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 Abstract—This paper proposes a peer-to-peer (P2P) transac-
tive multi-resource trading framework for multiple multi-energy 
microgrids. In this framework, the interconnected microgrids not 
only fulfil the multi-energy demands of with local hybrid bio-
gas-solar-wind renewables, but also proactively trade their 
available multi-energy and communication resources with each 
other for delivering secured and high quality of services. The 
multi-microgrid multi-energy and communication trading is an 
intractable optimization problem because of their inherent strong 
couplings of multiple resources and independent deci-
sion-makings. The original problem is thus formulated as a Nash 
bargaining problem and further decomposed into the subsequent 
social multi-resource allocation subproblem and payoff allocation 
subproblem. Furthermore, fully-distributed alternating direction 
method of multipliers (ADMM) approaches with only limited 
trading information shared are developed to co-optimize the 
communication and energy flows while taking into account the 
local resource-autonomy of heterogeneous microgrids. The pro-
posed methodology is implemented and benchmarked on a 

three-microgrid system over a 24-hourly scheduling periods. 
Numerical results show the superiority of the proposed scheme in 
system operational economy and resource utilization, and also 
demonstrate the effectiveness of the proposed distributed ap-
proach. 

Index Terms—Energy hub, Multi-microgrids, distributed 
optimization, resource trading, Nash bargaining solution. 

I. INTRODUCTION 

icrogrids have been increasingly recognized as a funda-
mental components of modern energy systems because 

of their capabilities to accommodate high share of distributed 
renewable energy sources (RESs) [1]. The inherent intermit-
tency and undispatchability nature of RESs have raised con-
cerns regarding their energy efficiency, economics, security, 
sustainability, and reliability [2]. Nowadays, in parallel tech-
nological development and advancement in smart meters, 
communication, and management have endowed individuals a 
more proactive role, and rendered peer-to-peer (P2P) resource 
trading among microgrids possible [3]. Geographically close 
microgrids can be cyber-physical interconnected as a mul-
ti-microgrid system, where multiple microgrids are collec-
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tively and aggregately managed to coordinate the inherent 
multi-party energy flow, information flow, and cash flow. 
Networking multiple autonomous microgrids are thus emerg-
ing as strategic efforts for providing multiple high-quality and 
environmentally friendly energy and information services to 
local end-users by making full use of limited resources shared 
by networked microgrids. 

So far, extensive literatures on the P2P resource trading of 
multiple microgrids can be classified into three types. The first 
one focuses on the design of leader-follower frameworks for 
multi-microgrid systems. Leader-follower energy management 
strategies were studied in [4]-[6], where a microgrid acted as a 
leader to set incentive signals (price, payment, etc.) for proac-
tive power exchange/trading and other microgrids acted as 
followers to decide their change/trading profiles in response to 
the signals. A two-level multiagent-systems based architecture 
was introduced in [7] to model the power trading behaviors of 
interconnected microgrids under various market scenarios, and 
their trading strategies were implemented based on auction 
algorithms. Auction architectures were applied in [8]-[9] to 
enable a reserved price based competitive trading among mul-
tiple microgrid agents, and their realistic self-interested prof-
it-seeking behaviors were investigated. The second one focus-
es on the design of aggregation frameworks for mul-
ti-microgrid systems. The concept of aggregator was intro-
duced in [10]-[12] to enable the power transactions of mi-
crogrids participating the market bidding, and their prof-
it-maximizing rational behaviors under uncertain market en-
vironment were analyzed based on the risk management. The 
fairness and stability of energy sharing among microgrid clus-
ters were investigated in [13] via modeling their self-interests 
of both buyers and sellers, and an efficient pricing incentive 
mechanism was developed to encourage the power trading of 
interconnected microgrids. Virtual aggregators were intro-
duced in [14]-[15] to manage the power sharing for microgrids 
of prosumers, and a bi-level Stackelberg game was accord-
ingly designed to analyze their rationality and possible re-
sponses. 

The aforementioned two types of trading frameworks al-
ways require a central entity to manage the power ex-
change/trading flow of multiple agents and also dispatch the 
cash flow of profits obtained from the energy interactive pro-
cess. The third type thus aims to design P2P frameworks for 
multi-microgrid systems. Various P2P energy-trading plat-
forms were proposed in [16] to encourage the prosumer mi-
crogrids to self-organize into coalitions and other community 
energy initiatives, offering top-down strategies to improve the 
efficient energy allocations. Different decentralized algorithms 
have been developed in [17]-[19] for local energy trading in 
microgrids. Distributed energy sharing frameworks were pro-
posed in [20],[21] to exploit the operational flexibility of com-
bined heat and power unit (CHP) units for P2P thermal and 
electrical energy trading among multi-microgrids. The concept 
of consortium blockchain was introduced in [22]-[23] for the 
secure energy trading, and some technical implementations, 
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including credit-based payment scheme and real-time attribu-
tion of power losses to each transaction, were studied. Nash 
bargaining is introduced in [24] to guarantee fair benefit shar-
ing among interconnected microgrids with P2P power trading, 
and further extended as a generalized Nash bargaining in [25]. 
Cooperative game is applied in [26],[27] to model the collec-
tively trading behaviours of microgrids and share the revenue 
using the Shapley value. Differential game theory and 
non-cooperative game are applied in [28] to model the strate-
gic interaction of rational microgrid decision-makers for 
achieving a global coordination. Nevertheless, existing ap-
proaches mainly focus on the design of economical mecha-
nisms for P2P power trading, and few works have attempted to 
involve the coordinated P2P trading of multiple resources and 

technical issues of P2P interconnectivity implementation. 
Multi-microgrid systems are typical cyber-physical systems 

