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Distributed Acoustic Beamforming with Blockchain
Protection

Qingzheng Wang, Shan Guo, Ka-fai Cedric Yiu,

Abstract—Speech is a natural user interface for the Internet of
Things system. However, the presence of noise affects severely the
performance of such system. With the deployment of smart de-
vices with microphones, one can form a powerful acoustic sensor
network to enhance the speech via beamforming techniques. On
the other hand, reliability of data transmission also determines
the beamforming performance, since faulty data will drift the
beamformer steering location randomly. Currently there is no
protection scheme for acoustic data transmitted over the wireless
network in order to keep steady beamforming performance. In
this paper, we design a compound distributed beamformer where
nodes are grouped and the system are embedded with blockchain
technology to protect the data integrity during transmission. It
attempts to provide more possible reliable connections between
groups. Simulated experiments shows that the distributed beam-
former with blockchain protection is able to maintain steady
beamforming performance.

Index Terms—Signal enhancement; Distributed acoustic array
network; Blockchain data protection.

I. INTRODUCTION

THE Internet of Things (IoT) has transformed our daily life
in many aspects. By providing a seamless integration of

physical objects into the information network [1], this enables
information exchange to flow between devices and also allows
the devices to be controlled remotely by users via a range
of man-to-machine speech interactive systems [2]. People can
remotely control the IoT devices using voice commands or
natural dialogue [3]. Voice control is an attractive feature
that provides a natural mean of remote control and becomes
the primary user interface for the smart home [4]. However,
the interference of the environment and background noises
degrade the performance of such devices [5]. In order to have
smooth operations, acoustic noise should be suppressed and
the required speech to be enhanced.

With the advent of wireless smart devices equipped with
microphones, a wireless acoustic sensor network (WASN) can
be formed and many innovative applications can be developed.
One important application is to enhance speech signals and
suppress unwanted noise via beamforming techniques [6], [7].
If successful, this can enhance significantly the capability of
voice control device. Since the microphone array in WASN no
longer needs to be wired in a restricted area as the traditional
microphone array does but can be placed in any suitable posi-
tion, a WASN could accommodate many sensor nodes which
are positioned anywhere and each node is allowed to contain a
microphone array rather than a single microphone. There are
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several challenges in developing the distributed beamforming
system. First, although the sensor coverage becomes larger
and speech signal can be enhanced with the increment of
microphone arrays, the increased computational burden cannot
be ignored. Second, reliability of data transmission determines
the performance of the designed beamformers, since faulty
data will drift the filter coefficients quickly and deviated
from the target location. In order to enhance robustness and
reliability of voice control system, the transmission reliability
via wireless channel should be dealt with. In this paper, we
provide an innovative solution including two major parts:

• A novel beamforming technique which distributes the
computational burden over the nodes of the WASN;

• A novel data protection scheme in which blockchain tech-
nique ensures the integrity of transmitted data between
the nodes of the WASN.

When it comes to the designing of beamformer systems,
the key step is to compute the vector of beamforming weight
which is the solution of an optimization problem. In this
procedure, there are two important aspects. One is to decide
the evaluation criterion of the optimization problem, i.e.,
the objective function. There are commonly two choices:
minimum variance distortionless response (MVDR) [8] and
minimum mean square error (MMSE) [9]. While the MVDR
beamformer requires an exact steering vector, the MMSE
beamformer makes use of reference signals in the design.
The other important aspect is to decide the transmission and
processing strategy. There are also two typical choices: the
centralized beamformer and distributed beamformer. In the
centralized beamformer, all raw acoustic signals are collected
in a fusion center which conceptually connects to all the
acoustic sensors [10]. The fusion center calculates the inverse
covariance matrix of acoustic signals so as to derive an optimal
beamforming weight. However, the centralized beamformer
may not be suitable for the WASN because the total number
of microphones is too large to process in a signal device
when it is employed in the WASN [11]. Apart from that,
the centralized beamformer is limited by the communication
bandwidth and transmission power [12]. Moreover, the fusion
center could be absent in the WASN due to the uncertainty
topology of the wireless network [13], [14]. Last but not
least, the transmission failure between the fusion center and
acoustic sensors cannot be ignored in the WASN. To avoid
these shortcomings, the distributed beamformer [15] is widely
adopted recently. Since each node in the WASN has its own
processing unit, it can locally process data and share the results
with their neighboring nodes. By cooperating in a distributed
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fashion, all the nodes share the computational burden.
Although a distributed beamforming system has advantages,

