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A Scenario-based Branch-and-Bound Approach for
MES Scheduling in Urban Buildings

Mainak Dan, Student Member, Seshadhri Srinivasan, Sr. Member, Suresh Sundaram, Sr. Member, Arvind
Easwaran, Sr. Member and Luigi Glielmo, Sr. Member

Abstract—This paper presents a novel solution technique for
scheduling multi-energy system (MES) in a commercial urban
building to perform price-based demand response and reduce
energy costs. The MES scheduling problem is formulated as a
mixed integer nonlinear program (MINLP), a non-convex NP-
hard problem with uncertainties due to renewable generation
and demand. A model predictive control approach is used
to handle the uncertainties and price variations. This in-turn
requires solving a time-coupled multi-time step MINLP dur-
ing each time-epoch which is computationally intensive. This
investigation proposes an approach called the Scenario-Based
Branch-and-Bound (SB3), a light-weight solver to reduce the
computational complexity. It combines the simplicity of convex
programs with the ability of meta-heuristic techniques to handle
complex nonlinear problems. The performance of the SB3 solver
is validated in the Cleantech building, Singapore and the results
demonstrate that the proposed algorithm reduces energy cost by
about 17.26% and 22.46% as against solving a multi-time step
heuristic optimization model.

Index Terms—Multi-Energy Systems (MES), Mixed Inte-
ger Nonlinear Program (MINLP), Scenario-Based Branch-and-
Bound (SB3).

NOMENCLATURE

Dispatchable Generators
PG,i Power generated by the generator i [kW];
δG,i Binary ON-OFF status of the generator i;
RG,i Ramp-rate of the generator [kW h−1];

Cogeneration Units
PGT Power generated by the gas-turbine [kW];
δGT Binary ON-OFF status of the gas-turbine;
RGT Ramp-rate of the gas-turbine [kW h−1];
QAC Thermal output of the absorption chiller [kW];

Utility Grid and Renewable Energy
PGR Power bought from the grid [kW];
PR Power generated by the photo-voltaic panel [kW];
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Storage Units
PESS Power input to the electrical storage [kW];
SoCESS State of charge of the electrical storage [kW h];
δESS charging/discharging status of the electrical stor-

age;
PTES Cooling energy input to the thermal storage [kW];
SoCTES State of charge of the thermal storage [kW h];
δTES charging/discharging status of the thermal storage;
TTES Temperature inside the TES [◦C];

Chiller Bank
ṁC,j Cool water mass-flow rate of chiller j [kg h−1];
γC,j Binary ON-OFF status of chiller j;
PC Power consumed in the chiller bank [kW];
QC,j Thermal energy supplied by chiller j [kW];

Energy Demands
PL Electrical load demand [kW];
QL Thermal load demand [kW];

Parameters
HL Coefficient of heat loss [W m−2 ◦C−1];
Tin/out Inlet/Outlet temperature of the TES [◦C];
V Volume of the TES [m3];
A Cross-sectional area of the TES [m2];
CGR Market energy cost [$/kWh];
∆t Sampling time [h];
ηESS Electrical storage efficiency;
ηTES Thermal storage efficiency;
Cρ Specific heat capacity of the water

[kJ kg−1 ◦C−1];
ρ Density of the water [kg m−3];
k Sampling index;
Np Time horizon;

I. INTRODUCTION

THE multi-energy systems (MES) is an emerging concept
wherein different energy vectors (e.g., thermal, electrical,

gas and co-generation units) optimally interact at various
levels in smart grid environments [1]. It is increasingly being
recognized that a well-coordinated scheduling of different
energy systems can reduce the energy cost, increase overall
efficiency, mitigate peak-demand and guarantee reliable power
delivery [2]. Key challenge here lies in optimally integrating
different energy vectors and networks (e.g., thermal and elec-
tric) [3]. However, the presence of tight coupling between mul-
tiple energy vectors, components’ complex behaviours (e.g.,
nonlinear, switching, and time-coupled), and many degrees
of freedom make the optimal scheduling problem intricate.
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The intermittent renewable generation and pulsating demand
add a new dimension to the problem. Therefore, novel control
approaches are required for scheduling MES.

Optimization models, scheduling techniques, and control
approaches are widely investigated problems in energy man-
agement system (EMS) related to MES. The energy hub
(EH) concept proposed in [4] is a widely adopted model for
studying MES energy exchanges. The optimization approaches
for solving such models in the literature are categorised as:
(i) mathematical programming [5], [6], (ii) meta-heuristic [7],
(iii) stochastic programming [8] and (iv) hybrid approach [9].
Mathematical models for MES scheduling include the mixed
integer linear programming (MILP) [10]–[15], which inher-
ently fits the MES operating modes and is widely used tool due
to its ability to include switching actions. Oversimplification
of nonlinear behaviours by incorporating linear relaxation and
the lack of scalability with the number of integer constraints
are the two shortcomings of the MILP models. The nonlinear
programs [16], [17] and mixed integer nonlinear models
(MINLP) [18], [19] comprehensively capture the complex
behaviours of the MES. However, due to the non-linearity and
non-convexity [9], [20], the existing commercial solvers for
MINLP require more computation resources, solution time,
and are sensitive to initial conditions [21].

The meta-heuristic techniques are often used to solve non-
convex MINLPs with single as well as multiple objectives.
There are several existing literature which have proposed
modifications of meta-heuristic techniques to improve the con-
vergence rate while solving economic load dispatch problem
of EMS [7], [22]–[25]. However, their performances in non-
convex MINLPs are dependent upon the quality of the initial
solutions (seeds). As a result, the meta-heuristic approaches
usually have large computation times, thereby making them
unsuitable for real-time operations [26]. More recently, hy-
brid approaches that combine mathematical programming and
meta-heuristic techniques have been proposed [9]. Though
combined methods provide a sub-optimal solution, they solve
complex problems in reasonable time and have the potential to
address the non-linearity encountered in dispatch problems of
smart-grid environments with distributed multi-energy sources.
Still the aforementioned works have not considered intermit-
tent behaviours in their analysis.

