)Pr[(M(y) ∈ S)] + δ. (1)

2) Privacy budget (ε) and probability of error (δ): ε
denotes the privacy budget, which provides an insight into
the privacy rendered by a differentially private algorithm. The
lower the value of ε, the lower the loss of privacy. δ is the
probability of error/failure that accounts for ”bad events” of an
output revealing the identity of a particular individual. Hence,
δ should be very small for a particular database.
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3) Sensitivity (∆f ): Sensitivity is defined as the maximum
influence that a single data item can exert on the result of
a numeric query of a function. Consider a function f , the
sensitivity (∆f ) of f can be given as in Eq. (2) where x and
y are two neighboring databases and ‖.‖1 represents the L1
norm of a vector [12].

∆f = max{‖f(x)− f(y)‖1} (2)

4) Post processing invariance and composition: Postpro-
cessing invariance/robustness property of DP ensures that the
results of additional computations on an ε-DP outcome will
still be ε-DP [13]. Composition property of DP is the degrada-
tion of privacy when multiple differentially private algorithms
are performed on the same or overlapping datasets [13]. For
example, when ε1-DP, ε2-DP,. . . , εn-DP are applied on the
same or overlapping datasets, the union of the results is equal
to (ε1 + ε2 + · · ·+ εn)-DP [13].

B. Federated Learning

Federated learning is an approach to build machine learning
models based on datasets that are distributed over multi-
ple locations [14]. Assume that there are N data owners
{O1, . . .ON} each training their local models using the re-
spective datasets {D1, . . .DN}. All the data owners (Oi)
train models locally without exposing their local datasets
(Di) to other participating entities. The locally trained model
parameters are then collected in a central server to federate
into a global model, which is named as the federated model
(MLfed). According to the definition of federated learning,
the accuracy (Afed) of MLfed should be very close to the
accuracy (Actr) of the model trained centrally with all the
data [15]. This relationship can be represented using Eq. 3,
where δ is a non-negative real number.

|Afed −Actr| < δ (3)

C. The InterPlanetary File System (IPFS)

IPFS is a peer-to-peer distributed file system that provides
a high throughput content-addressed block storage model
with content-addressed hyperlinks (which is a unique hash
value) [16]. Any modification to the file will destroy its
original hash value, making the data saved in IPFS immutable.
IPFS forms a generalized Merkle Directed Acyclic Graph
(DAG) and combines a distributed hash table, an incentivized
block exchange, and a self-certifying namespace to support
building versioned file systems and blockchains [16].

D. Blockchains, Ethereum, and Smart Contracts

A blockchain is a distributed ledger of data records main-
tained by network nodes that are not owned by a central
authority [17]. The blocks of data in the blockchain are
chained to each other using cryptographic principles. The
transaction data of a blockchain are immutable and public,
which makes everyone accountable for their actions on the
blockchain [17]. An application that is built on blockchain
will automatically become transparent and resilient to attacks.

Ethereum is an open-source blockchain platform for decentral-
ized applications that control digital value. The programs that
run on the Ethereum Virtual Machine (EVM) are referred to as
“smart contracts”. Solidity and Vyper are two of the popular
languages that are used to write smart contracts on Ethereum1.
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proposed framework

III. OUR APPROACH: PRIMODCHAIN

This section discusses how the proposed framework
blends the concepts of differential privacy, federated learning
(FedML), Ethereum blockchains (EthBC), smart contracts,
and the interplanetary file system (IPFS) to enforce privacy-
preserving trustworthy distributed machine learning on IIoT-
based Industry 4.0 systems. As available in any conventional
Industry 4.0 based IIoT setting, PriModChain involves the two
actors: (1) the distributed entity/ branch (DISTEN), and (2)
the central authority/coordinating server (CENTAUTH). Fig. 3
shows how the smart contract, DISTEN, CENTAUTH, IPFS,
and EthBC are organized in the PriModChain framework.
We assume that each DISTEN is a full-scale factory with its
own IIoT configuration. The DISTENs conduct differentially
private ML model training and testing locally using the local
data (both static data and stream data produced by IIoT).
PriModChain uses FedML to generate a global representation
of the ML models available at DISTENs by communicating
the model parameters between the CENTAUTH and DISTENs.
EthBC plays the role of keeping track of the consensus of the

1https://www.ethereum.org
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contributions made by each actor during the model federation
process. A smart contract maintains the coordination between
DISTEN, CENTAUTH, IPFS, and EthBC.