it has also created new challenges. One challenge is how
to design decentralized schemes so that the computational
burden is shared by all the nodes and the entire sampling
data is fused iteratively in the WASN. A good decentralized
scheme should reduce the wireless data transmission and share
the computational burden between nodes. A newly proposed
strategy of data transmission for distributed beamformers
is called the gossip algorithm where information exchanges
between adjacent nodes constantly and successively [13]. With
successive iterations, this algorithm can reach the consensus
solution for each node [16]. There are variants of the gossip
algorithm and will be discussed in detail in Section III. The
gossip algorithm has several advantages. First of all, since
only one node will communicate with one of its neighbors
at each iteration, it is computationally efficient. Second, the
algorithm does not require the WASN to remain to be the
same throughout the whole process, but allowing new links to
append and old ones to exit. However, there exist challenges
in the implementation of gossip algorithms. When the number
of nodes increases, the number of iterations required to reach
convergence will increase rapidly [17]. To cope with this
drawback, our approach only employs the gossip method
among groups to trade off the increasing complexity. In
addition, convergence of the algorithms can be slowed down
significantly due to faulty transmission caused by the unstable
links in the WASN [18], which in turns degrades the overall
performance of the system. Moreover, it is necessary to deal
with the consensus issue of nodes inside same groups caused
by faulty transmission. Thus, a data protection mechanism is
very important for the sake of data integrity.

For multimedia applications, tranmission is often carried
out via protocols like user datagram protocol (UDP) [19] to
increase efficiency; on the other hand, sacrificing data integrity
with less verification [20]. Unstable wireless links may yields
heavy packet loss. In order to retain transmission reliability,
it has must be carried out within the application level. First
of all, corrupted data should be rejected or discarded by
receivers. There are various ways of detecting faulty trans-
mission. The simplest method is Cyclic Redundancy Check
(CRC) but it is limited by its error detection capability [21].
A more elaborated method is called Message Authentication
Code (MAC) based on a cryptographic-based algorithm [22],
[23]. A lightweight data integrity checking method is to
use the watermarking technique upon sensor networks [24],
[25]. However, most of existing integrity mechanisms for
wireless networks require a base station (or fusion center)
which is likely absent for most distributed wireless networks.
In addition, this centralized architecture has certain inherent
vulnerabilities. For example, the whole system stops working
if the base station is down due to maintenance or software
failures [26]. Furthermore, the aforementioned methods only
detect the corruption of transmitted data rather than improving
the data integrity. Transmission Control Protocol (TCP) has
been extended and adapted to be deployed in wireless sensor
network so that data can be retransmitted to improve the data
integrity [27]. However, it relies on the original established

links. If one wireless link has become unreliable, correct data
still cannot be obtained by the retransmission request.

In view of the above, here we design a data protection
scheme in application level for the WASN using blockchain
technique. We propose a novel framework of the compound
distributed beamformer where nodes are grouped and the
system are embedded with blockchain technology [28] to
protect the data during transmission. The distributed MMSE
beamforming algorithm is developed. The sketch of the basic
idea is shown in Fig. 1, where small black rectangles represent
nodes in the WASN, and each node could contain several
microphones which are represented by black dots. Nodes in
the WASN are divided into groups, represented by the dotted
red line according to certain preset rules. This is a two-level
communication scheme containing the intra-group data sharing
based on blockchain technique as well as the inter-group
data communication via gossip algorithms. We first share data
within each group and use the blockchain technique to protect
the fused data as well as to resolve the consensus problem
inside the group. Using the hash function, another group can
easily verify the correctness of the received data in inter-group
communications. In our proposed framework, we actually can
randomly select any node in the group to establish the wireless
link for data transmission between groups, since any selected
node will have the same data within the group. If the selected
link has a problem, we can immediately switch to another link
so that we will not lose access to the entire group when one
wireless link becomes unreliable. In our proposed framework,
the connectivity reliability between groups is enhanced by
providing more than one wireless link such that the possibility
of faulty transmission is decreased.

Blockchain is a distributed storage system in which data
is stored in a decentralized network as blocks and updated
using an append-only structure. After the first introduction
in 2008 by Satoshi Nakamoto, blockchain is growing with
fast popularity [29]. It has been employed successfully in
cryptocurrency and some other industries as well. Optimiza-
tions of blockchain have been conducted in the resource
constrained environment [26]. In the design of the blockchain
implementation for beamforming, we need to consider two
important aspects including the reduction of computational
complexity and the restriction of ledger scalability. In order
to reduce the computational complexity, the distributed trust
method is employed here to replace proof-of-work [30], since
it decreases new block processing overhead while maintaining
most of its security benefits. To deal with the problem of
scalability, we first employ the short-time Fourier transform
to locally compress raw acoustic signals in each node. It
reduces the requirement of memory and bandwidth in the
system. Second, we create new ledgers for each time frame and
delete them after the computation of beamforming weights.
Therefore, the length of ledger is bounded by the maximum
iteration of gossip algorithms.

The rest of the paper is organized as follows. The problem
formulation is given in Section II. The distributed computation
scheme is introduced in Section III. The data protection based
on blockchain technique is illustrated in Section IV. The
simulation study is demonstrated in Section V. The discussion
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(a) Gossiping among groups (b) Blockchain structure of the
left bottom group in (a)

Fig. 1. Sketch of the proposed framework

on experimental results is presented in Section VI. Conclusion
and further work are shown in Section VII.