Two widely used methods for handling intermittent be-
haviours are stochastic programming (SP) [8], [27], [28] and
model predictive control (MPC) [12], [29]. Typically SP solves
a set of scenarios envisaged due to fluctuating behaviours from
normal conditions [8], [30]. This requires solving multiple
instances of MINLP model that leads to scalability issues. The
MPC on the other hand solves multi-time step problem con-
sidering the underlying disturbances and encapsulating com-
plex behaviours. This boils down to a complex optimization
models. In addition, implementing MPC requires specialized
hardware with commercial solvers which are cost-intensive.
A review of the literature reveals that MINLP models capture
the complex MES behaviours [18], [19] and MPC approach is
more suited for handling uncertainties. Although commercial
solvers are available for solving MINLP problems, constraints
on computational resources and light-weight solvers that can
be ported into EMS control hardware are very much in demand

and more often when MPC approach is used, the optimal
solution is guaranteed from only relatively small-scale convex
MINLPs. Emerging multi-time step MINLPs in EMS with
large number of continuous and binary decision variables as
well as non-convex constraints represent a difficult challenge
and finding a feasible solution is computationally challenging
[31]. Consequently, efficient solvers with fast convergence rate
for MINLP model based MPC are required.

This investigation designs a MPC for scheduling MES
devices to perform price-based demand response (PBDR) and
reduce operating cost. The scheduling problem is formulated
as a non-convex MINLP-MPC model. In order to solve the
problem, a novel light-weight solution method called the
scenario-based branch-and-bound (SB3) is proposed. The SB3
is hybrid MINLP solver that integrates convergence efficiency
of convex mathematical programming as well as the exhaustive
searching capability of meta-heuristic solver. The main con-
tributions of this study are: (i) proposition of a light-weight
solver called the scenario-based branch-and-bound (SB3) for
scheduling MES devices, (ii) investigations into the existence
conditions of the lower bound solution of the SB3 algorithm,
and (iii) demonstration of the SB3 approach in a pilot building,
which is a community microgrid and is responsible for supply-
ing energy to the neighbouring buildings and office spaces. In
order to understand the efficiency, performance of the SB3
algorithm is compared with performance of other MINLP
solvers.

Figure 1: Multi-Energy Systems Architecture of Cleantech
Building, Singapore

The paper is organized as follows. Section II presents the
MES component models and the optimization problem. Sec-
tion III describes the proposed SB3 algorithm and its different
components. with a mathematical analysis. The results are
provided in Section IV and conclusions in Section V.

II. MES MODEL AND PROBLEM FORMULATION

The energy hub model of the MES studied in this inves-
tigation is shown in Fig. 1. The supply from utility is the
input to source energy demand. In addition, the electrical
energy is supplied by two dispatchable generators (DG), one
gas turbine (GT) embedded within co-generation unit (CGU),
and a photo-voltaic panel. Similarly, thermal energy demand
is served by the five chillers and one absorption chiller (AC)
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that resides inside the CGU. Steam generated from GT water-
jacket is used to source the AC through heat recovery and
system generator. The EH also includes electrical storage
system (ESS) and thermal energy storage (TES) for handling
intermittent behaviours.

A. Generator Operating Constraints (DG)
Suppose that the state of the generator is denoted by δkG,i

and the minimum up/down time by T up
G,i and T down

G,i , i.e. the
minimum time the unit should stay in a particular state before
toggling to the other state. Thus, the temporal constraints
associated with the generator during each sampling time k
are modelled as [12]

δkG,i − δk−1
G,i ≤ δG,i(τ

up
G,i), (1a)

δk−1
G,i − δ

k
G,i ≤ 1− δG,i(τdown

G,i ), (1b)

where i ∈ {1, . . . , ng} is the index of the generator, ng is the
number of generators, τupG,i = k+1, . . . ,min(k+T up

G,i−1, Np),
and τdown

G,i = k+1, . . . ,min(k+T down
G,i −1, Np), respectively.

Similarly, the generation limits and ramp-rate of the generators
are modelled as,

δkG,i PG,i ≤ P
k
G,i ≤ δkG,i PG,i (2a)

|P kG,i − P k−1
G,i | ≤ RG,i, ∀i (2b)

where P kG,i and RG,i are the power provided by the generator
and the ramp-rate limit of the generator i, and PG,i and PG,i

denote lower and upper generation limits of the ith generator.
The generation cost is given by [12]

C
(
P kG,i

)
=

ng∑
i=1

δkG,i

(
AG,i P

k
G,i

2
+BG,iP

k
G,i + CG,i

)
, (3)

where AG,i, BG,i and CG,i are coefficients.

B. Cogeneration Units (CGU)
Similar to the generator, the constraints associated with

GT’s minimum up/down time are defined during each sam-
pling time k as:

δkGT − δk−1
GT ≤ δGT(τupGT) (4a)

δk−1
GT − δ

k
GT ≤ 1− δGT(τdown

GT ), (4b)

where τupGT = k+ 1, . . . ,min(k+T up
GT− 1, Np), and τdown

GT =
k+1, . . . ,min(k+T down

GT −1, Np), respectively. The physical
bounds and the ramp-rate constraints are modelled as

δkGTPGT ≤ P
k
GT ≤ δkGTPGT (5a)

|P kGT − P k−1
GT | ≤ RGT, (5b)

where P kGT is the power generated by the gas-turbine and RGT

models the ramp-rate constraint. In addition, [PGT, PGT]
denotes the generation limits of the gas-turbine whose cost
is given by

C
(
P kGT

)
= δkGT

(
AGTP

k
GT

2
+BGTP

k
GT + CGT

)
, (6)

where AGT, BGT and CGT are coefficients. To increase
energy efficiency, the heat recovered by the water jacket of
the GT is used to feed the absorption chiller along with boiler.
Considering that the heat energy provided by the GT depends
linearly on the power generated, we have

Qinp
AC

k
= βGTP

k
GT. (7)

Moreover, the Qinp
AC

k
is related to the cooling energy supplied

by the chiller using the equation

QkAC = COPACQ
inp
AC

k
= COPACβGTP

k
GT, (8)

where COPAC is the coefficient of performance of the AC for
the given thermal load at time-instant k. Further, the cooling
energy supplied by the AC is limited through the following
constraints:

δkGTQAC
≤ QkAC ≤ δkGTQAC, (9)

where [Q
AC
, QAC] are the limits of the thermal energy pro-

duced by the AC.