with the implementation of advanced information and com-
munication technologies for wide-area multi-party coordina-
tion. Communication resources equipped in these systems 
include a set of physical computing and communication re-
source, which offer different cloud-related services to the mi-
crogrid operators as well as their end-users [29],[30]. However, 
in the geo-distributed multi-microgrid system, the communi-
cation resources are geographically distributed, and microgrid 
communication interconnectivity implementation may have 
several challenges: spatio-temporally distributed bandwidth, 
limited computing resources, and computation-intensive 
end-user devices [31]. In addition to the data acquisition from 
all the microgrid generation, storage, consumption, and com-
munication components, communication links are required 
among microgrid operators to exchange essential boundary 
information for global coordination. Rapid emergence and 
proliferation of advanced smart meters and communication 
technologies also provide abundant opportunities for proactive 
end-user demand response programs, which would impose 
huge computation and communication burdens on the ener-
gy-intensive communication devices [29],[30],[32]. Consider-
ing such key role of the communication resources in system 
operation, it is essential to co-optimize the energy and com-
munication resources of microgrids. Reliable communication 
is inherent in both central, hierarchical, and distributed 
frameworks for resource-efficient and cost-efficient system 
operation [2]. The coupling mechanism between the commu-
nication flow and power flow is investigated in [31], and a 
software-defined networking (SDN)-enabled communication 
network architecture is designed in [33] for microgrid cyber 
security and resilience enhancement. The integration of SDN 
and microgrids can be linked to numerous merits among them 
being: seamless unification of cloud resources, consolidated 
network management, guaranteed bandwidth, intensified net-
work visibility, and lowered costs of installation/maintenance 
[33],[34]. 

Biogas is a promising RES with a wealth of potential to of-
fer significant complementarity to weather-driven solar and 
wind energy for multi-energy supplies [1]. Biogas is generally 
produced from local anaerobic digesters, and can be utilized 
for electricity and heating generations via a CHP unit. The 
produced raw biogas can be delivered/traded to satisfy mul-
ti-energy loads in surrounding/remote areas through pipelines, 
and also can be further conditioned or upgraded to renewable 

natural gas pipeline specifications and injected into natural gas 
network. As an alternative to fossil fuels, the widespread bio-
gas is often highlighted due to its contribution towards for-
mation of cost-competitive and eco-friendly biogas-based re-
newable microgrid solutions for affordable multi-energy ser-
vices in the remote areas. Consequently, this paper aims to 
investigate the P2P trading of multiple biogas-solar-wind mi-
crogrids, including electricity, biogas, and communication 
resources, so as to leverage their diversified ener-
gy/information/cash flows and bring mutual benefits. 

Previous works mostly require a central entity to coordinate 
the energy/information/cash flows in multi-resource trading of 
multiple microgrids. Actually, the multi-microgrid systems are 
operated by self-interested entities/managers with heteroge-
neous profit-seeking preferences, and such centralized opera-
tion may bring several disadvantages, such as high bandwidth 
required for geographic information exchange, inefficient en-
ergy management, and long distance to individual operators. It 
is also envisioned that microgrids will gradually evolve and 
step into a distributed manner, which can fulfil ever-increasing 
multi-energy demands of geographically distributed end-user. 
Various decomposition techniques, including Lagrangian re-
laxation [20],[21], analytical target cascading [35], alternating 
direction method of multipliers (ADMM) [24],[25] [36],[37], 
and consensus algorithm [17],[38] has been successfully ap-
plied for decentralized/distributed decision-makings. 

This paper proposes a distributed transactive multi-resource 
trading framework for multiple biogas-solar-wind microgrids. 
In this framework, each microgrid independently optimizes its 
allocations of multiple types of resources, and coordinates its 
generation, storage, consumption, and communication with 
other microgrids for the exploitation of cyber-physical inter-
connection. The key contributions of this paper are threefold: 

1) A transactive P2P multi-resource framework is proposed 
for the multi-energy and communication trading of intercon-
nected microgrids. Instead of concerning only the electricity 
trading in previous works, this paper is devoted to extend the 
traditional trading model to the P2P electricity, biogas and 
communication trading of biogas-solar-wind multi-microgrids. 
This framework can effectively coordinate internal mul-
ti-resource allocations within individual microgrids and exter-
nal multi-lateral multi-resource trading among networked mi-
crogrids to enhance the resource utilization and operational 
economy. 

2) The proactive P2P multi-energy and communication 
trading process among interconnected microgrids is formulat-
ed as a Nash bargaining model to guarantee a fair sharing of 
trading benefits, and is subsequently decomposed into social 
multi-resource allocation subproblem and payoff allocation 
subproblem by leveraging the Nash's axioms. 

3) The decomposed P2P multi-resource trading subprob-
lems are further decentralized to the microgrid-based deci-
sion-making level and then iteratively solved with the ful-
ly-distributed ADMM approaches for optimal synergistic op-
erations of multi-microgrids. The complexity of coordinated 
P2P trading problem with multiple resources can be reduced, 
and only a limited amount of trading information exchange is 
required between adjacent microgrids for privacy protection. 