II. NOTATION AND PROBLEM FORMULATION

In this work we consider an enclosed room with acoustic
reverberation. In this room, N speech sources are settled at
γn, n = 0, . . . , N − 1 and M -elements microphone array
settled at δm,m = 1, . . . ,M . The M microphones are grouped
in U nodes. For the u-th node, it contains Mu microphones
such that M =

∑U
u=1Mu. In addition, we divide all the

nodes into V groups. Each group contains Uv nodes with
U =

∑V
v=1 Uv . Without loss of generality, the sensor at γ0

is denoted as the signal of interest; the others are interfer-
ences; and the microphone at δ1 is the reference microphone.
Here, the noise placement information is not considered in
beamformer design. Given the room dimension, sound speed,
locations of sources and microphones, the time domain room
impulse responses (RIR) h(δm, γn) from n-th source to m-th
microphone can be generated by the image method [31]. Let
sn denote the signal at the source γn. The received signal at
microphone δm is calculated by

sm,n = h(δm, γn)� sn (1)

where � denotes the convolution operator. By the short-time
Fourier transform (STFT), the frequency domain coefficient of
the m-th microphone is given by

Ym(f, k) = Sm,0(f, k) +

N−1∑
n=1

Sm,n(f, k) +Nm(f, k) (2)

where Sm,n(f, k) is the STFT coefficient of sm,n at
frequency-bin index f and time-frame index k. The tar-
get source is Sm,0(f, k). The interference sources are∑N−1
n=1 Sm,n(f, k). The noise STFT coefficient of m-th

microphone is denoted by Nm(f, k). Let Y(f, k) =
[Y1(f, k), Y2(f, k), . . . , YM (f, k)]T and S(f, k) =
[S1,0(f, k), S2,0(f, k), . . . , SM,0(f, k)]T. Here, Y(f, k)
is the input data of the beamformer in operation phase,
S(f, k) is the target signal. Let wm(f) be the beamforming
weight of the m-th microphone at frequency f . The weight
vector of the beamformer with frequency f is denoted as
w(f) = [w1(f) w2(f) · · · wM (f)]T. At the time-frame k and

frequency f , the output of the beamformer in the frequency
domain is defined by

Ỹ (f, k) =

M∑
m=1

wm(f)Ym(f, k) = w(f)HY(f, k). (3)

Then, the problem of MMSE beamformer [9] can be rec-
ognized as the least square optimization problem which is
formulated as

wopt(f) = arg min
w(f)

E
{
|Ỹ (f, k)− Sr(f, k)|2

}
(4)

where | · | denotes the absolute value and E denotes the ex-
pectation operator, and Sr(f, k) denotes the STFT coefficient
related to the observation from the reference microphone. Let
K1 and K2 denote the time-frame length in the optimization
and operation phase respectively. Assume the reference signal
Sr(f, k) is independent of the actual observation Y(f, k), sub-
stituting Equation (3) into Equation (4), the original problem
can be expressed as

wopt(f) = arg min
w(f)

{K1−1∑
k=0

[
|w(f)HS(f, k)− Sr(f, k)|2

]
+

K2−1∑
k=0

|w(f)HY(f, k)|2
}

= arg min
w(f)

{
w(f)H[R̂SS(f,K1) + R̂Y Y (f,K2)]w(f)

−w(f)Hr̂s(f,K1)− r̂Hs(f,K1)w(f) + r̂sr

}
where r̂sr is the variance of the reference microphone which
can be treated as a constant in this optimization problem.
In the optimization phase, the estimated correlation matrix
R̂SS(f,K1) and cross correlation vector r̂s(f,K1) are cal-
culated by

R̂SS(f,K1) =
1

K1

K1−1∑
k=0

S(f, k)S(f, k)H, (5)

r̂s(f,K1) =
1

K1

K1−1∑
k=0

S(f, k)Sr(f, k)∗ (6)

where Sr(f, k)∗ is the complex conjugate of Sr(f, k). In the
operation phase, the estimated correlation matrix R̂Y Y (f,K2)
is defined by

R̂Y Y (f,K2) =
1

K2

K2−1∑
k=0

λK2−1−kY(f, k)Y(f, k)H (7)

where λ is an exponential weighting factor.
Given the estimates from Equation (5)-(7), the optimal

weight vector of the MMSE beamformer in Equation (4) is
obtained by

wopt(f) = R̂(f,K2)−1r̂s(f,K1) (8)

where R̂(f,K2) = R̂SS(f,K1) + R̂Y Y (f,K2).
In time-frame k of the operation phase, the known informa-

tion is all the observations in the optimization phase as well
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as the observations up to time-frame k in the operation phase.
Then, we have

R̂(f, k) = R̂SS(f,K1) + R̂Y Y (f, k)

which can be extended to

R̂(f, k) = R̂SS(f,K1) + R̂Y Y (f, k)