C. Chiller Bank (CB)

In addition to the AC, there is a CB consisting of five
chillers whose mass-flow rates are controlled using a super-
visory controller and the outlet temperature is maintained at
a pre-defined set-point using closed-loop controls. Following
[32], the cooling energy supplied from the CB is given by

QkC,j = γkC,jṁ
k
C,jCρ∆TC, ∀j ∈ {1, . . . , nc}, (10)

where ṁk
C,j is the mass-flow rate of the jth chiller and γkC,j

denotes the corresponding ON/OFF operation and ∆TC is
the temperature difference between the inlet and outlet of the
chiller. The electrical power consumed by CB is given by

P kC =
∑

j∈{1,...,nc}

QkC,j
COPC,j

. (11)

In addition, the mass-flow is bounded by
γkC,jṁC,j ≤ ṁ

k
C,j ≤ γkC,jṁC,j , (12)

where ṁC,j and ṁC,j denote the lower and upper bound on
the chiller mass-flow rates.

D. Energy Exchanged with the Utility Grid
The power exchanged with the utility grid P kGR is con-

strained by lower (PGR) and upper bound (PGR) on the
consumption given by

− PGR ≤ P
k
GR ≤ PGR. (13)

The cost of power exchanged with the utility grid is time-
varying and and modelled as,

CkGR = CkD + CkRT, (14)

where CkD and CkRT denote the day-ahead and real-time
demand-based price of energy respectively at time instant k.

E. Thermal Energy Storage (TES)
Following [33], the TES temperature dynamics is

T k+1
TES =

µ

V ρ

(
nc∑
j=1

ṁk
C,jγ

k
C,j

)(
T kin − T kTES

)
+ T kTES

(
1− HLA

V ρCρ

)
+ Tamb

(
HLA

V ρCρ

)
, (15)

TTES ≤ T
k
TES ≤ TTES ,

where, T kin, T
k
TES and T kamb denote the inlet temperature of

the TES, inlet temperature and the ambient temperature in ◦C.



4

0 < µ < 1 defines the fraction of chilled water shared between
CB and TES. The energy stored in the TES is modelled as

SoCk+1
TES = SoCkTES + δkTESη

c
TESP

+k

TES∆t (16a)

+ (1− δkTES)
1

ηdTES

P−
k

TES∆t+HLA∆T,

SoCTES ≤ SoC
k
TES ≤ SoCTES, (16b)

where SoCkTES and P
+/−k
TES denote the thermal storage, the

power exchanged (charging/ discharging) with the TES, re-
spectively, and ∆T is the difference between the ambient and
the TES’s internal temperature. The binary variable δkTES mod-
els the charging/discharging operations and 0 < ηcTES, η

d
TES <

1. The storage power is also constrained by the physical limits
of the TES which is given by

− (1− δkTES) PTES ≤ P
k
TES ≤ δkTES PTES, (17)

where [PTES, PTES] denote the limits on PTES.

F. Electrical Storage Systems (ESS)

The state-of-charge (SoC) of the ESS is modelled as [29]:

SoCk+1
ESS = SoCkESS + δkESSη

c
ESSP

+k

ESS∆t

+ (1− δkESS)
1

ηdESS

P−
k

ESS∆t− ηlossSoCkESS (18a)

SoCESS ≤ SoC
k
ESS ≤ SoCESS, (18b)

where SoCkESS is state of charge, P+/−k
ESS is the power ex-

changed with storage (charging/ discharging) and δkESS the
binary variable indicating the charging operation and 0 <
ηcESS, η

d
ESS, ηloss < 1. There exist an upper bound (PESS) and

lower bound (P kESS) on the PESS so that

− (1− δkESS) PESS ≤ P
k
ESS ≤ δkESS PESS. (19)

In addition, an ESS cost has been considered based on the
charging-discharging cycle to understand the effect of storage
degradation in scheduling MES [34],

C(P kESS) =
cESS

2n× capESS

(
δkESSP

+k

ESS

τ
+

ESS

− (1− δkESS)P−
k

ESS

τ
−
ESS

)
,

(20)
where, τ

+/−
ESS is the average number of time instants for

charging/discharging, n is the average number of charging-
discharging cycles before ESS reaches to its end of life,
capESS is the capacity and cESS is the purchase as well as
installation cost of the ESS.

G. Energy Exchanged with the Utility Grid

The power exchanged with the utility grid P kGR is con-
strained by lower (PGR) and upper bound (PGR) on the
consumption given by

− PGR ≤ P
k
GR ≤ PGR. (21)

The cost of power exchanged with the utility grid is time-
varying and and modelled as,

CkGR = CkD + CkRT, (22)

where CkD and CkRT denote the day-ahead and real-time
demand-based price of energy respectively at time instant k.

H. Renewable Energy Source (RES)

The uncertain renewable generation due to the photo-voltaic
panels is given by P kR, which is directly fed into the model
from the renewable energy sources present in the system.

