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Supply Inadequacy Risk Evaluation of Stand-alone
Renewable Powered Heat-Electricity Energy
Systems: A Data-driven Robust Approach

Yang Cao, Student Member, IEEE, Wei Wei, Senior Member, IEEE, Laijun Chen, Member, IEEE,
Qiuwei Wu, Senior Member, IEEE, Shengwei Mei, Fellow, IEEE

Abstract—Integration of heat and electricity supply improves
the overall energy efficiency and system operational flexibility.
The renewable powered heat-electricity energy system is a
promising way to set up residential energy supply facilities in
remote areas beyond the reach of power system infrastructures.
However, the volatility of wind and solar energy brings about
the risk of supply inadequacy. This paper proposes a data-driven
robust method to quantify two measures of such a risk in the
stand-alone renewable powered heat-electricity energy system.
The uncertainty of renewable generation is modeled through a
family of ambiguous probability distributions around an empiri-
cal one based on the Wasserstein metric; then the probability
of heat and electricity load shedding during a short period
and related penalty cost are discussed. Through a polyhedral
characterization of renewable power feasible region, the load
shedding probability under the Wasserstein ambiguity set comes
down to a linear program. With a piecewise linear optimal value
function of the penalty cost, its expectation under the worst-
case distribution in the Wasserstein ambiguity set also gives rise
to a linear program. The proposed method requires moderate
information on renewable generation and makes full use of
available data, while sustains computational tractability. The
evaluation result is robust against the inaccuracy of renewable
power distributions. Case studies demonstrate the effectiveness
of the proposed approach.

Index Terms—data-driven robust optimization, heat-power
integration, risk evaluation, renewable generation, uncertainty

NOMENCLATURE

A. Abbreviations

COP Coefficient of performance.
DR Data-driven robust.
E-LSC Expectation of load shedding cost.
ESU Electricity storage unit.
GMM Gaussian mixture model.
HP Heat pump.
HEES Heat-electricity energy system.
MCS Monte Carlo simulation.

This work was supported in part by the National Natural Science Foundation
of China (U1766203, 51621065, 51807101), and in part by Qinghai Science
and Technology Department under Grant No. 2018-GX-A6. Corresponding
author: L. Chen and S. Mei.

Y. Cao, W. Wei, L. Chen and S. Mei, are with the State Key Labo-
ratory of Power Systems, Department of Electrical Engineering, Tsinghua
University, Beijing, 100084, China (e-mails: cao-y17@mails.tsinghua.edu.cn,
wei-wei04@mails.tsinghua.edu.cn, chenlaijun@tsinghua.edu.cn, meisheng-
wei@tsinghua.edu.cn).

Q. Wu is with Department of Electrical Engineering, Technical University
of Denmark, Kgs. Lyngby Denmark 2800 (e-mail: qw@elektro.dtu.dk).

MP-LP Multi-parametric linear programming.
P-LSE Probability of load shedding event.
PDF Probability density function.
POP Parametric optimization.
WT Wind turbine.
SP Solar panel.
SoC State-of-charge.
TSU Thermal storage unit.

B. Parameters

COP COP of heat pump.
CapR Capacity of renewable resource.
CP Load shedding penalty cost for unit power.
CH Load shedding penalty cost for unit heat.
hLt Heat loads.
pLt Power loads.
P loss Permitted amount of electric load shedding.
H loss Permitted amount of heat load shedding.
ηEc /η

E
d Charge/discharge efficiency of the ESU.

ηHc /η
H
d Charge/discharge efficiency of the TSU.

µE Self-discharge rate of ESU.
µH Thermal dissipation rate of TSU.
T Number of periods.

C. Decision Variables

hct/h
d
t Charge/discharge rate of TSU.

pEt Electric power input from renewable resource.
hHPt Heat output of heat pump.
hlosst Shedding heat in period t.
pHPt Power input of heat pump.
pct/p

d
t Charge/discharge rate of ESU.

prt Power output of renewable resource.
plosst Shedding power in period t.
WE
t Electric energy stored in ESU.

WH
t Thermal energy stored in TSU.

I. INTRODUCTION

A. Motivation

ENERGY is the foundation of modern society. The desire
for a cleaner and more sustainable society has led to

a profound revolution in the energy industry. In the past
decade, the share of wind and solar generation has witnessed
a rapid growth worldwide [1], and there are many studies
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focusing on further promoting the renewable penetration [2],
[3]. However, the uncertainty and volatility of renewable plants
require sufficient backup capacity and storage units to maintain
a balance between the generation and load in real time, causing
additional costs and operational risks. In recent years, the
initiative of heat-electricity integration offers a new perspective
on the efficient utilization of renewable energy at the demand
side [4]. Heating system possesses large thermal inertia and
thermal energy storage units; thereby electric heating devices
could serve as the flexible load and provide demand response
to the power grid [5], [6] .

Typically, the integrated heat-electricity energy system
(HEES) is supplied by power grids and district heating net-
works, and the cascaded utilization of different energy forms
could enhance the overall efficiency of the system. Neverthe-
less, in remote areas beyond the reach of power system or
heating system infrastructures, renewable energy is a promis-
ing resource for setting up clean and sustainable residential
HEES to satisfy the local electric and thermal energy demands,
because the investment on energy transportation corridor is
saved, and the operation cost of renewable plants is generally
very low. However, given the uncertain and volatile output
of wind turbines (WT) and solar panels (SP), the stand-alone
HEES may suffer from supply inadequacy without the support
of power grids. To ensure safe and reliable operation, it is
necessary to investigate the operational risk of stand-alone
HEES.

B. Literature Review

Power system reliability/risk assessment is a traditional
topic which has been studied for half a century, and relatively
complete theories have been established [7]. However, with the
increasing of uncertain renewable sources and the interdepen-
dence intensifying of cyber-physical system, the power system
operation is facing more risks in recent years. In addition, the
development of new techniques, e.g., data-driven and machine
learning methods, also provides new insights to this area.
Considering the coupling of information and active distribution
networks, a cyber-power joint analysis method is developed
in [8] to quantify the operational risks of power system via
analyzing information flow and cyber contingencies of cyber
systems. In [9], a hierarchical and self-adaptive data-analytics
method is proposed to conduct the real-time short-term voltage
stability assessment, where the the assessment accuracy and
the earliness are simultaneously optimized to achieve a better
evaluation performance. Based on the hybrid randomized
learning systems, ref. [10] proposes a novel temporal-adaptive
machine learning algorithm to assess the short-term voltage
stability, and case studies on New England 39-bus system
demonstrate its excellent accuracy without increased compu-
tational burden. In [11], a time-varying reliability evaluation
model is introduced for wind farms, conventional and fast
start-up thermal units, which could help the system operators
evaluate the reliability and schedule reserve to ensure opera-
tional security in different time scales. In [12], a transmission
line overload risk assessment model is developed considering
the wind and load-power generation correlation. The model

takes probability and severity into consideration and provides a
comprehensive evaluation result for system operators. In [13],
the operation risk is described as an admissibility measure
brought by the uncertain wind generation. Based on such a
measure, a risk-minimization model is developed to maxi-
mize and characterize the admissible region for wind power.
Considering the rapid and volatile wind power variations, an
intelligent framework is proposed in [14] for wind integrated
power system real-time dynamic security assessment based on
soft computing technologies. Through considering the wind
variability, turbine forced outages and correlation of different
turbines, ref. [15] establishes a wind reliability assessment
model including probability and frequency distributions of
wind power output, and adopts Monte Carlo simulation to
demonstrate the effectiveness. In [16], a sensitivity-based
decentralized framework is developed to quantify the stability
indexes of power systems with uncertain renewable resources.
The paradigm is conducted in a decentralized way and only
uses the boundary information, which could be applied to
large-scale power systems easily.