Fig. 4 presents a layered architecture of PriModChain,
where each layer concentrates on how different technologies
are amalgamated to enforce different parameters for trustwor-
thiness. The figure also depicts the on-chain and off-chain
data storage selections preferred in each layer, where on-chain
refers to storing data in EthBC, and off-chain refers to storing
data in IPFS. PriModChain uses IPFS as the off-chain data
storage mechanism since the ML model parameter datasets
are too large to be stored on EthBC.
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A. Composition of a DISTEN

In this section, we discuss the role of a DISTEN in gen-
erating a global representation of the distributed ML models.
Algorithm 1 shows the sequence of execution of the respon-
sibilities of a DISTEN. In the proposed experimental setup,
each DISTEN trains a differentially private (refer section
III-A1 for differentially private ML model generation) deep
neural network (DNN) using the local data for a certain
number of epochs (e.g. 30). After generating the differentially
private ML model for local analysis, the DISTEN extracts the
model parameters (e.g. trained weights) to be shared with the
CENTAUTH. DISTEN applies public-key encryption on the
model parameters using the public key (Pc

k) generated by the
CENTAUTH. The encrypted model parameters are then stored
in IPFS, and a unique IPFS hash is obtained. The IPFS hash

of the encrypted model parameters is then encrypted using
the same public key Pc

k and added to the EthBC using the
smart contract. The DISTEN’s wallet key is then forwarded to
the CENTAUTH to notify the completion of the local model
training (at the corresponding DISTEN) for the current round
of federation. After receiving the CENTAUTH notification
about the completion of the current federation cycle, DISTEN
retrieves the encrypted global model parameters. DISTEN then
updates the local model using the global parameters decrypted
using the multi-key (multi-key Sk) generated according to
Algorithm 3. Then, DISTEN will start the next federation
round by locally training the model with the updated model
parameters, and repeating all the steps for a predefined number
of federation rounds.

Algorithm 1: Role of a DISTEN in PriModChain for gen-
erating a federated global ML model

Input:

{x1, . . . , xj} ← examples
ε ← privacy budget
numeps ← number of epochs
numrnds ← number of federation rounds
Pc
k ← public key of CENTAUTH

Output:
DPML ← differentially private local model
HSDEP ← encrypted IPFS hash of DPEMP
Pd
i ← DISTEN’s public key

1 generate a public-private key pair, (Pd
i = public key) ;

2 fedcycnum = 0;
3 for numrnds rounds do
4 fedcycnum = fedcycnum+ 1;
5 train a differentially private ML model (DPML) for

numeps epochs using {x1, . . . , xj} (refer section
III-A1);

6 return DPML for local analysis ;
7 extract the model parameters from DPML;
8 encrypt the model parameters using the Pc

k ;
9 store the encrypted model parameters (DPEMP ) in

IPFS;
10 encrypt the IPFS hash of DPEMP using the Pc

k (refer
section III-A2);

11 add the encrypted hash (HSDEP ) to Ethereum via the
smart contract (fn 4() of Fig. 5);

12 forward wallet address to notify CENTAUTH about the
current round update;

13 if CENTAUTH notified federated round update with
multi-key Sk and CENTAUTH fedcycnum then

14 if local fedcycnum ≤ CENTAUTH fedcycnum
then

15 use the multi-key Sk to decrypt the IPFS hash of
the global model parameter update;

16 retrieve the global model parameters using the
decrypted IPFS hash;

17 use the multi-key Sk to decrypt the model
parameter updates from the CENTAUTH;

18 load global parameters to the local model before
next round;

1) Generating a differentially private ML model by a DIS-
TEN: In order to apply differential privacy to an ML model
generated by a DISTEN, PriModChain uses the differentially
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private stochastic gradient descent (DPSGD) mechanism pro-
posed by Abadi et al. [5]. This method is based on the
Gaussian noise mechanism, which is shown in Eq. 4 to enforce
DP. (f : D → R) is a real-valued function and N

(
0, S2

f · σ2
)

is the normal (Gaussian) distribution noise with mean 0 and
standard deviation Sfσ, so that the noise is calibrated to f ’s
sensitivity Sf = |f(d)− f(d′)|, where d and d′ are adjacent
inputs. In DPSGD, at each step of SGD, they compute the
gradient for a random subset of examples, clip the l2 norm of
each gradient, compute the average, and add noise in order to
protect privacy.