I. Load Balance Constraints

The MES has to meet the electrical (P kL ) and thermal (QkL)
loads; the balance constraints at a given time instant k are

P kL =

ng∑
i=1

δkG,iP
k
G,i + δkGTP

k
GT + P kR + P kGR − δkESSP

+k

ESS

− (1− δkESS)P−
k

ESS − P
k
C − P kAC, (23a)

QkL =

nc∑
j=1

QkC,j +QkAC − (1− δkTES)P−
k

TES − δ
k
TESP

+k

TES (23b)

J. Cost Function

The objective is to reduce the energy costs and peak-demand
by scheduling the different energy vectors so as to minimize

Jk =

ng∑
i=1

C(P kG,i) + C(P kGT) + CkGRP
k
GR + C(P kESS). (24)

K. MPC Optimization Model

Considering a prediction horizon Np, the MES scheduling
problem can be defined on the decision vector over the time
horizon {k + 1, . . . , k + Np} as uk,Np = [uk+1, . . . ,uk+Np ]
with

uk = [P kG,i, . . . , P
k
G,ng , P

k
GT, Q

k
AC, ṁ

k
C,1, . . . , ṁ

k
C,nc , P

k
ESS, P

k
TES,

P kGR, δ
k
G,1, . . . , δ

k
G,ng , δ

k
GT, δ

k
ESS, δ

k
TES, γ

k
C,1, . . . , γ

k
C,nc ]. (25)

sk = [T kTES, SoC
k
ESS, SoC

k
TES] denotes the state variables of

the system. The MPC optimization model for time-epoch k is
given by

M : min
uk,Np

k+Np∑
k=k+1

Jk

s. t. constraints (1), (2), (4), (5), (8), (9), (10)− (12), (15),
(16), (17), (21), (18a), (19), (23);

Binary constraints δkG,i, δ
k
GT, δ

k
ESS, δ

k
TES, γ

k
C,j ∈ B,

∀k ∈ {k + 1, .., k +Np}. (26)

Eqn. (26) implementing the MPC aims to obtain a control
approach to perform PBDR by scheduling MES devices with
fluctuating renewable generation, demand and energy prices.
The MINLP-MPC optimization problem M possesses non-
convexity, which needs to be solved over a prediction horizon
with ramp rate constraints of the generation units (2b) and
(5b) and time-coupled bilinear storage dynamics (15). Thus,
solving the problem directly with existing MINLP solvers such
as BARON, Counene and other meta-heuristic algorithms is
computationally intensive, which makes their adoption in a
real-time EMS challenging [21], [31]. Also, heuristic solvers
are only suitable for off-line computations due to their slow
convergence.
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III. THE PROPOSED SB3 ALGORITHM

The proposed light-weight solver, Scenario-based Branch-
and-Bound (SB3), illustrated in Fig. 2 aims to address the
aforementioned challenges. Widely used approaches to solve
the MINLP are the generalized Benders decomposition, the
outer approximation, the generalized outer approximation, and
the extended cutting plane approach [35]. These methods
linearize the MINLP by pivoting the binary constraints that
leads to a sequential quadratic programming (SQP) or MILP
formulation. In contrary, the proposed algorithm is accumula-
tion of the following idea:

(i) to fix the valid binary decision variables to prior values
with a priori knowledge and provide a set of scenarios
by partially partitioning into a set of NLP sub-problems,
followed by convex relaxation of the NLP sub-problems
into a set of quadratic programming (QP) sub-problems
over a prediction horizon as shown in Fig. 2,

(ii) to use the resulting schedules from the scenario block
as initial seeds to hot-start the MINLP solver, an im-
proved real-coded genetic algorithm (iRCGA) to obtain
scheduling for the first-time instant.

The approach leads to a hierarchical problem with less compu-
tational complexity. The proposed algorithm is proposed with a
motivation to find reasonable acceptable sub-optimal solution
with a lower computational time. This section describes the
steps of the SB3 algorithm.

Figure 2: Schematic diagram of SB3 algorithm

A. STEP 1: Scenario Generation and Branch-and-Bound -
Seeds for MINLP Solver

The importance of this step is to provide initial seeds to
hot-start the iRCGA MINLP solver, which is intrinsically a
population-based direct-search algorithm. The master problem
M is divided into a set of convex QP problems by performing
two operations sequenttially: (i) NLP partitioning and (ii)
convex relaxation as discussed below.

(i) NLP Partitioning: Partitioning is an efficient technique
for handling the combinatorial complexity of the problem. We
define the following:
Definition 1: A partial partition of the M is a set of Ns
NLP sub-problems with Ns ≤ Nq for which the definition
of partition holds.
Definition 2: A valid binary string b` from the partial partition
is the binary decision with l0-norm ‖b`‖0 ≤ nb, for which the
combinatorial constraints in M are satisfied. nb is the total
number of binary decision variables in M.

(ii) Convex Relaxation:: The main challenge in the MINLP
problem is the nonlinear constraints that needs to be relaxed
without oversimplifying the analysis. The most restrictive
constraints are the bilinear one in eqn. (15) and ramp rate
constraints in eqn. (2b) and (5b). Usual approaches such as
SQP or a MILP formulation based on big-M method have
been used [12]. We use a polyhedral over approximation to
simplify the bilinear dynamics as a box constraint. In order
to replace the bilinear term, we consider an auxiliary variable
ξkj such that γkC,j = 1 ⇔ ξkj = ṁk

C,j T
k
TES. The modified TES

dynamics are given by:

T k+1
TES = −

Nc∑
j=1

µ

(
ξkj
V ρ

+
ṁk

C,jT
k
in

V ρ

)
+T kTES(1− UA

V ρCρ
)+φ (27)

where γkC,j = 1⇔ ξkj = ṁk
C,j T

k
TESand φ = Tamb

(
UA
V ρCρ

)
. Then

the following constraints, also known as McCormick envelopes
defined on ξkj turns the problem with a bilinear term into a
convex relaxed one:

ξkj ≥ ṁk
C,jT

k
TES + T kTESṁ

k
C,j − T kTESṁ

k
C,j , (28a)

ξkj ≤ ṁk
C,jT

k
TES + T

k
TESṁ

k
C,j − T

k
TESṁ

k
C,j , (28b)

ξkj ≥ ṁ
k
C,jT

k
TES + T

k
TESṁ

k
C,j − T

k
TESṁ

k
C,j , (28c)

ξkj ≤ ṁ
k
C,jT

k
TES + T kTESṁ

k
C,j − T kTES ṁ

k
C,j . (28d)

McCormick envelopes provide a computationally fast convex
relaxation of the bilinear terms compared to other existing
methods. Similarly, using the epigraph technique, the ramp
rate constraints are modelled as:

P kG,i − P k−1
G,i −RG,i ≤ εkG,i, (29a)

P kG,i − P k−1
G,i −RG,i ≥ εkG,i, (29b)

P kGT − P k−1
GT −RGT ≤ εkGT, (29c)

P kGT − P k−1
GT −RGT ≥ εkGT. (29d)

where, εkG,i, εkGT ≥ 0. The introduction of the constraints (28),
linear TES dynamics (27) and (29) makes the non-convex NLP
to have only linear constraints.
Definition 3: A Scenario P(b`) is convex relaxation of the
NLP obtained by pivoting the binary variables to a valid string
b` followed by the relaxation of the non-linear constraints
using Eqns. (28) and (29).