For the system equipped with storage units, system op-
erators have more flexible resources to address operational
risks. A reliability assessment model for a wind-storage system
is developed in [17], and the Monte Carlo simulation is
applied to calculate load reliability indexes. For the wind-
power system with energy storage device, ref. [18] combines
the traditional analytical and simulation methods to establish
the reliability assessment model, which accelerates calculation
significantly. In [19], a reliability evaluation approach based on
Markov model is proposed to conduct the reliability analysis
for distribution systems with mobile energy storage units, and
verifies that storage units could enhance the system reliability
effectively.

The aforementioned studies only focus on the risk and
reliability of pure power system, however, for multi-carrier
energy system involving electricity, natural gas and heat,
the interdependence among energy flows brought by energy
conversion facility and storage unit intensifies the difficulty
of reliability/risk evaluation, calling for the development of
new approaches. In [20], a reliability evaluation model is
developed to calculate the supply reliability indexes in the
multi-carrier energy system, so as to analyze the system benefit
and sensitivity. Based on big data analytics, a critical energy
function is proposed in [21] to explore small disturbance
stability region, so as to evaluate the system-level stability
in the Energy Internet. Considering dynamic behavior of
thermal loads, a Markov-chain Monte Carlo model is intro-
duced in [22] to analyze the mutual dependence between
different energy sectors and effects on supply reliability. In
[23], the supply adequacy of multi-carrier energy system is
modeled and evaluated considering the interaction of energy
carriers at both generation side and demand side. In [24],
a combination method of reliability evaluation and system
reconfiguration is proposed for the integrated energy system,
which is solved via a decentralized agent communication
algorithm. Ref. [25] introduces a new approach to improve the
optimal load curtailment algorithm and reliability assessment
algorithm for integrated power and gas system. The improved
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algorithm effectively enhances the computation efficiency and
robust performance. In [26], a first-order reliability method is
applied to estimate the failure probability in the integrated
energy system considering uncertain renewable output and
energy demands. The failure probability could inform system
operators risky events and help maintain a safe operation. To
estimate the failure probability of natural gas supply in a multi-
carrier energy system, ref. [27] considers the energy network
constraints and adopts the central moment method to conduct
the analysis, which is superior to other traditional methods
according to the comparative simulation.

The aforementioned multi-carrier systems are all connected
to the power, heat or gas system infrastructures, which have
relatively steady fuel supply. However, for the fully renewable
powered energy system in remote areas, such an infrastruc-
ture is usually stand-alone without energy supply networks
[28], [29], and the main challenge is to maintain power
balancing and supply adequacy under uncertain renewable
generation [30]. In [31], a hybrid optimization algorithm is
developed to size a stand-alone solar-wind-hydrogen energy
system considering the weather forecasting information. The
hybrid algorithm combines the advantages of three algorithms
(chaotic search, harmony search and simulated annealing),
and has significant superiors to these individual algorithms
according to case studies. Taking the renewable and load
uncertainties into consideration, a hybrid algorithm based on
Monte Carlo simulation method and Particle Swarm Optimiza-
tion algorithm is developed in [32] to optimize the off-grid
hybrid photovoltaic-wind-battery system, which could cover
all generation and load possibilities and increase the system
reliability. The aforementioned studies mainly focus on the
planning of stand-alone renewable powered energy system,
and as for the reliability assessment, ref. [33] proposes a
probabilistic reliability evaluation approach and Monte Carlo
simulation technique to calculate the reliability indexes for
a stand-alone hybrid renewable power system in rural com-
munities. In [34], two indices (Loss of load expectation and
Expected energy not served) are proposed to investigate the
reliability of PV-wind-pumped storage hydro plant system. A
probabilistic upper reservoir multi-state model is developed
for incorporating realistic situation using analytical technique,
and is compared with traditional Monte Carlo simulation to
demonstrate its advantages.

The aforementioned studies mainly focus on the stand-
alone electric system, however, to the best of our knowledge,
there are few studies investigating the reliability/risk evaluation
of stand-alone HEES, which actually has more complicated
energy flows compared with pure electric system in remote
areas, thus calling for the development of new techniques. In
addition, from the methodological perspective, most studies
mentioned above conduct the risk evaluation based on the
analytical or simulation-based methods, relying on the exact
probability distribution function (PDF) of uncertain factors,
which is rarely available at hand due to the lack of enough
historical data. Because the probabilistic evaluation result is
generally sensitive to the perturbation in the underlying PDF,
using an inexact empirical distribution is likely to provide less
reliable information to system operators. To address the above

problems, this paper proposes a data-driven robust approach to
evaluate the supply inadequacy risk of a stand-alone HEES for
ensuring the system safe and reliable operation. A comprehen-
sive tutorial on robust and distributionally robust optimization
can be found in Appendix C of [35]. Nevertheless, this
work encloses uncertainty quantification which is somewhat
different from optimization.

C. Novelties and Contributions

In this paper, we study the short-term risk evaluation of the
stand-alone fully renewable powered HEES, and the novelties
and contributions are summarized as follows.

1) We propose two data-driven robust risk evaluation mod-
els. Renewable generation uncertainty is modeled by a family
of PDFs which are close to the empirical distribution in the
sense of Wasserstein metric. The first model provides the
probability for the heat and electricity load shedding being no
greater than a pre-specified value during a given period, termed
as the probability of load shedding event (P-LSE) model.
The second model evaluates the expected penalty cost of load
shedding, termed as expectation of load shedding cost (E-LSC)
model. In contrast to the traditional risk evaluation methods
which rely on an exact PDF, our proposed models consider a
family of inexact PDFs based upon a data-driven empirical
distribution, which could provide a lower/upper bound on
the desired performance with a provable guarantee on the
confidence level, thus providing more reliable risk information
for system operators.