= R̂SS(f,K1) + λR̂Y Y (f, k − 1) + Y(f, k)Y(f, k)H

= λR̂(f, k − 1) + Y(f, k)Y(f, k)H + (1− λ)R̂SS(f,K1)

= λR̂(f, k − 1) + Y(f, k)Y(f, k)H

+

M∑
m=1

(1− λ)γm(f)qm(f)qm(f)H

where γm(f) is the m-th eigenvalue and qm(f) is the m-th
eigenvector of the M × M correlation matrix R̂SS(f,K1).
With the use of a rank-one approximation of the matrix [32],
R̂(f, k) can be updated by

R̂(f, k) =λR̂(f, k − 1) + Y(f, k)Y(f, k)H

+ (1− λ)γi(f)qi(f)qi(f)H (9)

where i = (k mod M) + 1.
Using the Matrix Inversion Lemma [33] twice, the inverse

correlation matrix R̂(f, k)−1 can be computed iteratively

R̂(f, k)−1 = Ř(f, k) − γi(f)(1 − λ)Ř(f, k)qi(f)qi(f)HŘ(f, k)

1 + γi(f)(1 − λ)qi(f)HŘ(f, k)qi(f)
(10)

where

Ř(f, k) = λ−1R̂(f, k − 1)−1

−λ
−2R̂(f, k − 1)−1Y(f, k)Y(f, k)HR̂(f, k − 1)−1

1 + λ−1Y(f, k)HR̂(f, k − 1)−1Y(f, k)
. (11)

In order to reduce the influence of the random environmental
noise, a first order autoregressive smoothing model is used to
iteratively update the weight vector of the beamformer as

wk(f) = αwk−1(f) + (1− α)R̂(f, k)−1r̂s(f,K1) (12)

where α ∈ (0, 1) is the smoothing parameter. Therefore, in
the operation phase, the output of the MMSE beamformer at
time-frame k and frequency f is wk(f)HY(f, k).

III. DISTRIBUTED COMPUTATION SCHEME

In this section, we design a distributed computation scheme
of the MMSE beamformer in which the nodes in the WASN
are divided into different groups. In our distributed computa-
tion scheme, gossip algorithms are used to solve the consensus
problem among groups. For different grouping rules, the
gossip algorithm with same number of groups may have
different convergence speed. In [17], it was suggested that
the convergence time of the gossip algorithm depends on the
spectral gap of the graph which consists of groups in our case.
Taking the network topology into consideration, one can group
the nodes with a larger spectral gap so as to speech up the
convergence of the gossip algorithm. If the network topology
is fixed, one can minimize the convergence time by optimizing
the pairwise gossiping probabilities [16]. In practice, we
allocate the geographic adjacent nodes into the same group

because nodes in the same group need to synchronize the status
of private ledgers when gossip algorithms are applied. Apart
from that, it is also necessary to consider the size of group
since the number of duplication ledgers is increased with the
increment of number of nodes in one group, although less
groups speed up the convergence of the algorithm.

A. Gossip algorithms

Gossip algorithms are widely used to solve the average
consensus problem in decentralized network systems. The
randomized gossip algorithm has been used to design a dis-
tributed delay-and-sum beamformer without the consideration
of transmission failure [13] . They allow nodes exchanging
information peer-to-peer and updating the parameter by com-
puting the pairwise average. Eventually, all the nodes in the
network agree on the value of the parameter. There are several
variants of the gossip algorithms. The main difference between
them is the choice of neighbors or routings. We introduce
two distributed computation algorithms: the randomized gossip
algorithm and greedy gossip algorithm. In the randomized
gossip algorithm, the neighbor is chosen uniformly at random
from a predefined neighbor set. It has been shown, in [34], that
this algorithm converges to a consensus if the graph is strongly
connected. Like other greedy algorithms, the greedy gossip
algorithm [35] makes an optimal choice among neighbors to
achieve a fast convergence. In this paper, the selection criterion
of the greedy gossip algorithm is defined as

v2 = arg max
v2∈Nv1

‖xv1 − xv2‖

where v1 is a random chosen group; Nv1 is a predefined
neighbor set of Group v1; v2 is the chosen neighbor of Group
v1; and ‖xv1 − xv2‖ =

√
(xv1 − xv2)H(xv1 − xv2) is the

Euclidean norm between complex vectors xv1 and xv2 . It
means that the greedy gossip algorithm always chooses the
neighbor with the most different value. Comparing with the
randomized gossip algorithm, the greedy gossip algorithm ac-
celerates the convergence to a consensus state in the network.
However, an additional bandwidth is needed to eavesdrop the
information from neighbors. Therefore, both gossip algorithms
are investigated in the simulation study.