The set of convex QP sub-problems by pivoting the binary
decision variable to a valid binary string b` ∈ Bnb and convex
relaxation is given by,

P(b`) : min
u
k,Np
b`

k+Np∑
k=k+1

(
Jk + λ1

ng∑
i=1

εkG,i + λ2ε
k
GT

)
(30)

s. t. constraints (1), (2a), (29a), (29b), (4), (29c), (29d), (5a), (8),
(9), (10)− (12), (23), (16), (17), (27), (28), (18a), (19), (21),

Binary constraints δkG,i, δ
k
GT, δ

k
ESS, δ

k
TES, γ

k
C,j ∈ b`

∀k ∈ {k + 1, . . . , k +Np}
where, λ1 and λ2 are penalty factors. Epigraph terms in
objective function in P(b`) of eqn. (30) takes care of the
error introduced due to convex relaxation of the ramp-rate
constraints. The problem P(b`) of eqn. (30) can be solved by
general QP solvers efficiently to find initial seeds for iRCGA
solver.



6

1) Branch-and-Bound (B2) for Scenario Generation: The
binary decision variables that ensures feasibility plus optimal-
ity from step III-B of previous instant’s scheduling problem
is given as the input to the B2 step. The B2 expands each
node of the tree by pivoting the binary variables considering
only the temporal constraints. The purpose of expanding the
branches of the tree based on the binary temporal variables
is to provide a feasible scenario over the prediction horizon.
At the leaf nodes, the convex MPC problems of eqn. (30)
generated after pivoting and relaxation are solved. The B2
procedure in association with QP keeps track of feasibility
of the scenarios in terms of temporal, operating, physical as
well as equality constraints for the current prediction horizon.
A scenario is considered to be infeasible if there exist no
solution of the QP problem at the leaf nodes and subsequently
the corresponding scenario is pruned. The procedure repeats
until a user-defined maximum number of feasible scenarios are
obtained. The solution of MPC from each unpruned branch
acts as initial seed to hot-start MINLP solver which solvesM
only for the current time-instant. The following example is
used to illustrate the working principle of the aforementioned
B2 process.

Figure 3: Illustration of B2 step in SB3 algorithm for scenario
generation

Illustrative example: Let us consider a 2 DG and 1 GT system
with Np = 1 in which, T up

G,1 = 2, T up
G,2 = 2, T up

GT = 2 and
T down
G,1 = 2, T down

G,2 = 2, T down
GT = 2. The solution from the

previous instant is considered as (x∗,b∗), where b∗ = [1 1 0]
with recorded consecutive ON-OFF time as τupG,1 = 2, τupG,2 =

1, τdown
GT = 1. In Fig, 3, the branches define the feasibility of

the binary variables subject to the temporal constraints of the
system only. However the existence of the solution of the QP
problems after convex relaxation decides the feasible scenario.
The branch associated with the binary variables b1 is pruned
as it does not converge to a feasible solution. The solutions
associated with the branches b2,b3 and b4 act as initial seeds
for the MINLP solver.

B. STEP 2: Solution of the MINLP solver with Feasibility
Verification

To solve the MINLP, we propose a novel improved real-
coded genetic algorithm (iRCGA), a meta-heuristic optimiza-
tion method which extends the capability of RCGA by pro-
viding adaptive selection for the genetic operators– crossover

and mutation (e.g., simple, heuristic, and arithmetic crossover
etc., and binary mutation, Gaussian mutation etc. respectively)
(Ref. supplementary material for detail discussion). As the
number of feasible scenarios are large in number, solving
the problem using mathematical optimization techniques for
each of the initial seed is computationally intensive. In these
circumstances, population based direct searching ability of
meta-heuristic techniques from a small set of initial seeds are
more efficient to find the solution of the MINLP problem.

RCGA over GA is selected as it does not need phenotype
to genotype conversion and hence it converges faster. Due
to natural representation, one can achieve high precision and
easy to integrate constraints in string representation. String
length used in RCGA is small and computationally faster [26],
[36]. The availability of multiple initial seeds provide iRCGA
to search exhaustively through the search-space. Typically, in
RCGA, different crossover and mutation techniques are widely
used for generating off-spring vectors and for preserving
diversity. Practice shows that selection of the crossover and
mutation is problem dependent [36]. Therefore, in order to
enhance the performance of conventional RCGA, we use an
adaptive selection technique that increases RCGA’s capability
to tackle both continuous and integer variables simultaneously,
without any relaxation. The selection of crossover and muta-
tion techniques on basis of objective function value guides the
algorithm towards faster convergence than using a particular
crossover and mutation. We call the RCGA with multiple ge-
netic operators selected using an adaptive selection technique
as iRCGA. The detail of iRCGA algorithm can be found in
the supplementary material for readers’ understanding.

iRCGA is a population based direct search MINLP solver.
In our approach, iRCGA solves a single instant MINLP instead
of a multi-time step MPC problem. The solution of iRCGA,
thus found, can lead to binary variables of incompatible
temporal constraints over the prediction horizon considered
earlier in section III-A. The feasibility verification step of
the proposed SB3 algorithm ensures that the solution found
from iRCGA has temporal constraint compatibility over the
prediction horizon. Although feasibility verification follows
similar approach of section III-A, it tries to check existence of
a single scenario, which produces a feasible QP solution over
the prediction horizon instead of finding a set of scenarios.
It is to be noted that it only verifies the existence of feasible
binary variables and the existence of such scenario does not
necessarily guarantee the existence of MINLP solution over
the prediction horizon. If temporal constraint feasibility is
achieved, the solution from iRCGA is implemented at that
time-instant. In case of failure, the iRCGA is iterated again
for an alternative solution.