II. MULTI-MICROGRID SYSTEM MODEL 

A. Distributed Multi-Resource Trading Framework 



Fig. 1 illustrates a cluster of n geographically-distributed 
interconnected biogas-solar-wind microgrids with communi-
cation cloudlet resources available. Within each microgrid, 
wind turbine (WT), photovoltaic thermal (PVT) system, an-
aerobic digester, and other multi-energy conversion and stor-
age devices, including CHP, furnace, battery energy storage 
(BES), biogas storage tank, etc., are equipped to condition and 
convert the locally available biogas-solar-wind renewables 
into desirable quantities and qualities to fulfil the multi-energy 
demands. With the deployments of smart meters and advanced 
metering infrastructures, microgrids are allowed to get access 
to the electricity market as price-taker and flexible mul-
ti-energy loads of end-users are allowed to participate in de-
mand response programs. Cloudlets are a cluster of computing 
modules and communication modules that are geographically 
distributed in this multi-microgrid region and managed by the 
microgrid operators through an SDN framework to provide 
services to nearby end-users [33]. A cloudlet accomplishes 
three important tasks [34]: (1) to provide direct compu-
ting/communication service as a service provider and cache 
the required technical data of multi-energy generation, storage, 
consumption, and communication resources as preparation for 
the next related service; (2) to manage the communication 
within and between microgrid operators, such as bridging 
connections between two nearby operators, collecting demand 
response applications of end-users, allocating the communica-
tion channel, and performing data-sharing service; (3) to serve 
as an middle layer by offloading resource coordination and 
supervision requirements to the superior control layer and then 
return results to the end-users. With the management from the 
SDN framework as an interlinking layer between the 
geo-distributed microgrids and communication network, the 
multi-microgrid system can make full use of the locally avail-
able multiple resources and attain complex but efficient re-
source management functionalities. 

 
Fig. 1 Distributed Transactive Multi-Resource Trading Framework 

Distributed microgrids are physically interconnected using 
power lines and biogas pipelines, and cyber-interconnected via 

communication lines. The connected lines/pipelines can be 
regarded as the edges of networked microgrids and represent 
geographical proximity, which would compose a P2P resource 
trading group. Multi-energy and communication resources are 
increasingly and intensively coupled with each other due to 
their mutual interactions. For instance, when a microgrid re-
ceives many demand response requests during rush hours, its 
cloudlet could seek resource assistances from surrounding 
cloudlets since the resource over-utilization may reduce qual-
ity of service (QoS) and increase the cloudlet-related energy 
consumption. It is the aim of this study to co-optimize P2P 
multi-resource trading behaviors among microgrids to mini-
mize the overall system operating cost. Here, geo-distributed 
microgrids manage their own supply-demand balance and 
interact with others through bidirectional communications 
over k time slots, and resource-rich microgrids are encouraged 
to trade their locally available resources to the re-
source-deficient microgrids. 

B. Multi-Resource Allocations in Individual Microgrids 
Each microgrid contains the multi-energy generation, stor-

age, consumption, and communication resources. 
1) Communication Resources: Since resource over-utilization 

may reduce QoS, each microgrid operator intends to reduce 
the communication cost and decrease the overall utilization 
via resource trading with the surrounding cloudlets. The total 
communication cost of each microgrid Ccr,k,n in $ involves two 
parts: cost that microgrid pays for service and penalty of the 
cloudlet resource over-utilization, 

          (1) 

where µcr1 and µcr2 are the unit communication and penalty 
costs in $/unit and $/unit2; an upward penalty function µcr2(.)2 
in [29] is adopted, and the utilization rate of individual cloud-
let ycr,k,n is evaluated through normalizing individual resources of 

communication power Pk,n and bandwidth Wk,n in a uniformed 
value [34], 

            (1a) 

where µp and µw are the user-defined fixed coefficients of two 
kinds of resources and satisfy the relationship of µp+µw=1; 
Pn,max, Wn,max are the resource capacities of each cloudlet in W 
and Hz. 

Assuming that each channel is corrupted by Gaussian white 
noise [39], the maximum achievable rate rk,n, expressed in bit/s, 
is given by 

       (1b) 

where ak,n is the coefficients of bit rate; total communication 
power and bandwidth Ptot,n, Wtot,n include the individual com-
munication resources Pk,n, Wk,n and communication resources 
Tp,k,n,nn, Tw,k,n,nn traded from other microgrids, 

           (1c) 

          (1d) 

QoS is generally adopted to evaluate the communication 
services provided to microgrid end-users, and can be estimated 
as the average operational performance of a cloudlet during a 
certain time period [32]. To meet the QoS requirement, the 
time delay experienced by microgrid communication request 

Ccr ,k ,n = µcr1ycr ,k ,n + µcr2( ycr ,k ,n )
2

ycr ,k ,n = µ p
Pk ,n
Pn,max

+ µw
Wk ,n

Wn,max

rk ,n =Wtot ,n log2(1+α k ,nPtot ,n /Wtot ,n )

Ptot ,k ,n = Tp,k ,n,nn
nn∈N \n
∑ + Pp,k ,n

Wtot ,k ,n = Tw,k ,n,nn
nn∈N \n
∑ +Ww,k ,n



Rcr,k,n should be below a maximum tolerated waiting delay DT,n 
for a request, 

              (1e) 
where microgrid communication request Rcr,k,n is set as the 
sum of the normalized elastic electrical and thermal load, 
since the demand response application requests would be the 
majority of microgrid communication request under the dis-
tributed operational framework. 

The power consumption of communication resources in-
cludes variable power consumption of information technology 
(IT) equipment (i.e., computing servers, telecommunication 
network, etc.) and non-IT constant power consumption (i.e., 
chillers, fans, base data collection, etc.). Power usage effec-
tiveness (PUE >1) is defined as the ratio of total power con-
sumption to IT power consumption, which is a famous metric 
to calculate how much power is used by the computing 
equipment (in contrast to cooling and other overhead) [32]. 
Thus, the overall power consumption of communication re-
sources Lcr,k,n in kW can be estimated as, 

(1f) 
where the first term represents the base power usage which 
does not depend on the resource utilization, and the second 
term represents the added power usage which indicates the 
extra power consumption depending on the resource utiliza-
tion; Lcridle and Lcrpeak are the average idle and peak power of 
communication resources in kW, respectively. 