2) We develop tractable reformulations for the proposed two
evaluation models. The two data-driven robust risk evaluation
models address the optimization over a set consisting of
infinite PDFs and cannot be solved directly. For the P-LSE
model, we characterize the feasible region of renewable power
output via an explicit polyhedron by using the projection
algorithm. For the E-LSC model, the minimum load shedding
cost is expressed as a convex piecewise linear function in the
renewable output based on dual theory and multi-parametric
linear program (MP-LP) theory. With above techniques, the
two models can be transformed into easy-to-solve linear pro-
grams via existed commercial solvers and could be applied to
engineering practice easily.

The rest of the paper is organized as follows. In Section
II, renewable generation is modeled by an ambiguity set
consisting of all possible PDFs around the empirical one in
the sense of Wasserstein metric, then two data-driven robust
risk evaluation models (P-LSE and E-LSC) are introduced
to identify the worst risk measures in the ambiguity set. In
Section III, through a polyhedral characterization of renewable
power feasible region, the P-LSE model is reformulated as a
linear program; through acquiring a piecewise linear optimal
value function of the penalty cost, the E-LSC model is also
transformed to a linear program. In Section IV, case studies
are conducted to demonstrate the effectiveness of the proposed
model and method. Finally, conclusion is summarized in
Section V.
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Fig. 1. Structure of the stand-alone renewable powered HEES.

II. PROBLEM FORMULATION

The model of the stand-alone renewable powered HEES will
be presented first; then the ambiguity set for inexact PDFs of
renewable generation is given; finally, formulations of P-LSE
and E-LSC models are set forth.

A. Stand-alone Renewable Powered HEES

System configuration of the stand-alone renewable powered
HEES is shown in Fig. 1. The energy supply comes from wind
and solar power, which is complementary across daytime and
night. The energy flow is also marked in Fig.1. The WT/SP
produced electricity can be used to satisfy electric demand,
stored in the electricity storage unit (ESU), or consumed by
heat pump (HP) to generate heat power; the HP produced
thermal energy can be used to satisfy thermal demand or
stored in the thermal storage unit (TSU). Here, we assume
that the ESU is a battery array and the TSU is a hot water
tank. Therefore, they are independent facilities and have no
direct relation in energy flows. System operating constraints
include:

prt = pHPt + pEt (1a)

hHPt = COP · pHPt (1b)

WE
t+1 = WE

t (1− µE) + (pctη
E
c − pdt /ηEd )∆t (1c)

WH
t+1 = WH

t (1− µH) + (hctη
H
c − hdt /ηHd )∆t (1d)

pEt + pdt − pct ≥ pLt (1e)

hHPt + hdt − hct ≥ hLt (1f)

Cons-BND (1g)

where equation (1a) describes the energy allocation from
renewable sources; equation (1b) describes the thermal energy
produced by HP depending on the input electric power;
equations (1c) and (1d) are the state-of-charge (SoC) dynamics
of ESU and TSU; equations (1e) and (1f) depict the electric
and thermal power balance. We do not impose a strict equality
between supply and load, which means that the excessive
renewable power will be curtailed. Cons-BND collects all
variable lower and upper bound constraints, reflecting the
physical capacity of system components.

B. Constructing the Ambiguity Set

The uncertainty of renewable generation will significantly
influence the load supply adequacy. Therefore, it is impor-
tant to investigate the risk of load shedding caused by the
uncertainty and volatility of renewable power. We consider
the problem in the future two or three hours when renewable
generation is predicted to drop rapidly. Equipment failure is
ignored in such a short time period. Since the system is small
and controlled by a central operator, the heat and electricity
loads are also deterministic. So the only uncertain factor is the
renewable power output.

Let ξ denotes the uncertain renewable power output, it
is essential to acquire the probability distribution function
(PDF) of random variable ξ based on the historical data. The
empirical distribution P0 could be constructed as follows.

P0 =
1

N

N∑
i=1

δξ0i

where P0 consists of N independent samples {ξ0
1, ξ

0
2, ..., ξ

0
N},

and each of them has a probability of 1/N . δξ0i denotes Dirac
distribution concentrating unit mass at ξ0

i .
However, without enough historical data, the empirical

distribution P0 is usually inaccurate. As a result, we resort to
the construction of an ambiguity set containing all possible
PDFs that are close to the empirical distribution P0. This
entails a definition of the distance between two PDFs. In this
paper, the Wasserstein metric is adopted to quantify such a
distance, which is defined as follows [36].

DW (P,P0) = inf

∫
Ξm

∥∥ξ − ξ0
∥∥
p

Π(dξ,dξ0)

s.t. Π is a joint distribution of ξ

and ξ0 with marginals P and P0

(2)

where ‖ · ‖p represents the p-norm on Rm. The definition
of Wasserstein metric could be viewed as the optimal trans-
portation plan which moves a mass distribution P to another
distribution P0 with minimum transportation cost. Based on
such a definition, the Wasserstein metric for two discrete
distributions can be expressed by

DW (P,P0) = inf
π≥0

∑
i

∑
j

πij
∥∥ξj − ξ0

i

∥∥
p

s.t.
∑

j
πij = p0

i , ∀i∑
i
πij = pj , ∀j

(3)

where p0
i and pj denote the probability of representative

scenario ξ0
i and ξj .

With the Wasserstein metric, the ambiguity set could be
constructed as the following form:

P = {P |DW (P,P0) ≤ dw} (4)

where dw is a critical parameter determining the size of the
ambiguity set P. Clearly, set P grows larger with the increasing
value of dw, implying that more PDFs are taken into account.
On the other hand, the size of set P should depend on the
amount of historical data. When more data is available, we will
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be more confident on the accuracy of the empirical distribution
P0. Suppose we have N samples at hand, then dw could be
chosen as [37]:

dw =

√
1

N
ln(

1

1− β
) (5)

where β denotes the confidence level, which means that if
we choose dw according to (5), then the probability for the
actual PDF P ∈ P is no less than β. This parameter reflects
the system operators’ attitudes towards risks.

C. Estimating the Probability of Load Shedding Events
In system operation, it is important to estimate the probabil-

ity of load shedding events (P-LSE) due to the uncertainty and
volatility of renewable power output. The system operation
challenges brought by such kind of uncertainty may vary
across several hours, and the number of periods T should be
specified first.

To define a load shedding event, the heat and power balance
constraints in (1e) and (1f) are revamped as

pEt + pdt − pct + plosst ≥ pLt
hHPt + hdt − hct + hlosst ≥ hLt∑T

t=1
plosst ≤ P loss, plosst ≥ 0∑T

t=1
hlosst ≤ H loss, hlosst ≥ 0

(6)

where P loss and H loss denote the amounts of acceptable
electricity and heat load shedding; if they are set to zero, load
shedding is not allowed; plosst and hlosst represent the amounts
of electricity and heat load shedding in period t.