C. Lower Bound Estimation of the SB3 Algorithm

This two stage decision problem requires QP to provide
good initial conditions for the MINLP solver. The following
theorem provides the conditions under which the QP is able
to produce lower bound solution (LBS) to M.
Notation: We define single instances ofM and P(b`) at time
instant k asMk and Pk. To simplify our analysis, we use the
following notations: f(·) denotes the objective function, the set
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of inequality constraints of Mk are denoted by the function
gM and those of Pk by gP . The real decision variables
are denoted by x ∈ X ⊆ Rmc with mc is the number of
real variables and the binary variables by b ∈ Bnb . Without
loss of generality, the equality constraints are replaced with
corresponding appropriate inequality constraints for ease of
the analysis.

Theorem 1. Suppose ηM
∗

is the optimal solution ofMk and
ηP
∗
is the LBS for a given set of scenarios Ns with Pk(b∗) be-

ing the corresponding scenario. Then ηP
∗
is a LBS to Mk if

Mk allows a convex continuous SQP relaxation with optimal
solution with

(
xP
∗
,bP

∗
)

and there exists Ω ≥ 0 such that
the following condition holds:

Ω ≥ max{MBΩ̃, (1 +M∇g)Ω̃, (1 +M∇g)MλΩ̃},

where ‖B‖2 ≤ MB , ‖∇gPj (XP
∗
, bP

∗
)‖2 ≤ M∇g , |λPj | ≤

Mλ, ∀j ∈ {1, ...nc}.

Proof: Let ηP
∗

be the LBS obtained by solving the dual of
Pk(b`) computed as,

ηP
∗
≤ inf
`∈Ns

(
max
λ

(
min
x∈X

(
f(x,b`) + λTgP(x,b`)

)))
(31)

and [x∗, b∗] and λ∗ denote the corresponding primal solu-
tion and Lagrange multipliers of the inequality and equality
constraints, respectively. The Lagrangian of Mk is given by

LM = f(x,b) + λTgM(x,b). (32)

Let us consider that x̃ denotes the solution obtained by fixing
the binary variable to b` in (32) from the scenario set {b`, ` =
1, . . . , Ns} and the corresponding solution is an upper bound
to the problem Mk with objective value as η̃ [35]. Thus,

ηM
∗
≤ inf
`∈Ns

(
max
λ

(
min
x∈X

(
f(x,b`) + λTgM(x,b`)

)))
≤ η̃,

(33)

where, ηM
∗

is the optimal solution of Mk. Defining d =
[dc | db] = [x− x̃ | b− b`], the trust-region continuous
SQP approximation [37] of Mk around [x̃,b`] with convex
relaxation is given by,

min
d,νP

∇f(x̃,b`)
Td +

1

2
dTBd + σνP

s. t. gP(x̃,b`) +∇gP(x̃,b`)
Td ≤ νP1 (34)

‖d‖∞ ≤ ∆, x + dc ∈ X , b + db ∈ {b`, ` = 1, . . . , Ns}

where σ is a positive penalty term and νP =
max

(
0, ‖gP(x̃,b`) +∇gP(x̃,b`)

Td‖∞
)
. B is the quassi-

Newton approximaion of the hessian of the Lagrangian. The
solution from (34) provides a LBS to (32) due to convex
continuous relaxation. The SQP formulation allows for
handling the infeasible constraints including the temporal
constraints as well as temporal search subspace. After a
certain number of iterations, it provides a solution denoted by(
xP
∗
,bP

∗)
which is closer to (x∗,b∗) by construction [37].

It is to be mentioned that pivoting the binary variable to
a particular value of binary variables produces a convex
continuous optimization problem of (33). We define the
following

‖xP
∗
− x∗‖2 ≤ Ω, νP ≤ Ω̃ν , ‖d‖2 ≤ Ω̃d.

Considering Ω̃ = max{Ω̃d, Ω̃ν}, from the necessary condi-
tions of optimality for the KKT point

(
(xP

∗
,bP

∗
), λP

∗)
with

dual solution being λP
∗
, we have

∇f(xP
∗
,bP

∗
) + B d +

∑
j

λPj ∇gj(xP
∗
,bP

∗
) = 0,

=⇒ ‖∇f(xP
∗
,bP

∗
) +

∑
j

λPj ∇gj(xP
∗
,bP

∗
)‖2 ≤ ‖B‖2‖d‖2

≤MBΩ̃ (35)

where ‖B‖2 ≤MB is the bound on the Hessian. Considering
the primal feasibility condition,

gPj (xP
∗
,bP

∗
) +∇gPj (xP

∗
,bP

∗
)Td ≤ νP

=⇒ gPj (xP
∗
,bP

∗
) ≤ −∇gPj (xP

∗
,bP

∗
)Td + νP

=⇒ ‖gPj (xP
∗
,bP

∗
)‖2 ≤ ‖∇gPj (xP

∗
,bP

∗
)‖2‖d‖2 + νP

≤ Ω̃(1 +M∇g) (36)

From dual feasibility condition, λPj ≥ 0,∀j holds. Considering
the complimentary slackness condition, we have

λPj

(
gPj (xP

∗
,bP

∗
) + λPj ∇gPj (xP

∗
,bP

∗
)Td

)
= λPj ν

P

=⇒ λPj g
P
j (xP

∗
,bP

∗
) = −λPj ∇gPj (xP

∗
,bP

∗
)Td + λPj ν

P

=⇒ ‖λjgPj (xP
∗
,bP

∗
)‖2 ≤ ‖λPj ‖2

(
‖νP‖2 + ‖∇gPj (xP

∗
,bP

∗
)‖2‖d‖2

)
≤ (1 +M∇g)MλΩ̃ (37)

Thus the SQP relaxation in (34) produces a close proximal
solution of (33) to an accuracy Ω such that the following
necessary conditions holds,

Ω ≥ max{MBΩ̃, (1 +M∇g)Ω̃, (1 +M∇g)MλΩ̃} (38)

with ηP
∗ ≤ ηM

∗ ≤ η̃. (38) provides a lower bound accuracy
measurement to the optimality of the problem. The low value
of Ω indicates the possibility of improving optimality of the
solution. ♦

The Corollary 1 relates KKT points of SQP and Pk.