B. Distributed Computation of MMSE beamformer

Our objective in this subsection is to estimate the Ř(f, k)
in Equation (11) distributively but a consensus should be
achieved in the network. With the estimation of Ř(f, k) as
well as other estimations estimated in the time frame k − 1
and the optimization phase, it is easy to calculate the optimal
beamformer weight in Equation (12) so as to derive the output
of MMSE beamformer Ỹ (f, k) in Equation (3).

We rewrite Equation (11) as

Ř(f, k) = λ−1R̂(f ,k− 1)
−1
− λ−2aaH

1 + λ−1b
(13)

where

a = R̂(f, k − 1)−1Y(f, k),

b = Y(f, k)HR̂(f, k − 1)−1Y(f, k) = Y(f, k)Ha.
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In the sequel, the gossip algorithm is applied to estimate both
a and b sequentially.

For the v-th group, let R̂v(f, k−1)−1 be the local estimate
of R̂(f, k − 1)−1 and cv,1, . . . , cv,N be the columns of
R̂v(f, k− 1)−1. Let Mv be the set of microphones belonging
to the v-th group. Without communication to other groups, we
can compute a part of a in the v-th group by

a(v) =
∑
i∈Mv

cv,iYi(f, k). (14)

Since

a =

V∑
v=1

∑
i∈Mv

cv,iYi(f, k) =

V∑
v=1

a(v) =
1

V

V∑
v=1

ã(v)

where V is the number of groups and ã(v) = V a(v), it can be
recognized that a is the arithmetic mean of ã(v). Therefore, a
can be calculated by the gossip algorithm.

Let a(vi,t) denote the local estimate of a in Group vi which
are selected to exchange information at the t-th time by the
gossip algorithm. The initial value of the local estimate of a
in Group vi is defined as

a(vi,0) = ã(vi). (15)

In one iteration of the gossip algorithm in which Group vi is
selected at the ti-th time and Group vj is selected at the tj-th
time, the local estimate of a in Group vi and vj are updated
by

a(vi,ti) = a(vj ,tj) =
1

2

(
a(vi,ti−1) + a(vj ,tj−1)

)
. (16)

Let Ta,v be the number of times that the v-th Group is selected
by the gossip algorithm when Ř(f, k) is estimated. The final
local estimate of R̂(f, k − 1)−1Y(f, k) in the v-th Group is

a(v,Ta,v) = [a
(v,Ta,v)
1 , . . . , a

(v,Ta,v)
M ].

After the estimation work of a, we can estimate b using the
same method. Without communication to other groups, we can
compute a part of b in the v-th Group by

b(v) =
∑
i∈Mv

Yi(f, k)∗a
(v,Ta,v)
i . (17)

Then,

b =

V∑
v=1

∑
i∈Mv

Yi(f, k)∗a
(v,Tv)
i =

1

V

V∑
i=1

V b(v) =
1

V

V∑
i=1

b̃(v).

It is obvious that b is the arithmetic mean of b̃(v). Therefore,
b can be calculated by the gossip algorithm.

Let b(vi,t) denote the local estimate of b in Group vi which
are selected to exchange information at the t-th time by the
gossip algorithm. The initial value of the local estimate of b
in Group vi is defined as

b(vi,0) = b̃(vi). (18)

For the iteration of the gossip algorithm in which Group vi is
selected at the ti-th time and Group vj is selected at the tj-th

Algorithm 1 Estimate Ř(f, k) using the gossip algorithm

1: Initialize a(v,0) for Group v using Equation (14) and (15),
where v = 1, . . . , V , and let T = 0.

2: repeat
3: Select two groups and update the local estimates of a

using Equation (16).
4: T = T + 1.
5: until T > Ta,max where Ta,max is the hyperparamter denot-

ing the maximum iteration number when a is estimated.
6: Initialize b(v,0) for Group v using Equation (17) and (18),

where v = 1, . . . , V , and let T = 0.
7: repeat
8: Select two groups and update the local estimates of b

using Equation (19).
9: T = T + 1.

10: until T > Tb,max where Tb,max is the hyperparamter denot-
ing the maximum iteration number when b is estimated.

11: Calculate Řv(f, k), the local estimate of Ř(f, k) in the
v-th group, by the substitution of a(v,Ta,v) and b(v,Tb,v)

into Equation (13).

time, the local estimate of b in Group vi and vj are calculated
by

b(vi,ti) = b(vj ,tj) =
1

2

(
b(vi,ti−1) + b(vj ,tj−1)

)
. (19)

Let Tb,v be the number of times that the v-th Group is
selected by the gossip algorithm when Ř(f, k) is estimated.
The final local estimate of Y(f, k)HR̂(f, k − 1)−1Y(f, k) in
the v-th Group is b(v,Tb,v).