2) Multi-energy Generation: Microgrids can purchase pow-
er Pbuy,k,n from the electricity market under a time-varying 
electricity price µbuy,k and sell power Psell,k,n back to distribu-
tion system operators under a feed-in tariff contract µsell,k in 
$/kWh. The electricity procurement cost Cgrid,k,n in $ can be 
formulated as, 

         (2) 
Biomass is digested within in a closed thermostatic anaero-

bic digester with two-layer walls, and its biogas yield VD,n, 
measured in m3, can be calculated as, 

               (2a) 
where m and b are coefficients of biogas production rate; TZ,k,n 
is the digestion temperature in ℃ which can be adjusted by 
controlling the available electricity Sef,k,n and thermal Shf,k,n 
energy for digester heating. The temperature dynamics in the 
digester can be captured using the following resistor-capacitor 
based thermodynamics model, 

  (2b) 

 (2c) 

 (2d) 

             (2e) 
where Tout,k,n, TZ,k,n, TW1,k,n and TW2,k,n are the temperatures of 
digester outside, inside, the 1st and 2nd layer walls in ℃; their 
external, internal convective heat transfer, conductive heat 
transfer of the two-layer walls are calculated based on the ma-
terial thermal resistance Rout,n, Rin,n, RW1,n, RW2,n in ℃/kW and 
material thermal capacitances CZ,n, CW1,n, CW2,n in kWh/℃; 𝜂" 

is the electrical-thermal efficiency of boiler; TZ,max and TZ,min 
are the upper and lower values of digestion temperature to 
guarantee the survival of anaerobic organisms in ℃, respec-
tively. A linearization method for generic nonlinear differential 
systems in [40] is then applied to linearize the ther-
mo-electrochemical dynamics in (2b)-(2e) around the nearest 
equilibrium point of the system operating state. It has been 
demonstrated in [1],[40] that this linearization would not lead 
to significant truncation errors as a consequence of the small 
digestion temperature range. 

The outputs of boiler SB,k,n, furnace SF,k,n, and CHP SCHP,k,n 
should be subject to their capacity limits SB,n,max, SF,n,max, 
SCHP,n,max in kW, 

        (2f) 
3) Multi-energy Consumption: The multi-energy loads of 

each microgrid include three types: electricity load Le,k,n in kW, 
heat/thermal load Lh,k,n in kW, and gas load Lg,k,n in m3. Each 
type of load can be classified into three parts: inelastic/base 
loads Lebase,k,n, Lhbase,k,n (e.g., lighting and refrigerator which 
could not shifted), elastic loads Lein,k,n, Lhin,k,n (e.g., dish-washer 
and water heater which could be shifted within a day), and 
communication energy consumption Lcr,k,n. The microgrids can 
implement the demand response by coordinating the elastic 
loads for ensuring the reliable and secure operation [24],[37], 
which would incur the discomfort cost Cload,k,n in $ of by devi-
ation from their preferred load demand level Lepre,k,n, Lhpre,k,n, 

  (3) 

        (3a) 

            (3b) 

where µload is unit discomfort cost for load deviation in $/kW2; 
the scheduled elastic loads during the demand response pro-
gram should satisfy the following constraints: 

               (3c) 

               (3d) 

           (3e) 

           (3f) 
where Dein,n, Dhin,n correspond to the total elastic loads in the 
entire operation horizon in kW. Lein,max,k,n, Lhin,max,k,n, measured 
in kW, provide a upper bound for the elastic energy 
consumption of microgrid. 

4) Multi-energy Storage: Energy storages, including BESs 
and biogas tanks, are equipped in each microgrid, which can 
store the intermittent renewable power generations as electric-
ity and biogas and make profits from the sale of electricity. 
Frequent charging Pch,k,n and discharging Pdis,k,n of BES in kW 
would cause a certain degree of wear and tear, thereby de-
grading its cycling numbers and capacity. The battery degra-
dation cost CBES,k,n in $ can be formulated as, 

          (4) 

where µBES is the unit average/amortized degradation cost of 
charging/discharging over the whole service time in $/kWh 
which can be calculated with its capital cost, cycling numbers, 
capacity, and reference state of charge (SOC) according to 
[21]. Constraints (4a)-(4f) limit the SOC and charg-
ing/discharging of BES and biogas tank, 

Rcr ,k ,n / rk ,n ≤ DT ,n

Lcr ,k ,n = (Lcridle + (PUE −1)Lcrpeak )+ ycr ,k ,n(Lcrpeak − Lcridle )

Cgrid,k ,n = µbuy,k Pbuy,k ,n − µsell,k Psell,k ,nΔk

VD,n = mTZ,k ,n + b

CZ,n
dTZ,k ,n
dk

=ηBSef,k ,nΔk + Shf,k ,nΔk +
TW1,k ,n −TZ,k ,n
Rin,n + RW1,n / 2

W1, , Z, , W1, , W2, , W1, ,
W1,

in, W1, W2, W1,/ 2 / 2 / 2
k n k n k n k n k n

n
n n n n

dT T T T T
C

dk R R R R
- -

= +
+ +

CW2,n
dTW2,k ,n
dk

=
Tout,k ,n −TW2,k ,n
Rout,n + RW2,n / 2

+
TW1,k ,n −TW2,k ,n
RW1,n / 2+ RW2,n / 2

TZ,min ≤ TZ,k ,n ≤ TZ,max

0 ≤ Si,k ,n ≤ Si,n,max i = CHP, B, F

Cload,k ,n = µload[(Lein,k ,n − Lepre,k ,n )
2 + (Lhin,k ,n − Lhpre,k ,n )

2]