Corollary 1. For sufficiently large value of the penalty factor
σ and for some b = b`, the KKT points of Pk coincides with
that of the SQP relaxed problem with d = 0 and νP = 0,
where d is distance measurement in SQP formulation and νP

is the penalty factor for constraint violation.

Proof: The KKT conditions of Pk at the optimal solution point
are given by

∇f(x∗,b∗) +
∑
j

λ∗j∇gPj (x∗,b∗) = 0, gPj (x∗,b∗) ≤ 0

λ∗j ≥ 0, λ∗jg
P
j (x∗,b∗) = 0, ∀j. (39)

Similarly, the KKT conditions of the SQP after a finite
number of iteration (iter) are given by
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∇f(xP
iter

,bP
iter

) + Biterditer +
∑
j

λP
iter

j ∇gPj (xP
iter

,bP
iter

) = 0

σiter =
∑
j

λP
iter

j

gPj (xP
iter

,bP
iter

) +∇gPj (xP
iter

,bP
iter

)Tditer ≤ νP
iter

1

λP
iter

j

(
g(xP

iter

,bP
iter

) +∇g(xP
iter

,bP
iter

)Tditer
)

= 0

λP
iter

j ≥ 0, ∀j (40)

Now using the conditions that diter = 0, νP
iter

= 0 and and
σiter ∈ R+ in (39), we can rewrite the KKT conditions as,

∇f(xP
iter

,bP
iter

) +
∑
j

λP
iter

j ∇gPj (xP
iter

,bP
iter

) = 0

σiter =
∑
j

λP
iter

j , gPj (xP
iter

,bP
iter

) ≤ 0

λP
iter

j g(xP
iter

,bP
iter

) = 0, λP
iter

j ≥ 0, ∀j (41)

Thus using (38), for diter = 0, νP
iter

= 0 and and
σiter ∈ R+, Ω ≥ 0. Thus, ∃ bP

iter

= bP
∗
, at which the

KKT conditions of both QP and SQP approaches coincide. ♦

IV. RESULTS

Table I: Rating of different MES components

Component Rating Constraints
PV Panel 165 kW 2 units and Non-dispatchable
Electrical Storage 300 kWh SoC: 30-90%, Ps = [−30, 200] kW

Generator Units 1.2 MW 2 units, Pg = 400, Pg = 1200 kW

Gas turbine 1 MW PGT = 250 - PGT = 1000 kW

Thermal Vector 5400 RT 5 chillers, CoP = [2.8-3.3]
Absorption chiller 350 RT Q

AC
= 200, QAC = 350 RT

TES 2000 RTh SoCT = [100, 7000] kWh,
PT =[-1000, 3000] kW

Figure 4: Demand response performance: SB3 v. heuristic–
(a) electricity tariff, (b) case study 1: without storage unit, (c)
case study 2: with storage unit

The PBDR performance of the proposed SB3 is illustrated
on the CleanTech building, Singapore whose MES architecture
is shown in Fig. 1. The ratings and operating limits of the
MES components are shown in Tab. I. The following control
strategies are compared: (i) heuristic optimization: The RCGA

Table II: Comparison of price-based demand response (PBDR)
performance

Control approach without storage with storage
Heuristic 19.57 10.46

BB-MINLP 76.06 92.58
SB3-MPC 82.37 96.78

solves the MINLP problem M for multiple time-steps (pre-
diction horizon) with receding horizon approach, (ii) branch-
and-bound MINLP (BB-MINLP) with MPC, (iii) SB3 based
MPC: it is the feedback control law computed in receding
horizon manner solving the MINLP problem using the SB3
approach assuming accurate forecasts on renewable generation
and demand, i.e., less than 2% error, (iv) SB3 based MPC with
forecast errors: it is the 24 hour feedback control law obtained
by solving the MES scheduling problem using SB3 but with
forecast errors of 2% and 10% to study the robustness, and
(v) performance of SB3 based MPC without (case 1) and with
(case 2) energy storage components. In addition, the sensitivity
of the proposed SB3 algorithm is also analysed by varying the
maximum number of scenarios during optimization.

In our study, a sampling time of 0.5 h with 10 h prediction
horizon and 24 h control horizon is selected. Further, the
renewable energy source is non-dispatchable and the peak-
demand period is from 10 AM (10:00 h) to 5.00 PM (17:00
h) computed from daily load-curve as shown in supplementary
material. The user-defined number of scenarios is kept at 20
for all the simulations to keep the simulation time tractable.
The heuristic optimization is considered with multi-time step
receding horizon approach however, its large computational
time hinders its implementation in real-time systems [9], [26].

Note on forecasting: Implementing MPC for scheduling
MES components requires forecasts on renewable generation
and demand. Meta-Cognitive Fuzzy Inference System (McFIS)
is a neuro-fuzzy inference approach, which is based on an
adaptive sequential learning algorithm that starts approximat-
ing a non-linear function with zero fuzzy rule and develops the
necessary number of fuzzy rules depending upon the informa-
tion contained in the training samples (historical forecasting
data). A detailed analysis of the forecasting methodology using
McFIS can be found in [38].

A. Demand Response
The PBDR based scheduling of MES heuristic optimiza-

tion (RCGA), BB-MINLP and the SB3 approach is studied.
Fig. 4 (a) shows the normalized energy price for 24 h which
are high during peak-periods i.e., 10 AM (10:00 hr) to 5.00 PM
(17:00 hr). It can be observed in Fig. 4(b) and 4(c) as well as
in Tab. II that during peak-hours the SB3 based MPC reduces
energy utilization from utility grid by 82.37% and 96.78% in
case study 1 and 2, respectively. Whereas, heuristic method
reduces only 19.57% and 10.46%, respectively as a result of
pre-mature termination and BB-MINLP reduces 76.06% and
92.58%, respectively. Thus SB3-MPC provides a promising
improvement in demand response with respect to the heuristic
algorithm as well as the BB-MINLP.