Let vector ξ collects the renewable output prt ,∀t, and vector
x encapsulates all the other decision variables in constraints
(1a)-(1g) together with plosst and hlosst ; P loss and H loss are
given constants. The operation constraints considering load
shedding consist of (1a)-(1d), (1g) and (6), which could be
written in a compact matrix form as

Aξ +Bx ≤ c (7)

where matrices A, B, and vector c are constants correspond-
ing to the coefficients in (1a)-(1d), (1g) and (6).

Define the feasible set W of renewable output as follows

W = {ξ ∈ Rm|∃x : Aξ +Bx ≤ c is met} (8)

where m is the dimension of ξ. Set W is the projection of
polyhedron (7) onto the ξ-subspace. We will shed light on how
to compute W in the next section. According to this definition,
the minimal amount of load shedding will not exceed P loss

and H loss as long as ξ ∈ W . So a load shedding event is
triggered by

ξ /∈W

On this account, W provides a convenient tool for determining
whether a load shedding event will happen. Please keep in
mind that the load shedding event depends on P loss and H loss,
and different values define different load shedding events.

To access the worst probability of a load shedding event
under ambiguous PDFs of renewable output restricted in the

ambiguity set (4), the data-driven robust P-LSE problem is
cast as follows.

sup
P∈P

Pr{ξ /∈W} (9)

where Pr indicates the probability evaluated under some PDF
P; P is the ambiguity set (4) containing all possible PDFs.

Problem (9) aims to identify the load shedding probability
with respect to the worst-case PDF in P, and actually provides
system operators the probability upper bound for the amount
of load shedding exceeding threshold values P loss and H loss,
which means that no matter how the actual PDF varies in
practice, the system risk will never exceed the estimated results
of problem (9). Such information is very useful for system
operation which usually requires a high reliability. It is worth
mentioning that the ambiguity set P is associated with the
parameter dw in (5), which is influenced by available historical
data N and the operator’s risk preference β. If more data is at
hand, the estimated upper bound would be less conservative,
implying the method takes full advantage of historical data.

D. Estimating the Expectation of Load Shedding Cost

If load shedding incurs economic losses, it is also important
to have certain knowledge about the cost associated with load
shedding. Due to the uncertainty and volatility of renewable
power output, we tend to estimate the expectation of load
shedding cost (E-LSC). Firstly, given renewable output ξ as
a parameter, the deterministic cost could be expressed as the
following minimization problem.

L(ξ) = min CP
T∑
t=1

plosst + CH
T∑
t=1

hlosst (10a)

s.t. constraints (1a)-(1d) and (1g) (10b)

pEt + pdt − pct + plosst ≥ pLt (10c)

hHPt + hdt − hct + hlosst ≥ hLt (10d)

plosst ≥ 0, hlosst ≥ 0 (10e)

where CP and CH are the cost of shedding one unit of electric
and heat load. In fact, the objective function can consider any
convex cost function which can be approximated by piecewise
linear functions without jeopardizing the linearity of (10). For
example, the cost of casting off electricity load is a convex
function ft(p

loss
t ); we can divide the concerned interval of

plosst into several segments with break points plosst1 , · · · , plosstK ,
and their corresponding function values are ft1, · · · , ftK . As-
sociate each pair (plosstk , ftk) with a weight coefficient variable
λtk satisfying λtk ≥ 0,

∑
k λtk = 1, then the nonlinear cost

function can be replaced with ft(p
loss
t ) =

∑
k λtkftk which

is linear in λtk, and linear equality plosst =
∑
k λtkp

loss
tk is

included in the constraints.
To access the worst expectation of load shedding cost

under ambiguous PDFs of renewable output restricted in the
ambiguity set (4), the data-driven robust E-LSC problem is
cast as follows.

sup
P∈P

EP [L(ξ)] (11)

where EP [·] denotes the expectation operator with respect
to some PDF P; L(ξ) is the minimal load shedding cost
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associated with ξ. Problem (11) aims to identify the expec-
tation cost under the worst-case PDF in P, which offers an
upper bound of economic loss caused by load shedding under
renewable generation uncertainty. Similar to problem (9), such
a bound could also provide more reliable information for
system operators, and is also affected by parameter dw and
thus data availability.

III. SOLUTION STRATEGY

Problems (9) and (11) cannot be solved directly because
they address the optimization over the ambiguity set (4)
consisting of infinite PDFs. In this section, tractable refor-
mulations of P-LSE and E-LSC models are developed.

A. Reformulation of P-LSE Model

In P-LSE problem (9), the difficulty rests on the fact that
the feasible region W of uncertain variable ξ is not explicitly
expressed in ξ. Therefore, we need to project polyhedron (7)
onto the ξ-subspace, which is defined as polyhedron (8). It is
proven in [38] that polyhedron (8) has the following equivalent
form:

W = {ξ ∈ Rm | u>Aξ ≥ u>C,∀u ∈ vert(U)} (12)

where U = {u | B>u = 0,−1 ≤ u ≤ 0} is a bounded
polyhedron, and vert(U ) denotes all vertices of U .

In fact, most elements of vert(U ) will generate a redundant
inequality, and there is no need to enumerate all vertices of
U to construct the expression of W . We use the algorithm
developed in [38] to perform polyhedral projection, and obtain
the following formula.

W = {ξ ∈ Rm|Dξ ≤ f} (13)

where constant matrix D and vector f are the output of the
projection algorithm. In this way, the non-explicit polyhedron
(8) has been equivalently transformed to the explicit polyhe-
dral form (13).

Given the explicit polyhedral form of W , the P-LSE prob-
lem (9) gives rise to the uncertainty quantification problem
discussed in [39]. Since we use the Wasserstein metric based
ambiguity set, the P-LSE problem (9) could be reformulated
as the following optimization problem [39].

min 1 + γdw −
1

N

N∑
n=1

σn (14a)

s.t. σ ∈ RN , γ ∈ R+, τ ∈ RN×I+ (14b)
σn ≤ 1, ∀n ≤ N (14c)
σn + τniDiξn ≤ τnifi, ∀n ≤ N, ∀i ≤ I (14d)
‖τniDi‖q ≤ γ, ∀n ≤ N, ∀i ≤ I (14e)

where σ, γ and τ are all auxiliary variables; Di and fi denote
the i-th row of matrix D and vector f ; ‖ · ‖q is the dual norm
of ‖ · ‖p which appeared in the Wasserstein metric (3), where
p and q satisfy p−1 + q−1 = 1.

The objective function and constraints in problem (14) are
linear, except for (14e). Nevertheless, it actually gives rise to
a linear inequality when p = 1 or p =∞ and a second-order

cone one when p = 2. In this paper, we choose p = ∞,
q = 1 and thus constraint (14e) becomes the following linear
inequality.