To summarize, in the gossip algorithm, the local estimates of
a and b have exchanged among groups iteratively. The main
purpose of the exchange is to calculate the matrix Ř(f, k).
After sufficient exchanges, the local estimates of Ř(f, k)
converge to the same matrix because a and b are converge
to the same vector and scalar respectively. The algorithm can
be summarized in Algorithm 1. Using the local estimate of
Ř(f, k), a local beamformer weight vector is derived. The
local output of MMSE beamformer in each group is derived
using Equation (10), (12) and (3). It is noted that Y(f, k) is
partially unknown for an individual group but its local estimate
in the v-th group can be computed by

Yv(f, k) = [R̂v(f, k − 1)−1]−1a(v,Ta,v). (20)

IV. BLOCKCHAIN PROTECTION

Due to the complexity of computation and network involved
in the normal blockchain version, we only use the basic
blockchain functions including: adding block, hashing block,
block validations and the longest chain rule. Each blockchain
has one ledger system to store data. The ledger is an append-
only block structure in which the block cannot be removed or
modified once it has been added. In order to cooperate with
gossip algorithms, there are two ledger systems to separately
store the local estimates of both a and b in one group. When
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the network begins to estimate Ř(f, k), the blockchains related
to Ř(f, k−1) are removed and new blockchains are initialized.
Therefore, the blockchains do not need much memory space.

Fig. 2 demonstrates the ledger structure of the blockchain
group in Fig. 1(b) when R̂(f, k)−1 is estimated. Each node
in the group has a copy of both Ledger 1 and 2. One block in
the blockchain contains index, timestamp, data and hash value.
The block except for the genius block also contains a pervious
hash value. The data stored in the genius block contains
R̂v(f, k− 1)−1, γi(f) and qi(f) which are the essential data
to calculate the local estimates R̂v(f, k)−1 using Equation
(13) and (10). It is noted that, for different groups, a(v,0) and
b(v,0) defined by Equation (15) and (18) should be different
such that the hash value for each group cannot be the same.
Moreover, the inter-group communication is dominated by
gossip algorithms. The selected time for each group in the
inter-group communication is at random. Thus, the lengths of
Ledger 1 and 2 in each blockchain group could be different.
In our paper, we use the fully private blockchain which is
open for other groups for reading but the permission to write
it belongs to the nodes inside the group itself.

The hash value is generated based on the index, timestamp,
data and the previous hash. It can be considered as a fingerprint
of the block. When anything in the block is broken, the hash
value will be changed. Since the hash value is linked to the
next block, the hash values of all the blocks after this block
should also be changed. Compared to other healthy chain, it
is easy to find out the broken chain or broken block. In the
inter-group communication, another groups can easily verify
the correctness of the received data using the hash function.

The advantages of using blockchain in the WASN are the
following:
• It perfectly resolves the data consensus problem inside

the group since data is immutable and tamper-proof in
blockchain.

• It accelerates the gossip algorithm since the graph is
compressed by the non-overlapping blockchain group.

• Once a communication link is broken, same data can be
transmitted from others in the same blockchain group.

• Broken data in one node can be recovered by duplicated
data from other nodes in the same blockchain group.

With the increment of number of nodes in the blockchain
group, the number of duplication ledgers is increased. It leads
to more bandwidth consumption because blockchain technique
synchronizes the status of duplication ledgers. Therefore,
we use a two-level communication scheme and employ the
blockchain technique in small separate groups rather than in
the whole WASN.

V. SIMULATION

In this section, we illustrate the performance of the designed
beamformer in a simulated room. Firstly, we consider a
10m × 10m × 3m square office room with a reverberation
time of T60 = 0.2s. The heights of microphones and sources
are 1.5 meters. The horizontal positions of both sources and
microphones are shown in Fig. 3. The size of our simulated
room is a common specification for a large conference room

or a small lecture theater. A similar size of our acoustic
system is popular in the literature of studying the distributed
beamforming [36]. We construct the blockchain groups ac-
cording to the set {(Node 1, Node 2, Node 3), (Node 4,
Node 5, Node 6), (Node 7, Node 8), (Node 9, Node 10)}. Since
signals are generated based on a signal propagation model
with a known source location via Equation (1) as in [31], we
can randomly select a node to be the reference signal in our
model. One microphone of Node 8 is randomly selected to be
the reference microphone. Fig. 4 displays the RIR vector for
the reference microphone. Furthermore, both source speech
and interference speech contain 4s voice signals sampled at
16kHz. All signals are transformed in the frequency domain
by a 256-tap FIR filter. The over-lapping rate is 50%. In this
experiment, the signal-to-interference (SIR) ratio is fixed at
-5dB.

Four performance measures are used to evaluate the per-
formance in different cases. Define P̂Y (ω) as the spectral
power estimate of the source signal; P̂Ỹ (ω) as the spectral
power estimate of the output of beamformer; P̂YI

(ω) as the
spectral power estimate of the interference speech; P̂ỸI

(ω) as
the spectral power estimate of the output of beamformer when
the interference speech is active alone; P̂YWN

(ω) as the spectral
power estimate of the white noise; P̂ỸWN

(ω) as the spectral
power estimate of the output of beamformer when the white
noise is active alone. Then, the first performance measure is
the normalized distortion which is formulated as

Distortion =
1

π

∫ π

−π
|CdP̂Ỹ (ω)− P̂Y (ω)|dω

where Cd is defined as

Cd =

∫ π
−π P̂Y (ω)dω∫ π
−π P̂Ỹ (ω)dω

.