M(d) , f(d) +N
(
0, S2

f · σ2
)

(4)

Algorithm 2: Role of the CENTAUTH in PriModChain for
generating a federated global ML model

Input:
{HSDEP1, . . . ,HSDEPp} ← IPFS hashes of

DPEMP
Pd
1 , . . . ,Pd

m ← public keys
of DISTENs

numrnds ← number of
federation rounds

Tfed ← federation time
interval

Output:
FEDMOD ← federated global model
HSMKE ← encrypted IPFS hash of encrypted

global ML model parameters
Pc
k ← CENTAUTH’s public key

1 generate a public-private key pair, (Pc
k = public key) ;

2 fedcycnum = 0;
3 for numrnds rounds do
4 fedcycnum = fedcycnum+ 1;
5 if minimum number of DISTEN updates are available

then
6 retrieve the IPFS hashes of the model parameters

{HSDEP1, . . . ,HSDEPp} (pushed by DISTENs
that are whitelisted and within Tfed) from Ethereum
via the smart contract (fn 7() of Fig. 5);

7 decrypt {HSDEP1, . . . ,HSDEPp} using the
private key;

8 retrieve the model parameters using decrypted IPFS
hashes;

9 federate the parameters (trained weights) to obtain
the global model (FEDML) parameter updates (refer
section III-B1) ;

10 apply multi-key encryption (refer section III-B2) on
the global model parameters using Pd

1 , . . . ,Pd
m;

11 store the encrypted global model (EFEDML) in IPFS;
12 apply multi-key encryption (refer section III-B2) on

the IPFS hash of the encrypted global model ;
13 add the multi-key encrypted IPFS hash (HSMKE)

to Ethereum via the smart contract (fn 8() of Fig.
5);

14 forward the multi-key Sk (using Algorithm 3) and
fedcycnum to notify DISTEN about the global
model parameter update;

2) Public key encryption by a DISTEN: PriModChain uses
RSA encryption scheme for the public key encryption in steps

8 and 10 in Algorithm 1. However, the choice of the public-key
encryption algorithm is not restricted to RSA. We assume that
all the participating entities preserve their private keys and do
not leak them to any other party. In a possible event of a private
key leak, the corresponding entity will be refreshed with a new
key pair and will restart its responsibilities in PriModChain.

B. Composition of the CENTAUTH

In this section, we discuss the role of the CENTAUTH in
generating a federated (global) ML model. As shown in Al-
gorithm 2, the CENTAUTH first retrieves the encrypted IPFS
hashes of the encrypted local (DISTEN) model parameters
(from the whitelisted DISTENs) that are released within the
federation interval (Tfed). The model parameters are retrieved
using their IPFS hashes decrypted using the private key of
CENTAUTH. The decrypted model parameters are then feder-
ated by averaging the model parameters (i.e. weight matrices),
as proposed by McMahan et al. [18] (refer Section III-B1
for more details about the model parameter federation). As
discussed in Section III-B2, the CENTAUTH applies multi-key
encryption on the global model parameters using the public
keys of all DISTENs (who are in the whitelist as discussed
in Section III-C). The encrypted global parameters are then
stored in IPFS. The CENTAUTH applies the same multi-
key encryption protocol on the IPFS hash of the encrypted
global parameters according to Section III-B2. The DISTENs
are then acknowledged about the global parameter update by
the CENTAUTH, forwarding multi-key Sk and CENTAUTH
fedcycnum.