τni
∑
j

|Dij | ≤ γ (15)

where Dij denotes the element of D.
Finally, the P-LSE problem (9) comes down to a linear

program, which could be solved efficiently.

B. Reformulation of E-LSC Model

In E-LSC problem (11), the difficulty rests on the fact that
L(ξ) is defined by an optimization problem, while we need
an analytical expression of the optimal value function L(ξ)
in variable ξ. To be distinguishable with P-LSE, let y be the
decision variables in linear program (10), and the definition
(10) of L(ξ) could be rewritten as a compact matrix form.

L(ξ) =

{
min
y
c>y

∣∣∣∣ Gy ≥Hξ + h

}
(16)

According to the dual theory of linear program, the dual
problem of (16) is

L(ξ) =

{
max
θ

(Hξ + h)>θ

∣∣∣∣ G>θ = c,θ ≥ 0

}
= max

k≤K

{
v>kHξ + v>k h

} (17)

where θ stands for the dual variable; vk, k = 1, · · · ,K are
the extreme points of V = {θ | G>θ = c,θ ≥ 0}. As strong
duality always holds for linear programs, the optimal value of
(17) is equal to L(ξ).

In (17), L(ξ) is finally expressed as the maximum of a
family of linear functions in ξ, and thus is a convex function.
However, we do not need to enumerate all the vertices to
construct the expression of L(ξ), because most of them
produce redundant functions that are never an effective part of
L(ξ). As a result, we resort to the multi-parameter program
solver POP (Parametric Optimization) toolbox [40], to retrieve
the piecewise linear functions in (17). To be specific, we use
POP to solve problem (10) with ξ being the parameter. The
solver returns a result in form of

L(ξ) =


a>1 ξ + b1 ξ ∈ Ξ1

...
a>Kξ + bK ξ ∈ ΞK

(18)

where Ξ1, · · · ,ΞK are critical regions on which each linear
function is in use. In the general form (18), a piecewise linear
function can be either convex or non-convex. Nevertheless,
the piecewise linear maximization form of L(ξ) in (17) has
already demonstrated its convexity, so (17) and (18) are indeed
equivalent. Therefore, the analytical expression of L(ξ) is

L(ξ) = max
1≤k≤K

(a>k ξ + bk) (19)

without the need of critical regions, where a>k = v>kH , and
bk = v>k h.

We assume that the support set of ξ is

Φ =
{
ξ
∣∣ 0 ≤ prt ≤ CapR

}
(20)
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whose compact matrix form is Φ = {ξ|Pξ ≤ r}. The support
set (20) contains all possible values of ξ, and implies that the
renewable power can neither become negative nor exceed the
installed capacity. Unlike the feasible region W in equation
(8), support set (20) is independent of system operating point.

Once L(ξ) is represented by the form of (19), the E-LSC
problem (11) gives rise to the following problem [36].

min λdw +
1

N

N∑
n=1

sn (21a)

s.t. ηnk ≥ 0, ∀n ≤ N, ∀k ≤ K (21b)

bk + a>k ξn + η>nk(r − Pξn) ≤ sn,
∀n ≤ N, ∀k ≤ K

(21c)

‖P>ηnk − ak‖q ≤ λ, ∀n ≤ N, ∀k ≤ K (21d)

where λ, sn and ηnk are all auxiliary variables.
The objective function and constraints in problem (21) are

linear, except for constraint (21d). Here we also choose p =
∞, q = 1 and (21d) becomes:

M∑
m=1

|(P>ηnk − ak)m| ≤ λ (22)

where M denotes the dimension of ξ; (P>ηnk−ak)m denotes
the m-th element of column vector P>ηnk − ak. To further
linearize the absolute value function in (22), define

Au1
m =

|(P>ηnk − ak)m|+ (P>ηnk − ak)m
2

Au2
m =

|(P>ηnk − ak)m| − (P>ηnk − ak)m
2

(23)

Then equation (22) could be rewritten as linear constraints.

(P>ηnk − ak)m = Au1
m −Au2

m

M∑
m=1

(Au1
m +Au2

m) ≤ λ

Au1
m ≥ 0, Au2

m ≥ 0

(24)

Finally, the E-LSC problem (11) is transformed to a linear
program, which could be solved efficiently.

IV. CASE STUDIES

A test system is used to validate the performance of the
proposed model. Parameters of system components are shown
in Table I. For the energy storage units, the last column
”Capacity” represents the maximum stored energy and maxi-
mum charging/discharging power. In normal conditions, load
shedding is not allowed. Particularly, we consider the situation
in which the renewable power is predicted to be dropping
fast (a downward ramping event), which is the main source
of load shedding. We focus on evaluating the risk for the
future two periods. The electric and heat load values are
assumed to be in the intervals [2.7, 3.0] MW and [2.0, 1.8]
MW, respectively. The load shedding cost coefficients are
CP = 1000$/MWh and CH = 300$/MWh, respectively. The
predicted wind and solar power output is assumed to be [5, 2.5]
MW and [2, 2.5] MW, thus the total renewable output is [7,

TABLE I
EQUIPMENT DATA

Parameters Capacity

WT \ 6 MW
SP \ 4 MW
HP COP = 3 5 MW

ESU ηEc = 0.95, ηEd = 0.95, µE = 0.02 5 MWh/1.5 MW
TSU ηHc = 0.90, ηHd = 0.90, µH = 0.05 5 MWh/1.5 MW

Fig. 2. Load Shedding Cost in Polyhedral Expression.

5] MW, which is a downward ramping event. Real renewable
generation data from Qinghai Province in China are adopted,
and we generate 1000 samples for the renewable forecasting
errors as the historical data. In addition, the confidence level
β is assumed to be 95% for constructing the ambiguity set
(4), and dw = 0.0547 according to (5). All experiments are
conducted on a laptop with i5-7300HQ CPU and 8G memory.
The optimization models are established by YALMIP interface
in MATLAB 2018a environment; linear programs are solved
by CPLEX 12.8.

For the P-LSE problem (9), P loss and H loss are set to
zero in the benchmark case. For the E-LSC problem (11), the
convex piecewise linear representation of L(ξ) is a key step.
Fig. 2 plots the surface of L(ξ) calculated by POP toolbox,
showing its convexity.