Le,k ,n = Lebase,k ,n + Lcr ,k ,n + Lein,k ,n
Lh,k ,n = Lhbase,k ,n + Lhin,k ,n

Lein,k ,n
k∈K
∑ = Dein,n

Lhin,k ,n
k∈K
∑ = Dhin,n

0 ≤ Lein,k ,n ≤ Lein,max ,k ,n
0 ≤ Lhin,k ,n ≤ Lhin,max ,k ,n

CBES,k ,n = µBES(Pch,k ,n + Pdis,k ,n )Δk



   (4a) 

 (4b) 

              (4c) 

              (4d) 

       (4e) 

           (4f) 
where ER,n is the BES capacity in kWh; SOCj,k,n is the current 
SOC; hch and hdis are BES charging and discharging efficien-
cies; SOCj,max and SOCj,min are the maximum and minimum 
values of SOC; Pch,max and Pdis,max are charging and discharg-
ing limits in kW; VR,n is the volume of biogas storage in m3; 
VGS,k is the net output of biogas storage (discharging minus 
charging) in m3; VGS,max and VGS,min are the maximum and 
minimum values of storage output in m3. 

C. P2P Multi-Resource Trading among Microgrids 
Resource trading is essential for microgrids to improve the 

resource utilization and operational economy. Geo-distributed 
microgrids may have different RESs and local multi-energy 
loads due to their energy preferences and weather-dependent 
nature. The produced biogas and electricity are versatile and 
flexible energy resources, which can either traded to other 
microgrids via power lines and biogas pipelines, or be directly 
satisfy the local load demands of individual microgrid via 
multi-energy converters and storages. In addition to mul-
ti-energy complementarity of biogas-solar-wind renewable 
portfolio, demand response programs would be implemented 
to maintain a global supply-demand balance with the locally 
available and traded communication resources. Here, each 
microgrid could negotiate with other networked microgrids 
about the amounts of resource trading Ta,k,n,nn and the associ-
ated payment Ca,k,n,nn. Noted that electricity, biogas, commu-
nication power and bandwidth are four types of trading re-
sources, and specified as “e”, “g”, “p”, “w”. The mul-
ti-resource trading and corresponding payment among mi-
crogrids should be subjected to the following market clearing 
constraints, 

       (5a) 

       (5b) 
where Ta,k,n,nn is the amount of resource a that microgrid n ex-
changes with microgrid nn, and Ca,k,n,nn is the associated pay-
ment for trading of resource a between microgrid n and nn. 

Each microgrid operator coordinates its communication re-
sources (1)-(1f), multi-energy generations (2)-(2f), consump-
tions (3)-(3f), storages (4)-(4f), and tradings (5a)-(5b) to en-
sure the multi-energy supplies for the consumers, 

 (6a) 

(6b) 

       (6c) 

where PWT, PPVT, HPVT are outputs of WT and PVT in kW; 
he,CHP, hh,CHP, and hF are electrical and thermal efficiencies of 
CHP and furnace; Qbio is heating value of biogas in kWh/m3. 

Each microgrid operator aims to minimize its total operat-
ing cost Cnon,n in $, consisting of the communication cost Ccr,k,n, 
electricity procurement cost Cgrid,k,n, users’ discomfort costs 
Cload,k,n, and battery degradation cost CBES,k,n, 

    (7) 

III. PROPOSED SOLUTION METHODOLOGY 

The multi-microgrid P2P multi-energy and communication 
trading (1)-(7) cannot be easily solved using standard com-
mercial solvers due to the conflict of interests, couplings of 
multi-energy supply-demand, resource trading, and payments. 
The coordinated P2P multi-resource trading of numerous mi-
crogrids requires multi-party operating states and technical 
parameters. However, it is not realistic that all the 
geo-distributed microgrids are governed by a single enti-
ty/manager and all the information are unconditionally shared 
with each other. Thus, a game-theoretic transactive bargaining 
framework is firstly designed to facilitate a mutually beneficial 
multi-resource trading outcomes among microgrids through 
negotiation and coordination. Then, the formulated mul-
ti-resource trading problem is decentralized into multiple mi-
crogrid-level decision-making subproblems and iteratively 
solved using the fully-distributed ADMM approaches with 
limited information shared. 

A. Bargaining based Transactive Multi-resource Trading 
In the multi-microgrid bargaining problem, the 

self-interested microgrid operators negotiate with each other to 
achieve a mutually beneficial agreement, which are better for 
both players than the disagreement point. Various bargaining 
solutions [41], including Kalai-Smorodinsky bargaining solu-
tion, Egalitarian bargaining solution, and Nash bargaining 
solution, have been developed by assuming slightly different 
bargaining properties of the final agreement point. These bar-
gaining solutions are obtained through maximizing the product 
of additional benefit, equalizing the ratios of maximal gains, 
and maximizing the minimum payoff. It has been systemati-
cally proved in [41] that Nash bargaining theory provides a 
fair Pareto optimal solution that satisfies the four axioms of 
symmetry, Pareto optimality, scale invariance, and independ-
ence of irrelevant alternatives. Mathematically, taking 
two-player bargaining problem as example, a pair of payoffs 
(u1, u2) is a Nash bargaining solution only if it solves the fol-
lowing optimization problem: 

 

where U is a convex feasibility set and its elements can be 
interpreted as agreements; d1 and d2 are payoffs of two players 
from the disagreement point; the product of the two excess 
benefits (u1-d1)(u2-d2) is generally referred to as the Nash 
product. 