The second and third performance measures are the nor-
malized white noise suppression and normalized interference
suppression which are respectively defined by

SUPPWN =

∫ π
−π P̂ỸWN

(ω)dω

Cd
∫ π
−π P̂YWN

(ω)dω
,

SUPPI =

∫ π
−π P̂ỸI

(ω)dω

Cd
∫ π
−π P̂YI

(ω)dω
.

The fourth measure is the segmental SNR ratio computed by

SNRseg =
1

K2

K2∑
k=1

10 log10

∑F
f=1 |Yi(f, k)|2∑F

f=1 |Ỹ (f, k)− Yi(f, k)|2

where Yi(f, k) is the STFT coefficient of the clean speech
received by the i-th microphone and F is the total number
of frequency bins. The first three methods have been used to
measure the performance of centralized MMSE beamformer
in [37].

In order to show the importance of blockchain protection,
we simulate a poor network environment with heavy packet
loss. The rate of transmission failure in the WASN is 1e−4. If
the transmission fails, the receiver will get the null data from
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Fig. 2. Designed Data Structure of one blockchain group in WASN
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the network. We proposed three distributed computational
methods below.
• Method 1 (M1): The MMSE beamformer is distributively

computed by the randomized gossip algorithm.
• Method 2 (M2): The MMSE beamformer is distribu-

tively computed by the randomized gossip algorithm.
Blockchain protection is active.

• Method 3 (M3): The MMSE beamformer is distributively
computed by the greedy gossip algorithm. Blockchain
protection is active.

For comparison, we calculate the optimal beamformer with
all the data readily available in one node, that is, like the
centralized counterpart beamformer in which each node would
have access to the full set of microphone signals. This is the
ideal situation in which all data can be accessed and without
any lost of precision due to communication failure. This ideal
beamformer has been investigated in [9] and will be used as a
benchmark in the following comparison. Moreover, we make
a comparison with the distributed delay-and-sum beamformer
(DDSB) in [13] as well as the distributed minimum variance
distortionless response beamformer (DMVDRB) in [36]. Both
DDSB and DMVDRB are calculated by the randomized gossip
algorithm.

A. Results with a fixed SNR

The input SNR is fixed as -5dB. We investigate the perfor-
mance of the distributed MMSE beamformer with and without
the blockchain protection. Besides that, we compare difference
between the randomized gossip algorithm and greedy gossip
algorithm when the blockchain protection is active.

Fig. 5 shows the values of interference suppression, white
noise suppression and the distortion with the change of it-
eration numbers in gossip algorithms. As we can see from
Fig. 5(a), the beamformer reduces both the white noise and
interference speech when the iteration number in gossip al-
gorithms is greater than 30. It is clear that the performance
of beamformer is improved over iterations. As we mentioned
in Section III, the greedy gossip algorithm used in M3
converges faster because optimal choices among neighbors
have been selected. However, the greedy gossip algorithm
needs additional resources to eavesdrop the information of
neighbors in real time. The red line (M1) denotes the per-
formance of the beamformer which is distributively calculated
without blockchain data protection. From Fig. 5(a) and 5(b),
we can observe that distributed beamformers with blockchain
protection outperform the one without protection. Moreover,
the performance of the distributed beamformer is unstable
without the blockchain protection. Significant departure on all
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Fig. 5. The suppression measures and distortion measure in three methods
when the SIR is -5dB and the SNR is -5dB

three performance measures can be observed in M1 even when
the iteration number is large.

Fig. 6 depicts the result using M2, namely the beam-
formered speech (the output of the beamformer), pure speech,
noisy speech and the interference speech. It is observed that
the distributed beamformer with blockchain protection is able
to reduce the noise significantly.

B. Results with different SNRs

In this subsection, the SNR are chosen as −10dB, −5dB,
0dB and 5dB. The iteration number in the randomized gossip
algorithm is 110. Fig. 7 shows the segmental SNR versus
the input SNR. DMVDRB is calculated by the CbDECM1

algorithm in [36]. DDSB is calculated by the randomized
gossip algorithm with clique in [13]. It is observed that the
distributed MMSE beamformers outperform both DDSB and
DMVDRB in the reverberation environment. Furthermore, the
distributed MMSE beamformer using M2 can achieve the
performance of the ideal MMSE beamformer. Note that the
performances of both the distributed beamformer using M2

0 1 2 3 4 5 6 7

#104

-1

0

1
  Beamformered speech (M2)

0 1 2 3 4 5 6 7

#104

-0.5

0

0.5
Pure speech

0 1 2 3 4 5 6 7

#104

-1

0

1
Noisy speech (Input of beamformer)

0 1 2 3 4 5 6 7

#104

-1

0

1
Interference speech

Fig. 6. Beamforming performance of the distributed MMSE beamformer with
the blockchain protection (M2)
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Fig. 7. Segmental SNR with the input SNR chosen as −10dB, −5dB, 0dB
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and ideal beamformer are the same and therefore these two
plots are overlapped in the Figure. Comparing with M2, the
performance of M1 is obviously poorer due to the lack of
blockchain protection when transmission errors exist.