Algorithm 3: Multi-key encryption in PriModChain

Input:

Pd
1 , . . . ,Pd

m ← public keys
of DISTENs

Tfed ← federation time
interval

Output: multi-key Sk ← multi-key of the current
federation cycle

1 generate a symmetric key, Sk randomly for the current Tfed;
2 encrypt the global model parameters generated in step 9 in

Algorithm 2 using Sk;
3 encrypt the IPFS hash generated in step 11 in Algorithm 2

using Sk;
4 retrieve the public keys Pd

1 , . . . ,Pd
m of DISTENs in the

whitelist;
5 for Pt

i ∈ Pd
1 , . . . ,Pd

m do
6 encrypt Sk using Pt

i ;
7 pass the encrypted Sk (multi-key Sk) to the

corresponding DISTEN;

1) Federated model parameter update: A federated model
parameter update, wt+1 is given by Eq. 5, where wt is
the current model parameter state, and p is the number of
DISTENs contributed within the federation time interval [18].
4wi = wi−wt is the difference between the optimized local
model and the central model. At the end of the federation
cycle, 4wi will be considered as the ith federated model pa-
rameter update. As explained in Section II-A4, post-processing
invariance property of differential privacy guarantees that the
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federated model is also differentially private as all the local
models (of DISTENs) are differentially private.

wt+1 = wt +
1

p

(
p∑

i=0

4wi

)
(5)

2) Multi-key encryption: In order to apply multi-key en-
cryption in steps 10 and 12 of Algorithm 2, PriModChain
uses Algorithm 3. As shown in the algorithm, multi-key
encryption uses a randomly generated symmetric key during
the encryption. All the DISTENs in the whitelist, are notified
with the encrypted symmetric key (multi-key Sk) via the
blockchain through the smart contract.

contract PriModChain{
fn_1(): define federation time interval
fn_2(): add DISTEN public keys to the whitelist
fn_3(): remove DISTENs from the whitelist
fn_4(): add encrypted IPFS hash, timestamp
fn_5(): validate IPFS hashes
fn_6(): count the total number of updates
fn_7(): retrieve IPFS hashes of DISTENS in a      

single cycle of federation
fn_8(): add multikey encrypted IPFS hash
fn_9(): retrieve multi-key encrypted IPFS and 

fedcycnum
}

Fig. 5: The list of functions in the smart contract

C. Smart Contract

The smart contract plays a vital role in PriModChain in
coordinating and administrating the ML knowledge sharing
process. The CENTAUTH has higher privileges to the func-
tions in the smart contract compared to a DISTEN. Fig.
5 shows an overview of the PriModChain smart contract.
fn 1() is used to define a federation time interval. fn 1()
can be accessed only by CENTAUTH to make changes to
the federation interval. CENTAUTH can declare a suitable
federation interval based on its capacity and workload of
federating models. The federation interval should be defined
by considering the constraints in Eq. 6, where ∆Tfed is the
federation interval, TEthts is the Ethereum transaction time,
Tdist is the local model training time, Tcent is the processing
time for a single federation in CENTAUTH, and Tother is
the other latencies such as encryption-decryption delays and
network delays such from IPFS.

∆Tfed = Tdist + TEthts + Tcent + Tother (6)

fun 2() is another CENTAUTH privileged function, which
is used to add DISTENs’ public keys to the whitelist. A
DISTEN has to be in the whitelist to contribute to the model
federation process. The CENTAUTH uses func 3() to remove
DISTENs from the whitelist. fn 4() is used by DISTENs to
add the encrypted IPFS hashes (of the locally trained model
parameters) to Ethereum. fn 5() is used by the CENTAUTH to
retrieve the DISTENs in the whitelist to validate the authentic-
ity of the encrypted IPFS hashes. CENTAUTH uses fun 6() to
count the number of DISTEN updates available in a particular
federation cycle number. fn 7() is used by the CENTAUTH to

DISTEN CENTAUTH SMART
CONTRACT BLOCKCHAINIPFS

 store_DPEMP()

 get_publicKey()

get_IPFS_HASH()

store_HSDEP()

get_wallet_address_with_public_key()

add_to_whitelist()

SCF: fn_2()

remove_from_whitelist()

SCF: fn_3()

get_whitelist_HSDEP()

SCF: fn_4()

SCF: fn_5()

get_DPEMP()

store_EFEDML()

get_          _HSDEP()
SCF: fn_6()

store_HSMKE() SCF: fn_8()

get_HSMKE() SCF: fn_9()

 get_EFEDML()

SCF: fn_1()

SCF: fn_7()

send_walletAddress()

get_IPFS_HASH()

send_multikey_Sk()

���ℎ��

loop
for n

rounds 

Fig. 6: Sequence of function calls in PriModChain

retrieve the encrypted IPFS hashes of the model parameters,
which correspond to a particular federation cycle (within the
federation interval). fun 8() is used by CENTAUTH to add
the multi-key encrypted IPFS hash of the global model to
the blockchain. DISTENs use fn 9() to retrieve the muli-key
encrypted IPFS hash of the global model.

