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Fast and Accurate Convolution Neural Network for
Detecting Manufacturing Data
Youcef Djenouri, Gautam Srivastava, and Jerry Chun-Wei Lin∗

Abstract—This paper introduces a technique known as Cluster-
ing with Particle for Object Detection (CPOD) for use in smart
factories. CPOD builds on regional based methods to identify
smart object data using outlier detection, clustering, particle
swarm optimization (PSO), and deep convolutional networks.
The process starts by removing noise and errors from the images
database by the Local Outlier Factor (LOF) algorithm. Next, the
algorithm studies different correlations from the set of images
in the database. This creates homogeneous, and similar clusters
using the well known k-means algorithm, and the FastRCNN
(Fast Region Convolutional Neural Network) uses these clusters
to design efficient and more focused models. PSO is used to
optimize the different parameters including, the number of
neighbors of LOF, the number of clusters of k-means, the
number of epochs, and the error learning rate for FastRCNN.
The inference process benefits from the knowledge provided
by training. Instead of considering a complex single model of
the whole images database, we consider a simple homogeneous
model. To demonstrate the usefulness of our approach, intensive
experiments have been carried out on standard images database,
and real smart manufacturer data. Our results show that CPOD
when compared to baseline object detection solutions is superior
in terms of runtime and accuracy.

Index Terms—Object Detection, Clustering, Particle Swarm
Optimization, Smart Factory, Deep Learning.

I. INTRODUCTION

Intelligent Manufacturing has been gaining popularity in
the last decade [1], in particular, numerous computer vision
systems [2], [3] have been implemented in smart factory en-
vironments. Object detection [4] is one of the hottest research
topics in smart manufacturing, where the aim is to identify
objects from smart factory images. Identifying smart man-
ufacturer objects can help for automatic surface inspection.
Traditional machine vision methods have been widely used
for automatic surface inspection to date. Common techniques
include edge detection [5], and histogram-based features [6].
There are various features that can be extracted from an image
and they need to be carefully crafted for specific tasks [7]. In
recent years, several deep learning methods [8]–[12] have been
used for accurately identifying smart factory objects. Solutions
to object detection for smart factory data [8], [10] are known
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to be high in time complexity with very low accuracy. Even
region based solutions [10] give strong accuracy compared to
single-pass based solutions [8]. However, the overall process
still suffers both from high runtime as well as low accuracy.
The main reason for these issues is that all previous solutions
are required to build complex models with a high number
of parameters being fixed. This research work continues in
this direction, and a new intelligent algorithm is proposed
to efficiently, and accurately identify objects in smart factory
environments.

A. Motivation

Solutions to object detection algorithms for smart manu-
facturing data suffer from the detection rate, which uses the
entire images database in the learning process. Moreover, it
is not straightforward to tune the hyper-parameters of deep
learning models. Motivated by the success of clustering in
many industrial applications [13], the research presented in
this work splits the images database into homogeneous clus-
ters to create simple and more focused models. Each model
learns from homogeneous and similar images. This allows for
the reduction of runtime compared to the existing solutions.
Moreover, motivated by the success of metaheuristics in tuning
the parameters of deep learning models [14], this research
work incorporates particle swarm optimization (PSO) to not
only tune the parameters of deep learning models but also to
set the parameters of the entire process which includes the
pre-processing step. Compared to previous work, this paper
employs several innovations to improve training and inference
speed while also increasing detection accuracy.

B. Contributions

In this paper, we propose the Clustering with Particle for
Object Detection (CPOD) framework with the aim to create
small and focused learning model for identifying objects in
smart manufacturer data. The images database is first cleaned
by removing noise in images. Next, it is divided into several
small clusters that act as independently as possible. The
training model is learned from each cluster of images. Next,
during the inference step, instead of exploring the whole
images database, we investigate only the effort in learning
from the most similar clusters in the image query. With this
in mind, the main contributions of this work are as follows:

1) LOF (Local Outlier Factor) algorithm is used to remove
outliers from the feature images extracted using the
convolution neural network (CNN).
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2) An adapted k-means algorithm is proposed for clustering
the feature images into similar clusters, and minimizes
the number of the shared image features among clusters.