B. Storage Management and Cost-efficient MES Scheduling
Flexibility provided by storage devices can be used to

augment capacity and deal with uncertain elements more
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Figure 5: (a) ESS and (b) TES management

Figure 6: Electrical sources scheduling: case study 1 - without
storage unit

effectively. The case-study considered has both electrical and
thermal storage, the variations in SoC of the thermal and
electrical storage are shown in Fig. 5. It can be verified
that the SB3 based MPC increases the SoC of the storage
devices during off-peak load periods when the price is low and
discharges it during peak-demand periods. As against this, the
heuristic control and BB-MINLP both under utilize the storage
units during peak-price hours. BB-MINLP restricts the use of
the storage units due to presence of storage degradation costs.
A poor demand response performance of heuristic algorithm
as well as its incapability of scheduling the local generation
units during peak-price hours have been caused due to its pre-
mature simulation termination at maximum iteration.

The MES component schedules are shown in Fig. 6, 7
without storage units and in Fig. 8, 9 with storage units. The
SB3-based MPC schedules local energy sources strategically
depending on the price vector to minimize the cost. Further,

Figure 7: Chiller bank scheduling: case study 1 - without
storage unit

Table III: Performance of SB3 with forecast errors (FE)

Control approach Change in demand-response Change in cost
SB3-MPC with 2% FE ±0.08% ±1.21%

SB3-MPC with 10 % FE ±1.77% ±2.34%

Figure 8: Electrical sources scheduling: case study 2 - with
storage unit

Figure 9: Chiller bank scheduling: case study 2 - with storage
unit

local energy source utilization increased during peak-periods
as shown in Fig. 6(c) and Fig. 8(c) compared to heuristic algo-
rithm in Fig. 6(a) and Fig. 8(a). A close inspection reveals that
the CB is used more during the lower price periods; whereas,
its usage reduces during high price periods, as depicted in
Fig. 7 and Fig. 9. Similarly, CGU is used more during high-
price periods compared to other local generation units due to
its ability to supply electrical and thermal energy simultane-
ously. As a result, the SB3-MPC provides 17.26% and 22.46%
cost-efficient scheduling as against heuristic optimization in
case study 1 and 2, respectively. BB-MINLP also utilizes local
energy sources more during peak-price hours as shown in
Fig. 6(b) and Fig. 8(b). Due to under-utilization of the storage
units by BB-MINLP in presence of degradation costs reduces
the overall cost. The cost-efficiency of BB-MINLP is found
to be 2% more than the proposed SB3-MPC approach with
storage unit. However, it can be verified from Fig !6 that during
low price hours BB-MINLP is unable to utilize the utility grid
at its maximum potential. As a consequence, SB3 achieves 3%
more cost-effectiveness over BB-MINLP in absence of storage
units.

C. Robustness, Sensitivity Analysis

To study the MPC’s robustness, forecast errors of 2% and
10% was introduced. Our study, as recorded in Tab. III,
revealed that with a forecast error of 10%, the change in
savings and PBDR were around 2.5% and 1.77% respectively
against SB3-based MPC’s performance on actual demand.
This showed the proposed method’s robustness to forecast
Table IV: Change in demand response w.r.t scenarios (in %)

Scenario 30 40 50 60
Case study 1 ±0.6 ±0.1 ±0.4 ±1.00
Case study 2 ±1.0 ±2.0 ±1.7 ±0.7
Runtime (s) 12.48 15.97 22.04 25.48
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Table V: Runtime of the SB3 with various prediction horizon

Np 20 30 40 50 60
Runtime (s) 7.01 7.8 8.7 9.8 10.26

uncertainties. In addition, PBDR performance of the SB3 is
analyzed for both case study 1 and 2, by varying the maximum
number of scenarios. Tab. IV records the change in PBDR
for different number of scenarios considering the outcome
with 20 scenarios as the base performance. Analysis suggests
that variation in number of scenarios has an negligible effect
on the SB3’s performance, whereas the runtime increases
significantly with increasing number of scenarios. The iRCGA
solver has the capability of population based direct search
method, which reduces the dependency of the initial number
of scenarios in the end result.

D. Computation Performance

The SB3’s computation performance was studied on 10 tri-
als using simulations for 24 h duration. The average execution
time for different prediction horizons are shown in Tab. V.
The average execution time of heuristic is found to be 5437
s when the maximum number of iteration considered is 5000.
Therefore, the computational time is higher while solving the
problem with receding horizon approach. The approximate
time for BB-MINLP with MPC approach to solve the problem
is around 720 s whereas, the computation time of the SB3 is
around 10 s even with a 30 h prediction horizon. This shows
the SB3-based MPC’s capability to be used as a real-time
scheduler in place of multi time-step heuristic methods and
BB-MINLP solver.

V. CONCLUSIONS

This investigation presented a novel scheduling algorithm
for Multi-Energy Systems (MES) that performs PBDR. The
formulation led to a MES scheduling problem with mixed
integer nonlinear program (MINLP), a NP-hard problem. To
reduce computation complexity, the proposed SB3 solver
utilizes the McCormick’s bi-linear relaxation and epigraph
technique, followed by integrating the simplicity of convex
programs and the ability of meta-heuristic optimization to
solve complex nonlinear problems. This study also investi-
gated the existence conditions of the lower bound solution of
the problem while solved with the SB3 method. The approach
was demonstrated on a pilot building in Singapore, a test-bed
for MES. Our results showed that the SB3-MPC reduced cost
by approximately 17.26% without storage and 22.46% with
storage when compared with multi-time step dynamic MINLP
solved using heuristic optimization. Moreover, SB3-MPC also
achieved promising demand response over BB-MINLP solver.
Although the proposed method has produced sub-optimal
solution compared to BB-MINLP, it showed robustness to
forecast errors and has lower computation time significant.
Studying the role of market strategies in MES scheduling
and extension of this work in multi-objective optimization
framework for planning and scheduling are the future course
of this investigation.
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