Fig. 6 is the sequence diagram, which shows the flow
of function calls between the five main entities (DISTEN,
CENTAUTH, IPFS, Smart Contract, and Blockchain) of Pri-
ModChain. The prefix SCF is used to abbreviate the “smart
contract functions”. The names of the function calls are self-
explanatory and follow the explanations given under Section
III. n in the iteration module represents the number of federa-
tion rounds declared during the initialization of PriModChain.

IV. RESULTS AND DISCUSSION

In this section, we discuss the experiments, experimental
configurations, and the results of PriModChain. We simulated
PriModChain and conducted experiments upon it on a Mac-
Book Pro (macOS Mojave, 13-inch, 2017) computer with Intel
Core i5 CPU (2.3 GHz), 8 GB RAM and 1536MB GPU (Intel
Iris Plus Graphics). The MNIST dataset [5] was selected for
the experiments as it is benchmarked as a reliable dataset that
produces good accuracy for deep learning. We can use this
property of MNIST to investigate the dynamics of different
modules and parameters of PriModChain, such as model con-
vergence, and ε selection (for differential privacy) explicitly. A
more complex dataset would introduce challenges towards the
assessment of the principal PriModChain parameters such as
privacy, accuracy, and ML model convergence. The MNIST
dataset is composed of 70,000 grayscale handwritten digits
(which corresponds to 10 classes/numbers), where an image
has a resolution of 28x28. We chose a convolutional neural
network (CNN) as the choice of the ML algorithm in testing
PriModChain. The CNN accepts 28 × 28 input images. It has
two convolutional layers with ReLU activation functions, one
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max pooling layer with 2×2 max pools, a fully connected layer
with 128 neurons with ReLU activation function, and a fully
connected layer with 10 neurons which produces the output,
that corresponds to the 10 classes of the MNIST dataset.

A. Experimental setup

Fig. 7 shows the arrangement of the component in the
experimental setup of PriModChian. We used Python (version
3.6.5) as the primary programming language to develop the
programs in CENTAUTH and DISTENs. We used python
socket and thread interfaces to simulate the communica-
tions between DISTENs and CENTAUTH in the federated
learning setup. Solidity v0.5.0 was used to implement the
PriModChian smart contract. The smart contract was deployed
to the EthBC networks using Truffle v5.0.24. For the local
experiments on the blockchain, we used the Ganache v2.0.1
local test network. Kovan test network was used as the public
blockchain for the PriModChain’s experiments. PriModChain
was connected to Kovan through Infura, which is a hosted
Ethereum node cluster that lets running applications with-
out needing a personal Ethereum node. Python cryptography
v2.3.1 package was used for the RSA encryption-decryption
(using cryptography.hazmat) scenarios in PriModChain. The
main python programs communicate with the smart contract
through the Web3.py library, which interacts with the smart
contracts through their ABIs (application binary interface).
The main programs of CENTAUTH and DISTENs commu-
nicate with IPFS (go-ipfs v0.4.21) connected through ipfsapi
python library for model parameter exchange and storage.

Web3.py

CENTAUTH Main Program 

DISTEN Main Program

PriModChain smart contract

Python

Python

Solidity IPFS

Ganache/TestRPC

Contract instance

Bytecode

ABI

Local test network
(Local blockchain)

Kovan

Contract instance

Bytecode

Deploy using truffle

Public test network 
(Public blockchain)

Deploy using truffle

Infura node
FedML Differential privacy

FedML Differential privacy

Fig. 7: The arrangement of the PriModChain components in
the experimental setup

B. Simulation results of PriModChain on trustworthiness

In this section, we explain how PriModChain enforces the
properties (refer Fig. 2) of a trustworthy IIoT system by
presenting the experimental results under each pillar of trust-
worthiness (security, privacy, safety, resilience, and reliability).