3) FastRCNN algorithm [4] is used on each cluster of
feature images. During the inference process, we use the
centroids information to derive the most similar clusters
to the image query.

4) PSO (Particle Swarm Optimization) algorithm is used
to tune the parameters of the different steps of CPOD
framework, including the number of neighbors of LOF,
the number of clusters of k-means, the number of
epochs, and the learning error rate of FastRCNN.

5) CPOD is thoroughly evaluated by extensively analyzing
its computational time as well as its accuracy with the
baseline object detection algorithms on different image
databases (standard, and smart manufacturer data). The
results reveal the superiority of CPOD against FastR-
CNN [4], and the work of Park et al. [10] in both runtime
and accuracy.

II. RELATED WORK

Wang et al. [8] proposed the use of FastRCNN model
for auto-sorting of object detection in the robotic arms en-
vironment. The approach aims to identify the top view object
detection, various view angle object detection and various
view angle plus occlusion object detection. Yuanbin et al.
[9] proposed a CNN-based approach for detecting elemen-
tary objects in complex manufacturing system. The approach
incorporates both a cloud-edge computing environment, and
convolution neural network to identify elementary manufac-
turing objects in a reasonable amount of time. Li et al. [15]
proposed a supervised deep neural network approach for image
reconstruction of electrical resistance tomography problem.
Different convolution neural layers are developed to accurately
perform the feature extraction, the image reconstruction, the
residual connection; and the jump connection.

Park et al. [10] proposed a hybrid deep neural network
model for defect detection problem. A preprocessing and data
enhancement are used to improve the deficiency detection ac-
curacy of manufacturer objects in a smart-phone environment.
Yuanbin et al. [11] used both faster regional convolutional
neural network; and the cloud-edge computing environment
to accurately locate small defects in geometrically complex
products. The use of cloud-edge computing environment has
greatly improved the computational time of the FastRCNN im-
plementation in a complex manufacturing environment. Huang
et al. [12] suggested the use of a deep neural network with
auto-encoder to transform the object detection problem into
a classification problem. This approach solves the real-value
manufacturer data issue, however it highly suffers from the
detection accuracy ratio. Kyeong-Beom et al. [16] Combining
deep learning with augmented reality to detect 3D objects,
and enable performing more realistic manufacturing jobs in
complex environment. In addition, two real cases studies have
been conducted, the first one aims to map a virtual object in a
real world environment, and the second one aims to maintain
and inspect a real 3D smart manufacturer objects.

Fangwei et al. [17] studied the effect of data volumes of
3D images to estimate the cost of a manufacturing process.
It used the convolutional neural network in all processing
stages including the feature learning, the object recognition,
and the cost estimation. Jiang et al. [18] proposed an intelligent
algorithm for autonomous gesture recognition, by combining
objected detection, camera calibration, and gesture 3D infor-
mation extraction. He et al. [19] proposed a classification
priority network, which reverses the order of bounding boxes
estimation, and prediction, to improve the defect detection
process in analyzing the surface quality of steel products. Wen
et al. [20] suggested the use of the data-driven model to iden-
tify objects in robotic environment. It combines several deep
learning models to efficiently realize the object prediction, and
then to control the behaviour of the different robots. Andrew
et al. [21] proposed an intelligent system for object detection
in process automation. A set of bank filters are first used to
normalize the training 3D images by employing non-linear
operations. Object matching is then investigated to derive the
similar objects to the current video 3D frame.

Liu et al. [22] introduced a new unsupervised encoder
layer to discover local 3D point-wise features, which improves
both the feature discrimination, the robustness of the detec-
tion process. Kara et al. [23] developed a novel framework
called HealthFog which can be used for integrating ensemble
deep learning in Edge computing devices to automatically
identify heart disease from medical images data. Tuli et al.
[24] proposed the use of convolution neural network for
table detection form the datasheet images in a supply chain
applications. Liang et al. [25] proposed an edge computing-
based convolution neural network model to deal with smart
manufacturer objects in the internet of things.