The proposed data-driven robust (DR) method is compared
with the Monte Carlo simulation (MCS) method proposed in
[32]. In the process of MCS method, we first estimate the PDF
for uncertain renewable generation based on the historical data
at hand. Here, in order to increase the estimation accuracy,
we adopt the Gaussian mixture model (GMM) to estimate
the PDF. GMM is a mixture of several Gaussian distributions
and could characterize the uncertainties obeying arbitrary
distributions, which has been widely used to fit probability
distributions of renewable power recently [41], [42]. Then we
generate 100,000 samples based on the estimated PDF and
calculate the two risk measures (P-LSE and E-LSC) using
Monte Carlo simulation. The P-LSE and E-LSC provided by
the proposed DR and MCS methods are listed in Table II.
Clearly, results offered by the DR method is more conservative
than those offered by the MCS method, because the latter
only accounts for a particular distribution while the former
considers all candidate distributions in the ambiguity set (4).
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TABLE II
RISK EVALUATION RESULTS

DR MCS

P-LSE
Probability 19.02% 9.21%

CPU Time (s) 6.57 34.23

E-LSC
Cost ($) 128.44 29.32

CPU Time (s) 7.79 36.42

From the system operator’s point of view, the DR method is
more trustworthy because no matter how the actual PDF varies
in practice, the actual P-LSE and E-LSC are no greater than
the evaluated values. However, the MCS method possesses
no such a guarantee because the distribution of renewable
generation must be specified to perform scenario generation.
The computation time of the DR method is about 7 seconds,
which is much shorter than that of the MCS method, because
the GMM estimation process in latter one is time-consuming.
This implies that the proposed DR method could meet the
requirement of online application better.

A main advantage of the proposed DR method is that its
evaluation results are insensitive and robust to PDF pertur-
bations in practice, and we conduct an experiment to verify
the robustness. We generate a series of PDFs which have
different Wasserstein distances d0

p with the empirical PDF
derived from the original historical data, which imitates the
PDF perturbations in practice. Next, we calculate the two
actual risk measures (P-LSE and E-LSC) under these different
PDFs. The Wasserstein distances d0

p are calculated according
to equation (3) and the test results are shown in Table III.
Compared with the evaluation results in Table II, it is obvious
that when the actual PDF varies in practice, the actual risk
measures will exceed the evaluation results of MCS method,
which means that it could not provide reliable risk information
for system operation when the designated PDF is inaccurate.
In contrast, as for the proposed DR method, the actual risk
measures are always smaller than our evaluation results until
d0
p reaches 0.07, which is larger than the adopted parameter
dw=0.0547. This experiment demonstrates the distributional
robustness of the proposed DR method, which is able to
address the PDF perturbations in practice and meet the system
operation requirement with higher reliability.

Parameter dw determines the size of ambiguity set (4) and
influences the model performance. According to equation (5),
dw gets smaller with the increase of N and the decrease of
β. A larger dw leads to a more conservative evaluation result
due to the lack of historical data or a more prudent attitude
towards risks. The impact of the values of N and β on the
evaluation results are exhibited in Table IV. It is observed
that the estimated probabilities and costs all decrease with a
smaller value of dw. In summary, for system operators, it is
vital to collect as many historical samples as possible to reduce
the conservativeness, and they also need to make a trade-off
between conservativeness and robustness when choosing the
confidence level β.

TABLE III
RISK MEASURES WITH DIFFERENT PDFS

d0p P-LSE E-LSC

0.01 12.65% 58.23

0.02 13.92% 74.43

0.03 15.35% 88.50

0.04 16.55% 101.06

0.05 17.63% 112.29

0.06 18.64% 122.79

0.07 19.59% 132.82

0.08 20.48% 141.78

TABLE IV
RISK EVALUATION RESULTS WITH DIFFERENT N AND β

N

Pro &

Cost($)

β

0.99 0.95 0.90

100 34.82% & 271.52 31.33% & 231.85 29.47% & 210.58

200 28.37% & 215.13 25.51% & 186.88 23.98% & 171.81

500 22.11% & 162.54 19.92% & 143.91 18.75% & 133.72

1000 20.72% & 143.39 19.02% & 128.44 18.09% & 120.22

2000 18.51% & 119.60 17.17% & 107.69 16.44% & 101.21

5000 16.07% & 97.93 15.01% & 88.70 14.41% & 83.71

In the benchmark case of P-LSE problem (9), load shedding
is not allowed in the construction of feasible region W . It
is useful to investigate the situation in which load shedding
is permitted to some extent. This can be implemented by
assigning positive values to parameters P loss and H loss in
equation (6); then the corresponding feasible region W would
become larger and thus affects the probability of the load
shedding event associated with P loss and H loss. In our tests,
we change the values of P loss and H loss from 0 to 2 MW,
and results are shown in Fig. 3. Apparently, the estimated
probabilities decrease with the growth of P loss and H loss, and
P loss has a more evident impact than H loss, as the surface
changes quickly along the axis of P loss. This is because the
COP of the heat pump is 3, i.e., 1 MWh of electric energy
can be converted into 3 MWh thermal energy. Therefore, the
probability is mainly affected by the change of P loss, implying
that the investment on power equipment, e.g., ESU, will be
more effective in reducing the risk of inadequacy.

Finally, we examine the role of ESU and TSU in reducing
the probability of load shedding and related penalty cost.
In our tests, we change the capacities of ESU and TSU
by multiplying their values with a scalar ζ, and results are
given in Table V. When the capacities of energy storage units
become larger, the system gains higher flexibility to mitigate
the uncertainty of renewable power output, and both P-LSE
and E-LSC decrease. From these results, we could conclude



9

Fig. 3. Load Shedding Probabilities with Different Limitations.

TABLE V
RISK EVALUATION RESULTS WITH DIFFERENT ENERGY STORAGE

CAPACITY

ζ Probability Cost ($)

0.4 32.36% 311.52

0.6 27.40% 236.09

0.8 22.58% 177.03

1.0 19.02% 128.44

1.2 16.46% 87.60

1.4 14.47% 61.88

1.6 13.07% 38.61

that the investment in energy storage units has a positive
impact on improving the reliability. If the investment cost is
taken into account, two phenomena should be considered when
making a decision on capacity planning. First, although ESU
has a more decisive impact on system flexibility than the TSU,
the unit capacity cost of ESU is generally higher than that of
TSU. Second, according to Table V, the marginal benefit, in
terms of both P-LSE and E-LSC, shrinks with the growing
size of storage units.

V. CONCLUSION

This paper proposes a data-driven robust method to evaluate
the supply inadequacy risk of stand-alone fully renewable
powered heat-electricity energy systems, including the proba-
bility of load shedding event and the expectation of load shed-
ding cost. Compared with traditional risk evaluation methods,
the proposed method shows two appealing advantages: First,
the inexact distribution of renewable generation is modeled by
a Wasserstein metric based ambiguity set, thus the proposed
model does not rely on a specific empirical distribution, which
makes the evaluation results to be insensitive and robust to
PDF perturbations in practice; Second, the proposed method
allows tractable reformulations as linear programs, which has
relatively high computational efficiency and could be applied
to online operation easily. In addition, the proposed method
could reveal the quantitative dependence between the risk
measures and system operation parameters (e.g., allowable
load shedding amounts) and configuration parameters (e.g.,
capacity of energy storage units), and thus could provide useful

information to the eligible decision maker for preparing better
planning and operation strategies under renewable generation
uncertainty.