1) Security in PriModChian: In this section, we verify the
multi-key encryption security protocols used in PriModChain
to confirm that it does not suffer from any unanticipated
security vulnerabilities. The multi-key encryption protocol
needs verification due to its unique approach to securing the
federated ML model data.

a) Security verification of the multi-key encryption proto-
col (Algorithm 3): We used Scyther v1.1.3 [19] for the security
verification of the multi-key encryption protocol. Scyther is a
security protocol verifier which is based on a pattern refine-
ment algorithm. It provides concise representations of (infinite)
sets of traces. The encryption data (e.g. keys) communication
of the protocol presented in Algorithm 3 can be given by the
following steps where Epubcent represents encrypting using
the public key (Pc

k) of the CENTAUTH, Epubdist1 represents
encrypting using the public key (Pd

i ) of the corresponding
DISTEN who contributed to the current federation cycle,
and E Sk represents encrypting using the symmetric key.
DISTModeli represents the model that was generated by a
particular DISTEN. FEDModel represents the federated model.
Sk represents the randomly generated session key (symmetric
key) of a particular federation cycle.

Phase 1
DISTEN1 sends Epubcent(DISTModel1 ) to CENTAUTH
. . .
DISTENn sends Epubcent(DISTModeln ) to CENTAUTH

Phase 2
CENTAUTH broadcasts [E Sk(FEDModel)]
CENTAUTH sends [ Epubdist1(Sk), . . . ,
Epubdistn(Sk)] to DISTEN1. . . DISTENn

Table I shows the results returned on seven security claims.
The first three claims (Secret mod i, Secret symkey, Se-
cret fedmod) check whether the local models, the symmetric
key (Sk), and the federated model are kept secret by the
DISTENs and the CENTAUTH. Alive or aliveness (of all
roles) checks whether the responder has previously been
running the protocol, when an initiator agent completes a
run of the protocol, as defined in [20]. Weakagree checks
for weak agreement (of all roles) as defined in [20]. Niagree
checks for non-injective agreement on messages as defined
in [21]. Nisynch checks for non-injective synchronization as
defined in [21]. symkey is the session key generated during
a federation cycle, mod i represents a model generated by a
DISTEN, and fedmod is the federated model. As shown in
Table I, the multi-key protocol used in Algorithm 3 does not
leak any information to third parties.

TABLE I: Protocol verification results

User Claim Verification status comment

DISTEN / CENTAUTH

Secret mod i no attack within bounds
Secret symkey no attack within bounds
Secret fedmod no attack within bounds
Alive proof of correctness
Weakagree proof of correctness
Niagre does not occur
Nisynch does not occur
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2) Privacy in PriModChain: PriModChain enforces privacy
on data using differential privacy. However, federated learning
also provides a certain level of privacy as the local data are
not directly shared with the distributed entities. In this section,
we investigate the level of privacy enforced by a DISTEN and
the CENTAUTH separately.

a) Privacy of a local ML model: A DISTEN releases
only the privacy-preserving version of the model parame-
ters of a locally generated differentially private ML model.
Differential privacy guarantees that the model parameters do
not leak privacy. Additionally, the parameters alone do not
allow adversaries to derive the architectural properties of the
underlying ML model. As the model parameters are encrypted
using public-key encryption, the model needs to be decrypted
before any privacy attack, which makes the attacks even more
difficult.

b) Privacy of the global model: Since the local models
(generated at DISTENs) are differentially private; the federated
global model is also differentially private due to the post-
processing invariance property (refer Section II-A4). Addi-
tionally, the global model parameters are encrypted using a
unique session key (Sk), which is created randomly for each
federation cycle for the corresponding federation time interval
(Tfed). Sk is protected using the multi-key protocol explained
in Section III-B2. Even leaking Sk does not allow an adversary
to retrieve private information from the global/federated ML
model due to differential privacy of the model parameters, and
unavailability of the details on the ML model architecture. As
discussed in Section II-A4, the privacy budgets add up when
the global model is generated based on local models trained on
the same or overlapping datasets. However, in PriModChain,
we consider a horizontal federation setup where there is no
overlapping on the datasets, and each DISTEN presents a
unique dataset.