C. Error analysis

Since a and b are transmitted to calculate Ř(f, k)−1, we
define the estimated error rate of Ř(f, k)−1, in the v-th
blockchain group, as

Errv(k) =
1

F

F∑
f=1

‖Řv(f, k)−1 − Ři(f, k)−1‖F
‖Ři(f, k)−1‖F

(21)
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where ‖ · ‖F denotes the Frobenius Norm of the matrix.
Řv(f, k)−1 and Ři(f, k)−1 are the estimates of Ř(f, k)−1

from the distributed beamformer and ideal beamformer. In this
case, we focus on the error rate of the third blockchain group
when SNR is equal to -5dB. Fig. 8 displays the comparison of
the cumulative mean of the estimated error rate of Ř(f, k)−1

in both M1 and M2. It is observed that the cumulative mean of
Err3 in M2 roughly behaves like a horizontal line. It means, in
M2, that the randomized gossip algorithm attains a stable state
and the estimate of Ř(f, k)−1 converges to the estimate of
Ř(f, k)−1 from the ideal beamformer. Without the blockchain
protection, the cumulative means of Errv in M1 are larger than
the counterpart in M2. Apart from that, in the result for M1,
there are several jumps which are caused by the transmission
failure in the WASN.
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Fig. 8. Estimation of error rate of Ř(f, k)−1 on the third blockchain group
for M1 and M2 at SNR=-5dB.

VI. DISCUSSION

From the comparison results depicted in Fig. 5, we observe
that the performance of the distributed MMSE beamformer
without blockchain protection (M1) is worst and unstable
when it is put under a poor network environment with heavy
packet loss. The designed beamformer drifts away from the
optimal performance from time to time, and it takes a while
for it to converge again. On the other hand, the proposed
distributed MMSE beamformer with blockchain protection
(M2) can approach the performance of the ideal beamformer
and stay at the optimal level. Moreover, it we elaborate on
the iterative technique further by employing the greedy gossip
algorithm instead of the randomized gossip algorithm, the dis-
tributed MMSE beamformer with blockchain protection (M3)
can converge even faster, with the trade-off for using additional
resources to make the optimal choice among neighbors in
each iteration. The signal outputs from the distributed MMSE
beamformer with blockchain protection (M2) is shown in Fig.
7. From the beamformed speech output, it can be seen that the
white noise and interference speech have been by and large
filtered out, leaving a good estimate of the required speech
signal.

Fig. 6 displays the segmental SNR performance of output
signals for a range of input SNRs. Compared with two
existing implementations of distributed beamforming in the
literature, namely DDSB [13] and DMVDRB [36], the dis-
tributed MMSE beamformers (M1 and M2) outperforms them

in the indoor environment with reverberation. Furthermore, the
proposed distributed MMSE beamformer with blockchain pro-
tection (M2) is the only one that can achieve the performance
of the ideal beamformer for the whole range of SNRs in the
study. Without blockchain protection, the performance of M1
often deviates from the optimal performance.

To further understand the cause of the deviation, we conduct
an error analysis and find that it is mainly due to errors in
the computation of Ř(f, k)−1. In Fig. 8. An error measure is
introduced in Equation (21) to quantify the effect. It can be
seen that faulty data causes the matrix to drift away from the
correct value and hence induce performance degradation in
the designed beamformer. It is also evident that this problem
can be avoided with blockchain protection, which reduces the
computational error caused by poor transmission.

VII. CONCLUSION AND FURTHER WORK

In this paper, we propose three distributed MMSE beam-
formers using gossip algorithms. Our proposed distributed
MMSE beamformers outperform the distributed delay-and-
sum beamformer and MVDR beamformer in a simulated
reverberation environment. Based on the blockchain technique,
a data protection scheme is also proposed to avoid faulty data
transmissions. To illustrate the effectiveness of the proposed
beamformer with the blockchain protection, we simulated a
typical scenario in a square office room with reverberation.
The experimental results show that blockchain data protection
is able to secure the quality of the output signals from a dis-
tributed beamformer in a relatively poor network environment.
In addition, we showed that greedy algorithm can perform
better than the randomized gossip algorithm if additional
sources are used to receive information from all neighbors.
As a future extension, it is of interest to study and optimize
the proposed beamformer with voice control accuracy as the
performance criteria in smart systems.
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