Through this short yet informative literature review, solu-
tions to object detection algorithms for smart manufacturer
data suffer from weak detection rate since the whole images
database is considered/used in the learning process. More-
over, it is not straightforward to tune the hyper-parameters
of deep learning models. Clustering techniques has attracted
high research interest in industrial applications [13]. These
approaches use the well-know “divide and conquer” strategy,
where the main purpose is to split data into several clusters and
explore the generated clusters separately. This allows a high
benefit in terms of computation time. In addition to clustering,
PSO has been extensively explored in tuning CNN models
[14]. These approaches consider the possible values of hyper-
parameters as solution space, and develop intelligent operators
to efficiently explore the entire solution space in order to find
optimal hyper-parameters of deep learning models. Motivated
by the success of cluster-based algorithms in handling indus-
trial applications as well as the success of swarm intelligence
approaches in tuning CNN models, in the next Section, we
propose our hybrid algorithm, which combines clustering,
PSO, and CNN to efficiently explore the images database, and
accurately detect objects from smart manufacturer data.
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Fig. 1. CPOD Framework

III. CPOD: CLUSTERING WITH PARTICLE FOR OBJECT
DETECTION

A. Principle

This section presents the proposed CPOD framework, which
integrates, deep learning and particle swarm optimization
for identifying objects in smart factory environments. The
framework considers as input smart manufacturing image data,
and as output the smart factor object detected in these images.
As shown in Fig. 1, CPOD consists of two stages:

1) training: which aims to first collect the manufacturer
image data. The process starts by recording video frames
from cameras. The frames are then transformed to
images, where different distortion techniques such as
mapping, resizing are used to correct the images. We
then pre-process the whole set of images by removing
noises and outliers. We then split the cleaned images
into clusters, where each cluster contains similar images.
The object detection process is applied on each cluster,
where a particle swarm optimization is used to learn the
hyper-parameters of the networks.

2) inference: which aims to identify the objects of the
given image using the trained models of the previous
step. This step benefits from the knowledge extracted
in the previous step, where only considering the models
of the most similar clusters to such image. The detail
explanation of each stage is given in the following
subsections.

B. Preprocessing

The aim of this step is to remove outliers, and noise from
manufacturer’s data. Several outlier detection methods have
been used in the literature. Some algorithms used neighbor-
hood computation, others used density estimation. Experimen-

tal evaluation reported in [26] revealed the success of density-
based solutions against the neighborhood-based solutions, in
particular the LOF algorithm. Therefore, we used LOF to
identify anomalies from images. Instead of handling points
in the classical LOF, our LOF deals with complex objects
represented by the features of the images, where the difficulty
behind this approach is how to determine the density of
each image feature. The set of feature vectors from training
images are computed using CNN. Our adapted LOF alongside
a slightly more complex density estimation, compares the
density estimate for each feature f with the density estimates
of the kNNs of f . The density-estimate used in LOF is the
so called local reachability density (lrd). It is the estimated
distance at which a feature can be found by its neighbors, if a
neighbor were to reach out lrd value distance in any direction,
it would be likely/ most optimal to find that individual feature.
It is the count of the items in the k nearest neighbor set, over
the reachability-distance of the feature to all the values in its
set, More formally, we have:

lrd(f) = 1

/∑
p∈kNN(f) reach-distk(f, p)

|kNN(f)|
(1)

where the reachability-distance (reach-dist) with parameter
k is the maximum value of the kth nearest neighbor of
the feature and the distance of between the feature and its
neighbor, more formally, it is given by:

reach-distk(f, p) = max{kNN-dist(p), dist(f, p)} (2)

with some distance measure dist and kNN-dist(p) being the
distance between the feature p and the kth nearest neighbor
of p. The final outlier score of a feature is the product of the
sum of the lrd of all the features in its k nearest neighbors and
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the the sum of the reachability-distance of all the features of
the same set, to this feature, more formally, we have:

LOF (f) =
1

|kNN(f)|
×

∑
p∈kNN(f)

lrd(p)
lrd(f)

(3)

Fig. 2. Outlier detection of feature vectors of image data

Continuing on the example given in Fig. 2, the local density
estimate for p (i.e., lrd(p)) would not be compared with
all other local density estimates but only with the density
estimates for its k nearest neighbors (i.e., lrd(q), lrd(r), and
lrd(s) in the case of k = 3). The global ranking of all
points according to the outlierness is then based on their
relative (estimated) density, as compared to the densities of
their k nearest neighbors (Eq. 3). This relation to the local
characteristics of the dataset makes the method local. The
features less than 1 are considered as outliers, and are not
considered in next steps.

C. Training

This includes two main stages:
1. Clustering The aim of this step is to divide the whole
images database into k clusters, C = {C1, C2...Ck}, where
each cluster Cs = {I(s)1 , I

(s)
2 ...I

(s)
|Cs|} is the subset of the

images I . The overlapping features among the clusters should
be minimized, and the overlapping features of images within
each cluster should be maximized. More formally, we have to
optimize the two following functions:

C∗ =


argmin

C
|

k⋃
i=1,j=1

(F+(Ci) ∩ F+(Cj))|, i 6= j∧
argmax

C
|

C⋃
Cs

(F(I
(s)
i ) ∩ F(I

(s)
j ))|∀(i, j) ∈ [1..|Cs|]2∨

i 6= j

(4)

Note that F(Ii) is the set of features of the image Ii, and
F+(Ci) is the set of features of the cluster Ci, it is the union
of all features of images belonging to Ci.

Many clustering algorithms have been proposed in literature.
Among them, it is well-known that k-means is one of the
best partitioning algorithms which can satisfy the requirements
mentioned in Eq. 4. Therefore, in this research work, we
present an adaptation of k-means for clustering manufacturer
images data by proposing the following concepts,

1) Similarity computation: The similarity measure be-
tween two image features F(Ii) and F(Ij) is computed
as:

D(F(Ii),F(Ij)) =
|F(Ii) ∩ F(Ij)|

max(|F(Ii)|, |F(Ij)|)
(5)

2) Centroids updating: Let us consider the
set of image features of the cluster Ci =
{F(I1)(i),F(I2)(i), ...,F(I|Ci|)

(i)}. The aim is to
find a gravity center of this set which is also an image
feature. Inspired by the centroid formula developed in
[27], we compute the centroid µi. The frequency of
each item is calculated for all the image features of the
cluster Ci. The length of the image features center is
denoted by li, and corresponds to the average number
of features of all image features in Ci as:

li =

∑|Ci|
j=1 |I(F(Ij)(i))|

|Ci|
(6)

Afterwards, the features of the images in Ci are sorted
according to their frequency, and only the li frequent
features are assigned to µi, as

µi = {j|j ∈ Fli} (7)

Note that Fli denotes the set of the li frequent features
of the cluster Ci.

We first compute the regional and global features using
CNN for each image in the database. The main reason of
computing regional and global features with CNN instead of
local features in this stage is that the images database may
contain dissimilar images, which should be assigned to differ-
ent clusters, computing local features with SIFT extractor such
as corners do not allow to determine such dissimilarities in an
efficient way. The feature vectors of the images database are
then grouped into several clusters using k-means algorithm.
The process starts by assigning randomly the images to the k
clusters and a centroid is computed for each cluster. Then, each
image is assigned to a cluster whose centroid is the closest to
that image using Eq. 5, 6, and 7. This process is repeated until
there is no further assignment of the images to the clusters.