REFERENCES

[1] M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, and
M. Radenkovic, “Integrating renewable energy resources into the smart
grid: Recent developments in information and communication technolo-
gies,” IEEE Trans. Industrial Informatics, vol. 14, no. 7, pp. 2814–2825,
Mar. 2018.

[2] C. Dang, X. Wang, X. Wang, F. Li, and B. Zhou, “DG planning
incorporating demand flexibility to promote renewable integration,” IET
Gener. Transm. Distrib., vol. 12, no. 20, pp. 4419–4425, Nov. 2018.

[3] S. Motie, F. Keynia, M. R. Ranjbar, and A. Maleki, “Generation
expansion planning by considering energy-efficiency programs in a
competitive environment,” Int. J. Electr. Power Energy Syst., vol. 80,
pp. 109–118, 2016.

[4] A. Shabanpour-Haghighi and A. R. Seifi, “Energy flow optimization in
multicarrier systems,” IEEE Trans. Industrial Informatics, vol. 11, no. 5,
pp. 1067–1077, Jul. 2015.

[5] N. Liu, L. He, X. Yu, and L. Ma, “Multiparty energy management
for grid-connected microgrids with heat-and electricity-coupled demand
response,” IEEE Trans. Industrial Informatics, vol. 14, no. 5, pp. 1887–
1897, Sep. 2017.

[6] H. R. Massrur, T. Niknam, and M. Fotuhi-Firuzabad, “Investigation
of carrier demand response uncertainty on energy flow of renewable-
based integrated electricity–gas–heat systems,” IEEE Trans. Industrial
Informatics, vol. 14, no. 11, pp. 5133–5142, Jan. 2018.

[7] W. Li, Risk Assessment of Power Systems: Models, Methods, and
Applications. John Wiley & Sons, 2014.

[8] G. Cao, W. Gu, P. Li, W. Sheng, K. Liu, L. Sun, Z. Cao, and J. Pan,
“Operational risk evaluation of active distribution networks considering
cyber contingencies,” IEEE Trans. Industrial Informatics, 2019.

[9] Y. Zhang, Y. Xu, Z. Y. Dong, and R. Zhang, “A hierarchical self-adaptive
data-analytics method for real-time power system short-term voltage
stability assessment,” IEEE Trans. Industrial Informatics, vol. 15, no. 1,
pp. 74–84, Jan. 2019.

[10] C. Ren, Y. Xu, Y. Zhang, and R. Zhang, “A hybrid randomized learning
system for temporal-adaptive voltage stability assessment of power
systems,” IEEE Trans. Industrial Informatics, 2019.

[11] Y. Ding, C. Singh, L. Goel, and et al., “Short-term and medium-term
reliability evaluation for power systems with high penetration of wind
power,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 896–906, Jul.
2014.

[12] X. Li, X. Zhang, L. Wu, and et al., “Transmission line overload risk
assessment for power systems with wind and load-power generation
correlation,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1233–1242,
May 2015.

[13] C. Wang, F. Liu, J. Wang, and et al., “Risk-based admissibility assess-
ment of wind generation integrated into a bulk power system,” IEEE
Trans. Sustain. Energy, vol. 7, no. 1, pp. 325–336, Jan. 2015.

[14] Y. Xu, Z. Y. Dong, Z. Xu, K. Meng, and K. P. Wong, “An intelligent
dynamic security assessment framework for power systems with wind
power,” IEEE Trans. Industrial Informatics, vol. 8, no. 4, pp. 995–1003,
Jun. 2012.

[15] S. Sulaeman, M. Benidris, J. Mitra, and C. Singh, “A wind farm
reliability model considering both wind variability and turbine forced
outages,” IEEE Trans. Sustain. Energy, vol. 8, no. 2, pp. 629–637, Apr.
2016.

[16] M. Z. Jahromi, M. Tajdinian, J. Zhao, P. Dehghanian, M. Allahbakhsi,
and A. R. Seifi, “Enhanced sensitivity-based decentralised framework
for real-time transient stability assessment in bulk power grids with
renewable energy resources,” IET Gener. Transm. Distrib., vol. 14, no. 4,
pp. 665–674, Feb. 2020.

[17] I. Hussein and M. AlMuhaini, “Reliability assessment of integrated
wind-storage systems using monte carlo simulation,” in 2016 13th
International Multi-Conference on Systems, Signals & Devices (SSD).
IEEE, 2016, pp. 709–713.

[18] F. Bhuiyan and A. Yazdani, “Reliability assessment of a wind-power
system with integrated energy storage,” IET Renew. Power Gener., vol. 4,
no. 3, pp. 211–220, May 2010.

[19] Y. Chen, Y. Zheng, F. Luo, and et al., “Reliability evaluation of
distribution systems with mobile energy storage systems,” IET Renew.
Power Gener., vol. 10, no. 10, pp. 1562–1569, Jul. 2016.



10

[20] G. Koeppel and G. Andersson, “Reliability modeling of multi-carrier
energy systems,” Energy, vol. 34, no. 3, pp. 235–244, Jun. 2009.

[21] K. Wang, H. Li, Y. Feng, and G. Tian, “Big data analytics for system sta-
bility evaluation strategy in the energy internet,” IEEE Trans. Industrial
Informatics, vol. 13, no. 4, pp. 1969–1978, Apr. 2017.

[22] M.-H. Shariatkhah, M.-R. Haghifam, M. Parsa-Moghaddam, and
P. Siano, “Modeling the reliability of multi-carrier energy systems
considering dynamic behavior of thermal loads,” Energy Build., vol.
103, pp. 375–383, Sep. 2015.

[23] M.-H. Shariatkhah, M.-R. Haghifam, G. Chicco, and M. Parsa-
Moghaddam, “Adequacy modeling and evaluation of multi-carrier en-
ergy systems to supply energy services from different infrastructures,”
Energy, vol. 109, pp. 1095–1106, 2016.

[24] G. Li, Z. Bie, Y. Kou, and et al., “Reliability evaluation of integrated
energy systems based on smart agent communication,” Appl. Energy,
vol. 167, pp. 397–406, 2016.

[25] Y. Lei, K. Hou, Y. Wang, and et al., “A new reliability assessment
approach for integrated energy systems: Using hierarchical decoupling
optimization framework and impact-increment based state enumeration
method,” Appl. Energy, vol. 210, pp. 1237–1250, 2018.

[26] X. Fu, Q. Guo, H. Sun, and et al., “Estimation of the failure probability
of an integrated energy system based on the first order reliability
method,” Energy, vol. 134, pp. 1068–1078, 2017.