In this work, the multi-lateral resource trading negotiation 
problem is modelled and analyzed using the Nash bargaining 
theory [42]. Each microgrid bargains with other microgrids for 
the amount of resources and corresponding payment. The ex-
tra payment cost CT,n in $ to other microgrids can be expressed 
as follows, 

SOCBES,k ,n = SOCBES,k−1,n +
ηchPch,k−1,nΔk

ER,n
−
Pdis,k−1,nΔk
ηdisER,n

SOCj ,min ≤ SOCj ,k ,n ≤ SOCj ,max ( j = BES,bio)

0 ≤ Pch,k ,n ≤ Pch,n,max
0 ≤ Pdis,k ,n ≤ Pdis,n,max

SOCbio,k ,w = SOCbio,k−1,w −VGS,k−1,w /VR,w

GS, ,min GS, , GS, ,maxn k n nV V V£ £

Ta,k ,n,nn +Ta,k ,nn,n = 0 a = e, g, p, w

Ca ,n,nn +Ca ,nn,n = 0 a = e, g, p, w

Le,k ,n = PWT,k ,n + PPVT,k ,n + Pdis,k ,n − Pch,k ,n − SB,k ,n /ηB
+ SCHP,k ,n − Sef,k ,n − Te,k ,n,nn

nn∈N \n
∑ + Pbuy,k ,n − Psell,k ,n

Lh,k ,n = HPVT,k ,n + SB,k ,n + SCHP,k ,nηh,CHP /ηe,CHP + SF,k ,n − Shf,k ,n
Lg ,k ,n =VD,k ,n +VGS,k ,n − SCHP,k ,nΔk /Qbioηe,CHP

− SF,k ,nΔk /QbioηF − Tg,k ,n,nn
nn∈N \n
∑

Cnon,n = (CBES,k ,n +Cload,k ,n +Cgrid,k ,n +Ccr,k ,n )
k∈K
∑

max
u1,u2
(u1 − d1)(u2 − d2 )

s.t. (u1,u2 )∈U ;(u1,u2 ) > (d1,d2 )



              (8) 
The overall cost of microgrid n Ctot,n in $ can be expressed 

as, 

  (9) 
All microgrid operators are rational and expected to en-

hance their resource utilization through implementing the 
cost-minimization resource trading. Certainly, microgrids will 
not cooperate if the bargaining process cannot reduce their cost, 

              (10) 

where 𝐶$%,'∗  is the so-called “disagreement point” which is 
the minimum of the Cnon,n that microgrid n can obtain without 
trading resources with other microgrids. 

The mathematical formulation of our proposed Nash bar-
gaining based multi-resource trading problem is given as, 

            (11) 

By leveraging the Nash's axioms, the formulated mul-
ti-resource trading problem (11) can be equivalently decom-
posed as two subproblems: social multi-resource allocation 
subproblem (12) and payoff allocation subproblem (13), 

           (12) 

        (13) 

where 𝐶)*),'∗  is the optimal value of the subproblem (12). 
Remark 1: Due to the Pareto efficiency and convexity proper-
ties of this problem [41]-[43], both existence and uniqueness 
for Nash bargaining solution of problem (11) can be guaran-
teed. It also can be found that the involved decision variables 
of the Nash bargaining problem (11) can be divided into two 
decoupled sets: the energy/communication allocation variables 
and trading payment variables. Given the optimal multi-energy 
and communication allocation decisions, the optimal trading 
payment decisions from (13) can be obtained as, 

     (14) 

Substitute (14) into problem (11) and yield the optimal ob-
jective: 

          (15) 
It thus can be proved that problem (11) minimizes the social 

cost of all microgrids in subproblem (12), and optimal mul-
ti-resource trading solutions can be obtained by sequentially 
solving subproblem (12) and (13). 

B. Distributed Algorithms 
Here, the couplings of the subproblem (12) and (13) is the 

resource trading and payment constraints (5a)-(5b), which can 
be further decomposed as a set of microgrid subproblems us-
ing the ADMM approaches to protect the information privacy 
and local decision-making autonomy. Self-interested mi-
crogrids rationally behave as profit-maximizing and share 
necessary trading information with its surroundings. Algo-
rithm 1 shows the detailed procedure of the distributed ap-
proaches. Due to their convexity properties of (12) and (13), 

the convergence of Algorithm 1 can always be guaranteed and 
the algorithm would gradually converge to the optimal value 
of the problem within finite iterations. Details of the proof are 
given in [43]. 

Algorithm 1 Distributed algorithm solving (12) and (13) 
1: Input multi-energy generation, storage, consumption, and 

communication parameters of multi-microgrid system. 
2: Set iteration index it=0, tolerances δ1, δ2. Initialize La-

grangian multipliers y, cy, step sizes d, cd. 
3: Each microgrid parallelly solves the social multi-energy 

and communication allocation subproblem with local con-
straints (1)-(4),(6)-(9) and the following Lagrangian func-
tion of objective (12): 

 

where superscript aver represents the average. 
4: Calculate and check if residual is less than the predefined 

tolerances: 
 

Once satisfied, iteration ends. Otherwise, each microgrid 
updates its y: 

 

5: Set it=it+1. Each microgrid repeats Steps 3-4 until the 
stopping criteria are satisfied. 

6: Each microgrid parallelly solves the payment bargaining 
subproblem with local constraints (10) and the following 
Lagrangian function of objective (13): 

 

7: Calculate and check if residual is less than the predefined 
tolerances: 

 

Once satisfied, iteration ends. Otherwise, each microgrid 
updates its cy: 

 

8: Set it=it+1. Each microgrid repeats Steps 6-7 until the 
stopping criteria are satisfied. 