2. Object Detection The aim of this step is to build the
object detection models, one for each cluster of images. We
used the regional convolution neural network [4]. For every
image in each cluster, regions of interests are determined and
passed onto the hidden layer where the Relu activation func-
tion is performed and the same process as CNN is followed.
In FastRCNN, the model performs better and more quickly
as the regions of interest are found using a selective search
method and all the regions of interests are found at once for
an image, unlike CNN which finds ROI (regions of interest)
and applies Relu on each ROI separately which is more time-
consuming and slower. In practice, the training images have
a high resolution, from 5.000 pixels to 100.000 pixels. As a
result, a millions to billions of region proposals have been
generated, which became the whole system very high time
and memory consuming, and in some cases, the system will
be bluntly blocked after several days and weeks of processing.
To deal with this issue, we propose a strategy to prune, and
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filter the number of bounding boxes. Two manufacturer data of
different categories, and allocated in the same frame should not
close from each other, for consequent two bounding boxes in
the same image should not be close to each other. Therefore,
we compute the similarity between each new bounding box
generated and the bounding boxes already generated. The
similarity between two bounding boxes is determined by the
number of pixels that separate these bounding boxes. We only
keep the bounding boxes, which gives high diversity of the
image. It means the minimal set of bounding boxes which
cover the maximum of pixels in the image. In addition, to well
optimize the hyper-parameters of the FastRCNN algorithm, we
used the particle swarm optimization in the whole process.
We chose PSO thanks to the efficient balancing between the
diversification and the intensification issues, which are both
important in hyper-parameter optimization. In the following
we present the main components of the PSO for solving the
hyper-parameter optimization problem.

a) Population Initialization: The initial population of the
particles are generated randomly from the entire solution
space, which represents the possible configurations of
the number of neighbourhoods of LOF, the number of
clusters of k-means, and the number of epochs, the error
learning rate for FastRCNN algorithm.

b) Particle Updating: Considering a swarm with P parti-
cles, there is a position vector Xti= (xi1xi2xi3 . . . xin)T

and a velocity vector Vti = (vi1vi2vi3 . . . vin)T at a t
iteration for each one of the i particle that composes
it. The particles update their positions in the solutions
using the velocity formula as follows:

V t+1
i = w × V t

i + c1× (pt −Xt
i ) + c2× (p∗ −Xt

i ) (8)

and
Xt+1

i = Xt
i + V t+1

i , (9)

where i = 1, 2, . . . , P . From Eq. 8, it shows that
two factors c1, and c2 contribute to the movement of
a particle in an iteration. pt is the position of the best
particle at iteration t, and p∗ is the position of the best
particle of all iterations. Furthermore, Eq. 9 is used to
update the position of a particle. The parameter w is a
positive constant value. This parameter is important for
balancing the global search, also known as exploration
(when higher values are set), and local search, known
as exploitation (when lower values are set).

c) Fitness Computing: The evaluation function of the
solution S will be the sum of both the classification,
and the regression rate of the FastRCNN algorithm on
the configuration made by S. The aim is to maximize
the following function:

Fitnessmax(S) = C(S) +R(S), (10)

where C(S) is the classification rate of the FastRCNN
on the configuration made by S, and R(S) is the re-
gression rate of the fast FastRCNN on the configuration
made by S.

D. Inference

The inference has the goal to detect the objects from the
input image. It benefits from the knowledge extracted in the
previous step, the features of the image query are extracted us-
ing CNN algorithm, we then determine the similarity between
each centroid, and the features of such image. The similarity
between two image features fi and fj , denoted as d(fi, fj),
is defined by their symmetric difference, i.e., the number of
all feature points in the two image features minus the number
of shared feature points in the two image features. Formally:

d(fi, fj) = |fi| − {|(pil, pjl)|,∀ l ∈ [1..|fi|]} (11)

Instead of using the whole models in the inference process,
we explore the clusters of the images according to their
similarity to this image. The search starts by exploring the
images of the most similar cluster to the image query, and
then we used the model learned from this cluster to detected
the object of the input image. In this step, different kind of
inference are generated, inference from computers, which we
send the trained model to the computers, and infer the model
from such computer for each new trajectories image data. We
can also use smartp hones which support Andorid, and GPU
computing to infer the group of trajectory outliers in real
time processing. In this context, several technologies could
be integrated such as TensorflowLite1.