3) Safety and Resilience in PriModChain: As discussed
in Section II-A, differential privacy enforces a strong privacy
guarantee on the data, whereas data encryption strengthens the
safety of data in PriModChain. Consequently, any adversarial
attack on the PriModChain ML models will not reveal private
information; the data privacy will remain safe on any catas-
trophic situation of security exploitation in PriModChain. Ad-
ditionally, EthBC guarantees the resilience of the framework
as it keeps a transparent log of all the events. Any undesirable
event can be tracked and recovered effectively by identifying
the exact point of failure. Moreover, the randomness of the
encryption key generation process makes it even harder for
adversaries to crack PriModChain for misuse.

4) Reliability in PriModChain: We investigated the relia-
bility of PriModChian in terms of accuracy, transaction cost
(Ethereum), latency, and real-time data processing capabilities.

a) Accuracy against the change in privacy during the
federation: Fig. 8 shows the change of accuracy of the ML
model after each round of model federation. We considered a
varying number of DISTENs (2 to 5), each applying (ε = 4,
δ = 10−5)-differential privacy to the local models. At the start
and after each round of federation, the ML models were locally
trained for 30 epochs. As shown in Fig. 8, the accuracy of the
global model improves with the number of federation rounds.
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Fig. 8: Accuracy vs. the number of rounds of federation

However, the exact number of federations necessary can vary
based on the number of DISTENs, the input data, and the
underlying architecture of the ML model. The input dataset
was equally divided between the DISTENs. Consequently, the
higher the number of DISTENs, the lower the number of tuples
in each DISTEN. When the number of DISTENs is high, the
starting accuracy is lower, and the time taken for the model
convergence becomes high. This also results in an accuracy
drop in the second epoch as the second federation round can
introduce an extensive parameter modification after the first
epoch.

TABLE II: Ethereum transaction costs of the most frequent
operations of PriModChain (1000000000000000000 Wei = 1
Ether = 132.17 USD)

Function Gas used (wei)
step 11, Algorithm 1 36112
step 6, Algorithm 2 (for 10 addresses) 42334
step 13, Algorithm 2 36112
add a user to the whitelist 23796
remove a user from the whitelist 14276

b) Transaction cost analysis: It costs around 2563999
Wei to deploy the PriModChain smart contract to the
Ethereum network. However, a particular organization has to
execute this step only once in the PriModChain life cycle.
Table II includes the Ethereum transaction costs of the most
frequent operations (function) of PriModChain. As per the
current exchange rates, the transaction costs are minimal in
terms of USD.

TABLE III: The parameter estimates of the federation interval

Latencies Time

Tdist

∼120-150 seconds (for 5000 tuples of MNIST,
with a batch size of 64). However, this depends
on the choice of the ML model, size of the dataset,
and its architecture (10 seconds - a few hours)

TEthts ∼15-30 seconds
Tcent ∼3-10 seconds
Tother ∼10-30 seconds
TOTAL ∼148-220 seconds

c) Federation Interval: As shown in Table III, the main
factor that governs the federation interval is the local model
generation time (at a DISTEN). This is governed by the
parameters such as number of data tuples, number of epochs,
batch size, and learning rate. By adjusting these parameters,
the local model generation time can be adjusted to meet the
demands of an industrial environment. During the experiments,
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we considered a federation interval proportional to the local
model generation time (e.g. 300 seconds for 5000 tuples and
1500 seconds for 60,000 tuples).

d) Real time data stream processing capacity of PriMod-
Chain: In the proposed setting of PriModChian, the distributed
entities work with both static and stream IIoT data, as shown
in Fig. 3. After buffering a certain number of tuples, DISTENs
conduct local model training before each round of federation,
to generate a local model for a given number of epochs.
Next, the trained parameters are passed to the CENTAUTH
using the trustworthy approach formulated in PriModChain.
As discussed in Section IV-B4c, one round of federation takes
as low as 148 seconds to as high as a few hours. This latency
is used by the DISTENs to buffer new records through the
connected data streams. As a result, PriModChain can accept
infinite data streams, and due to the large window of the
data buffer, PriModChain can work on data streams with high
speeds, given the memory of a DISTEN is large enough to hold
data with high capacity. Fig. 9 shows the time consumption
when we increment the number of tuples in one DISTEN
where a total of 2 DISTENs are used. Each DISTEN trained
the model locally for 30 epochs under a batch size of 64. As
the figure shows, the time consumption shows a linear pattern,
which suggests that PriModChain is a feasible solution towards
large scale machine learning.
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time consumption