[27] X. Fu and X. Zhang, “Failure probability estimation of gas supply
using the central moment method in an integrated energy system,” Appl.
Energy, vol. 219, pp. 1–10, 2018.

[28] M. D. Al-Falahi, S. Jayasinghe, and H. Enshaei, “A review on recent
size optimization methodologies for stand-alone solar and wind hybrid
renewable energy system,” Energy Convers. Manage., vol. 143, pp. 252–
274, 2017.

[29] G. Zhang, B. Wu, A. Maleki, and W. Zhang, “Simulated annealing-
chaotic search algorithm based optimization of reverse osmosis hybrid
desalination system driven by wind and solar energies,” Solar Energy,
vol. 173, pp. 964–975, 2018.

[30] W. Zhang, A. Maleki, and M. A. Rosen, “A heuristic-based approach
for optimizing a small independent solar and wind hybrid power scheme
incorporating load forecasting,” J. Clean Prod., vol. 241, pp. 1–18, 2019.

[31] W. Zhang, A. Maleki, M. A. Rosen, and J. Liu, “Sizing a stand-alone
solar-wind-hydrogen energy system using weather forecasting and a
hybrid search optimization algorithm,” Energy Convers. Manage., vol.
180, pp. 609–621, 2019.

[32] A. Maleki, M. G. Khajeh, and M. Ameri, “Optimal sizing of a grid
independent hybrid renewable energy system incorporating resource
uncertainty, and load uncertainty,” Int. J. Electr. Power Energy Syst.,
vol. 83, pp. 514–524, 2016.

[33] C. Andalib-Bin-Karim, X. Liang, and H.-U. A. Chowdhury, “Generation
reliability assessment of stand-alone hybrid power system-a case study,”
in 2017 IEEE International Conference on Industrial Technology (ICIT).
IEEE, 2017, pp. 434–439.

[34] A. Rathore and N. Patidar, “Reliability assessment using probabilistic
modelling of pumped storage hydro plant with pv-wind based standalone
microgrid,” Int. J. Electr. Power Energy Syst., vol. 106, pp. 17–32, 2019.

[35] W. Wei and J. Wang, Modeling and Optimization of Interdependent
Energy Infrastructures. Springer, Switzerland, 2020.

[36] P. M. Esfahani and D. Kuhn, “Data-driven distributionally robust op-
timization using the wasserstein metric: Performance guarantees and
tractable reformulations,” Math. Program., vol. 171, no. 1-2, pp. 115–
166, Sep. 2018.

[37] N. Fournier and A. Guillin, “On the rate of convergence in wasserstein
distance of the empirical measure,” Probab. Theory Relat. Fields, vol.
162, no. 3-4, pp. 707–738, Aug. 2015.

[38] W. Wei, F. Liu, and S. Mei, “Real-time dispatchability of bulk power
systems with volatile renewable generations,” IEEE Trans. Sustain.
Energy, vol. 6, no. 3, pp. 738–747, Jul. 2015.

[39] G. A. Hanasusanto, V. Roitch, D. Kuhn, and W. Wiesemann, “A distri-
butionally robust perspective on uncertainty quantification and chance
constrained programming,” Math. Program., vol. 151, no. 1, pp. 35–62,
2015.

[40] R. Oberdieck, N. A. Diangelakis, M. Papathanasiou, and et al., “POP -
parametric optimization toolbox,” Ind. Eng. Chem. Res., vol. 55, no. 33,
pp. 8979–8991, Jul. 2016.

[41] D. Ke, C. Chung, and Y. Sun, “A novel probabilistic optimal power flow
model with uncertain wind power generation described by customized
Gaussian mixture model,” IEEE Trans. Sustain. Energy, vol. 7, no. 1,
pp. 200–212, Jan. 2016.

[42] M. Jia, C. Shen, and Z. Wang, “A distributed probabilistic modeling
algorithm for the aggregated power forecast error of multiple newly built

wind farms,” IEEE Trans. Sustain. Energy, vol. 10, no. 4, pp. 1857–1866,
Oct. 2019.

Yang Cao (S’18) received the B.Sc. degree in elec-
trical engineering from Tsinghua University, Beijing,
China, in 2017, where he is currently pursuing the
Ph.D. degree.

His research interests include planning and oper-
ation of multi-carrier energy systems.

Wei Wei (M’15-SM’18) received the Bachelor and
Ph.D. degrees both in electrical engineering from
Tsinghua University, Beijing, China, in 2008 and
2013, respectively.

He was a Postdoctoral Researcher with Tsinghua
University from 2013 to 2015. He was a Visiting
Scholar with Cornell University, Ithaca, NY, USA,
in 2014, and with Harvard University, Cambridge,
MA, USA, in 2015. He is currently an Associate
Professor with Tsinghua University. His research
interests include applied optimization and energy

system economics.

Laijun Chen (M’12) received the B.S. and Ph.D.
degrees in electrical engineering from Tsinghua Uni-
versity, Beijing, China, in 2006 and 2011, respec-
tively, where he is currently an Associate Professor.

His research interests include power system anal-
ysis and control, and renewable energy integration.

Qiuwei Wu (M’08-SM’15) received the Ph.D. de-
gree in power system engineering from Nanyang
Technological University, Singapore, in 2009. He
was a Senior Research and Development Engineer
with VESTAS Technology R&D Singapore Pte, Ltd.,
from March 2008 to October 2009. He has been an
Assistant Professor with the Department of Electri-
cal Engineering, Technical University of Denmark,
Kongens Lyngby, Denmark, since 2009. In 2012,
he was a Visiting Scholar with the Department
of Industrial Engineering and Operations Research,

University of California, Berkeley, for three months funded by Danish Agency
for Science, Technology and Innovation, Denmark. He was a Visiting Scholar
with the Harvard China Project, School of Engineering and Applied Sciences,
Harvard University from 2017 to 2018.

His research interests include operation and control of power systems with
high penetration of renewables, including wind power modeling and control,
active distribution networks, and operation of integrated energy systems. He is
the Deputy-Editor-in-Chief of the International Journal of Electrical Power
and Energy Systems. He is an Editor of the IEEE Transactions on Smart
Grid and IEEE Power Engineering Letters. He is the Regional Editor for
Europe of the IET Renewable Power Generation, a Subject Editor of IET
Generation, Transmission and Distribution and an Associate Editor of the
Journal of Modern Power Systems and Clean Energy.



11

Shengwei Mei (F’15) received the B.Sc. degree
in mathematics from Xinjiang University, Urumqi,
China, the M.Sc. degree in operations research from
Tsinghua University, Beijing, China, and the Ph.D.
degree in automatic control from Chinese Academy
of Sciences, Beijing, China, in 1984, 1989, and
1996, respectively.

He is currently a Professor of Tsinghua University,
Beijing, China. His research interests include power
system complexity and control, game theory and its
application in power systems.