IV. CASE STUDIES 

A. System Description 
The proposed distributed transactive multi-energy and 

communication trading methodology is benchmarked on a 
three-microgrid system in Hunan, China. The schematic dia-
gram of the studied multi-microgrid system is given in Fig.1. 
The retailed electricity price is obtained from [24], and the 
feed-in price is set as 0.05 $/kWh. The data profiles of mul-
ti-energy generations, conversions, storages, and base energy 
consumptions of three microgrids in this study are obtained 
from [1],[21],[24],[37]. Here, Lcridle and Lcrpeak are set as 5kW 
and 15kW; Lepre,k,n, Lhpre,k,n, Dein,n, Dhin,n of each microgrid are 
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all set as 30% of each type of base load, and Lein,max,k,n, 
Lhin,max,k,n are set as 60% of each type of load at the kth time 
slot [44]. Other parameters from [29]-[30][32],[34],[39] in per 
unit values are summarized as follows: PUE=1.2, µcr1,n=[1, 5, 
10], µcr2,n=[1, 5, 10], DT,n=[2, 2.4, 2.8], ak,n=[2, 2.4, 2.8], 
Pn,max=[0.5, 1, 2], Wn,max=[0.5, 1, 2], µp=µw =0.5. The toler-
ances for the distributed algorithm are 10-5 and the step size is 
1. The multi-energy and communication trading are imple-
mented over a 24-hourly scheduling periods, and all the simu-
lations are performed and coded using the commercial plat-
form GAMS [45] on a laptop with 2.3-GHz Intel Core i5 CPU 
and 8GB RAM. The centralized and distributed problems are 
solved using the NLP solver CONOPT with their default set-
tings. 

B. Comparative Results and Analysis 
Three comparative schemes are implemented: 1) Scheme 1 

is the proposed distributed transactive multi-resource trading 
scheme in Sections II-IV; 2) Scheme 2 is the multi-microgrid 
multi-resource trading without taking into account the external 
communication trading; 3) Scheme 3 performs the mul-
ti-microgrid scheduling without taking into account external 
multi-energy and communication trading. 

 

Fig. 2 Power, biogas, and communication trading among mi-
crogrids in scheme 1 

Fig. 2-3 illustrate the curves of daily electricity, biogas, 
communication trading among microgrids in schemes 1-2. Fig. 
4-5 illustrate electricity procurement and resource utilization 
of microgrids in schemes 1-3. It can be found from Fig. 2-3 
that all three microgrids interactively trade energy and com-
munication resources with each other across the 24-hour oper-
ation horizon. During hours 1-12, microgrids 1 and 3 have 
relatively higher available renewable outputs than microgrid 2, 
thus sell excessive energy to microgrid 2. Due to the sudden 
drop of renewable power supply, microgrids 1 and 3 have to 
purchase energy from microgrid 2 in hours 11-24. As for bio-
gas, as a consequence of larger thermal load and gas load, the 
locally available biogas is delivered from microgrid 2 to mi-

crogrid 3 and 1 during hours 8-10 and hours 22-24. Though 
energy trading among microgrids incur extra payments, it en-
ables the renewable accommodation during hours 2-5 instead 
of feeding back to the grid. Thus, less electricity is purchased 
by microgrid 1 from the market than other scheme, decreasing 
their operating costs, as shown in Fig.4. On the other hand, the 
multi-microgrid system can improve its communication capa-
bility by trading resource from surrounding microgrids in the 
case of resource shortage. Due to the larger communication 
requirements for electrical and thermal demand response, re-
source-rich microgrid 3 shares its communication resource to 
resource-deficient microgrids 1 and 2 in addition to meeting 
the internal requirements. However, in the scheme 2 and 3 
without communication sharing, the microgrid 1 always stays 
at a high communication resource utilization. Through 
offloading request on the surrounding cloudlets with low oc-
cupation, the average resource utilization of microgrid 1 and 2 
are significantly reduced, as shown in Fig.5. 

 

Fig. 3 Power and biogas trading among microgrids in scheme 2 

Fig.6 shows the optimized electrical load curve of mi-
crogrids 1-3 in scheme 1. In such multi-microgrid system, 
renewable energy, load curve, and electricity price have 
significantly different peak periods. Due to different types of 
consumers, original load curve of microgrids 1-3 reach their 
peak values during 13-22, 11-14, and 10-18. While there are 
abundant renewable generations during hours 1-10 (wind en-
ergy) and hour 11-15 (solar energy), the electricity price is 
much higher during on-peak hours 11-20. It can be found that 
all microgrids shift their elastic loads from on-peak periods to 
off-peak time periods. For example, more renewable energy is 
consumed during morning hours and less electricity is pur-
chased during on-peak hours. 

 

Fig. 4 Gird power procurement of microgrids in schemes 1-3 
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Fig. 5 Resource utilization of cloudlets in schemes 1-3 

 

Fig. 6 Demand response of microgrids in schemes 1-3 

 

Fig. 7 SOC of BES of microgrids in schemes 1-3 

Fig. 7-9 shows the outputs of multi-energy converters and 
storages of three microgrids with schemes 1-3. It can be seen 
that compared with schemes without multi-resource trading, 
the proposed methodology can attain better synergies of inner 
multi-resource scheduling and outer multi-resource trading. 
More specifically, during the morning and noon hours, abun-
dant renewable generations serve as the mainly energy sources 
for multi-energy supplies and BES charging, while CHP and 
furnace stays unchanged. During the hours 17-24 when there 
is a dramatical decrease of renewable generations, the BES 
and CHP in scheme 1 sharply increase to fulfil the rising mul-
ti-energy demands while the furnace and boiler remains un-
changed. With the multiple traded resources from each other, 
the outputs of biogas storage and high-efficiency CHP in 

scheme 1 stay at a high level to fulfil the on-peak multi-energy 
loads during the hours 21-24. However, in scheme 3, the bio-
gas storage and furnace increase their outputs to follow the 
heating load while CHP decreases its output. Batteries are also 
not fully charged with an additional reverse discharging dur-
ing hours 8-11 and exhausted in advance. Furthermore, the 
CHP is prioritized as the multi-energy generation plants dur-
ing hours 17-24 because of its higher conversion efficiency, 
while the remaining part between CHP outputs and mul-
ti-energy load are satisfied with boiler and furnace. 