V. RELATED WORK

IIoT and related innovations such as Industry 4.0 are mo-
tivated to use the vast distribution and heterogeneity of the
entire industrial value chain to encompass business advan-
tages in the competitive market. Although this can introduce
many advantages, the extensive integration of heterogeneous
technologies and concepts introduce trustworthiness issues in
internal actions and communications [22]. The importance
of trustworthiness in a sub-system or a system should be
looked at from different dimensions, which involve quan-
tification/measurement, standardizations/certifications, and de-
ployment of state-of-the-art cybersecurity frameworks and
standards. A trustworthiness level matrix is an example of
a theoretical measurement that tries to measure the degree
of trustworthiness required from a component, a composed
sub-system, or a system [22]. Cybersecurity frameworks for
IIoT systems include the National Institute of Standards and
Technology (NIST) framework for infrastructure cybersecu-
rity [23], and the European Union Agency for Network and

Information Security baseline security recommendations for
IoT [22]. The standards which are applicable for IIoT and
Industry 4.0 include ISA/IEC 62443 and OWASP [22].

It was identified that security, privacy, reliability, safety,
and resilience are the five pillars of a trustworthy IIoT sys-
tem [9]. To enhance these pillars for machine learning in
IIoT, we investigated the systematic amalgamation between
smart contracts, Ethereum blockchain [17], differential pri-
vacy [10], federated learning [14], and interplanetary file
system (IPFS) [16]. The application of blockchain in various
areas has become popular due to its underlying properties such
as immutability, traceability, and security [24], [25]. Nikolay et
al. proposed a blockchain-based information sharing platform
for IIoT trust [26]. Jiafu et al. developed a blockchain-
based solution for enhancing security and privacy in smart
factory [25]. This method uses smart contracts for processing
and storing information. Zhetao et al. used a consortium
blockchain for secure energy trading in IIoT [27]. However,
these methods failed to look at privacy as one of the essential
components of a trustworthy IIoT system for machine learning.
Differential privacy (DP) is the most preferred privacy model
as it enforces a strong privacy guarantee on the underlying
data [28], [29]. Laplace mechanism, Gaussian mechanism
[30], geometric mechanism, randomized response [31], and
staircase mechanisms [10] are a few of the fundamental
mechanisms used to achieve differential privacy. Chamikara
et al. proposed a method that utilizes differential privacy for
IoT streams [32]. Rongxing et al. proposed a lightweight
privacy-preserving data aggregation scheme for computing-
enhanced IoT [33]. Muneeb et al. discussed the implementa-
tion of privacy-preservation strategies in blockchain-based IoT
systems using differential privacy [34]. However, the existing
approaches fail to provide a complete solution for trustworthy
IIoT machine learning.

VI. CONCLUSION

We proposed a new framework named PriModChain that
can be used for trustworthy machine learning and sharing in an
IIoT setting. PriModChain amalgamates the concepts of smart
contracts, blockchain, federated learning, differential privacy,
and interplanetary file system (IPFS) to enforce privacy and
trustworthiness on ML in IIoT. Federated learning is used as
the global ML model federation and sharing approach, while
differential privacy enforces privacy on the ML models. The
integration of smart contracts and the Ethereum blockchain
introduce traceability, transparency, and immutability to the
framework. IPFS introduces immutability, low latency, and
fast decentralized archiving with secure P2P content delivery.
The proposed framework was tested for its feasibility in
terms of privacy, security, reliability, safety, and resilience.
PriModChian generates excellent results towards the five pil-
lars of trustworthiness and proves to be a feasible solution
for trustworthy privacy-preserving machine learning in IIoT
systems.

One of the potential future directions of the proposed work
is to investigate different approaches to reduce latency to
improve efficiency.
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