 

Fig. 8 SOC of biogas storage of microgrids in schemes 1-3 

 

Fig. 9 Daily outputs of CHP, furnace, and boiler in schemes 1-3 

Table I gives the quantitatively comparisons with schemes 
with and without multi-resource trading over operating costs 
and their corresponding payments. It can be found that, with 
the multi-resource trading, the system operating cost of the 
interconnected microgrids is decreased by up to 18.83% from 
1343.48 to 1090.50. More specifically, resource trading de-
creases the operating costs of microgrids 1 and 3, which is 
contrary to microgrid 2. It is because that profit-seeking mi-
crogrid 2 delivers more power and biogas to microgrids 1 and 
3 instead of feeding back to the electricity market, and mi-
crogrid 2 receives 131.81 from microgrid 3. It also can be 
found that every microgrid benefits through resource trading 
taking into account the comprehensive influences of costs and 
payments. Compared with scheme without resource trading, 
the individual costs of microgrids are reduced by 31.08%, 
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21.65%, and 12.35%, respectively. This verifies the effective-
ness and superiority of the proposed multi-energy and com-
munication trading scheme, which encourages microgrids to 
share their multiple types of geo-distributed resources. 

TABLE I 
COMPARATIVE PERFORMANCE RESULTS OF SCHEMES 1 AND 3 

Microgrid 1 2 3 Total 
Cost (no trading) ($) 271.35 389.38 682.75 1343.48 

Cost (with trading) ($) 206.56 436.87 447.07 1090.50 
Payment (for trading) ($) -19.54 -131.81 151.35 0 

Cost+Payment (with trading) ($) 187.02 305.06 598.42 1090.50 

Table II provides the quantitatively comparisons of schemes 
1-3 over operating cost, biogas yield, battery degradation cost, 
electricity procurement, and max-average utilization rate. 
Noted that max-average utilization rate of cloudlet is calcu-
lated as the maximum of average utilization rate of individual 
microgrid cloudlet. It can be observed that, compared with 
schemes 2 and 3, scheme 1 can better quality of energy and 
communication services with lower electricity procurement 
and resource utilization. Compared to the scheme 2, the sys-
tem operating cost of scheme 1 is reduced by 1.55% and the 
communication resource utilization level is reduced by 
45.45 %. As for the scheme 3, the system operating cost and 
communication resource utilization level of scheme 1 are de-
creased by 18.83 % and 47.83 %, respectively.  

It is also found that the proposed methodology can offer 
diversified renewable energy utilization approaches through 
the synergies among multi-energy conversion and storage. As 
a consequence of the P2P energy trading, microgrids in 
scheme 1 and 2 prefer to share their available storage and de-
mand response resources for renewable utilization maximiza-
tion, thereby reducing the degradation cost and discomfort 
cost in Table II. In summary, case studies can confirm the supe-
riority of the proposed scheme on cost-efficient multi-microgrid 
multi-energy and communication management, especially on 
the enhancements on operational economy and resource utili-
zation. 

TABLE II 
COMPARATIVE PERFORMANCE RESULTS OF SCHEMES 1-3 

Scheme 1 2 3 
System operating cost ($) 1090.50 1107.64 1343.48 

Battery degradation cost ($) 19.92 19.94 20.17 
Discomfort cost ($) 103.84 101.54 141.87 

Electricity procurement(kWh) 4347.45 4446.96 4671.51 
Max-average utilization (pu) 0.36 0.66 0.69 

 

Fig. 10. Convergence process of subproblem 1 and 2 

Fig. 10 shows the convergence process of max-residual er-
rors of subproblems (12) and (13). It can be found that, with 
the implementation of the proposed distributed algorithms, the 
P2P resource trading problem can be efficiently solved with 
the standard solver, and the gaps between centralized and dis-
tributed approaches are less than 0.5 %. The resulting statistics 

thus showed that, although they aren’t strictly optimal values, 
the satisfactory upper bounds to the centralized optimal values 
can be obtained with the proposed distributed approach with 
better trading information privacy and decision-making inde-
pendence. 

V. CONCLUSIONS 

This paper proposes a distributed transactive multi-resource 
trading framework for the optimal synergies of heterogeneous 
microgrids, and a bargaining-based multi-lateral mechanism is 
designed to encourage proactive resource trading among in-
terconnected microgrids, such that diverse multi-energy gen-
eration/load profiles are leveraged to bring mutual benefits. 
The multi-microgrid multi-energy and communication trading 
problem is decomposed into social multi-resource allocation 
subproblem and payoff allocation subproblem, which are fur-
ther solved and decentralized as multiple microgrid-level de-
cision-makings based on fully-distributed ADMM approaches. 
It can be found from case studies that, as a consequence of the 
proactively trading of multi-energy and communication re-
sources, the proposed scheme can outperform others on sys-
tem operational economy and resource utilization with satis-
factory trading payoff sharing. Furthermore, the proposed ap-
proach is fully-distributed with only necessary trading infor-
mation shared, thereby preserving the privacy and re-
source-autonomy. 

It still should be noted that the initial focus of this work is to 
model the multi-microgrid multi-resource trading problem 
with perfect communication assumed under a quasi-static en-
vironment. More investigations can be further devoted to un-
derstand the impact of imperfect communication (e.g., delay 
and packet loss), which is an important and main part of our 
future works. 
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