Algorithm 1 CPOD Algorithm
1: Input: I = {I1, I2, . . . , In}: the set of images. q: the input

image for inference. IMAX: the maximum number of
iterations of PSO.

2: Output: O: the set of the detected objects of q.
************Training*****************

3: I ← CNN(I);
4: I ← LOF (CNN(I));
5: C ← kmeans(CNN(I));
6: models← ∅;
7: InitializationParticules();
8: iteration← 1;
9: while iteration ≤ IMAX do

10: for s=1 to k do
11: models ← FastRCNN(Cs);
12: gs ← centroid(Cs);
13: models← models ∪ {models, gs};
14: end for
15: EvaluateParticules();
16: UpdateParticules();
17: iteration← iteration+ 1;
18: end while

************Inference*****************
19: for s=1 to k do
20: model′ ← Similarity(q,models);
21: end for
22: O ← Searching(model′, q);
23: return O;

1https://www.tensorflow.org/lite
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Algorithm 1 presents the pseudo-code of the CPOD algo-
rithm. Note that LOF() is the local outlier factor algorithm
to remove outliers from images. CNN() is the feature ex-
tractors from images using the convolution neural network.
kmeans() is the the k−means function which groups the
set of features images in k clusters. FastRCNN() is the
function to identify objects from each cluster of images. We
remark that the training is the high time consuming task
which includes several loops, and several scanning of the
images database. However, the inference contains only one
loop, and needs scanning only the images for the relevant
clusters to the user query. However, the training is performed
only once, independently from the number of image queries.
The complexity cost of the inference depends to the number
clusters visited during the search process, noted l. Assume that
the cost of FastRCNN is O(n), then the complexity cost of
CPOD is O( l

kn). Ideally, only a single cluster is explored,
which costs O( 1kn), and in the worst case, all clusters are
explored, which costs O(n).

IV. PERFORMANCE EVALUATION

Extensive experiments have been carried out to evaluate
the performance of the proposed approach (CPOD) using the
challenging standard image databases VOC 2012, and a real
smart manufacturer data. Details of these image databases are
given in the following:

1) VOC 2012: The challenging VOC 2012 images
database [28] was used which contains 17, 125 images of
different objects, each image is represented by different
number of pixels, where the resolutions of the images
are high and more than 200 × 200 pixels per image.
This dataset contains 20 different classes. Each class
represents one category of objects such as person, bird,
cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus,
car, motorbike, train, bottle, chair, dining table, potted
plant, sofa, tv/monitor.

2) Smart Manufacturer Data: A motorcycle wheel produc-
tion line dataset was used as described in [9], this dataset
contains 4, 000 different images, each image contains a
wheel, each of which consists of three elements a rim,
a hub and spokes. There is 33 different types of wheel
in totals.

To evaluate the detected objects, computational runtime,
and accuracy represented by mAP (mean Average Precision)
are used. mAP is widely used metric to evaluate the object
detection systems, and it is defined as follows,

mAP =

n∑
i=0

AvgP (i)

n
, (12)

where n is the number of all objects to be detected, and
AvgP (i) is the precision at rank i, i.e., the first i ranked
objects is considered while the remaining objects are ignored.

All implementations are executed on a computer with i7
PC, coupled by a GPU graphics card, GeForce GTX 1070.
First, the training step is analyzed by tuning the parameters
of the particle swarm optimization. The best configuration of

CPOD is then compared to the state-of-the-art object detection
solutions, by varying both the number of images in the
database, and the number of images to be detected.

A. Parameters Setting
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Fig. 3. Parameter Setting of CPOD

The aim of this experiment is to tune the parameters of the
CPOD framework. Fig. 3 presents the quality of the objected
detection of CPOD algorithm using both VOC 2012, and
motorcycle wheel production line data. By varying the number
of iterations of the particle swarm optimization from 1 to 100,
and the number of particles from 10 to 100, the detection
quality of CPOD is increased, for both databases. The best
parameters of CPOD for both databases are illustrated in Table
I.

TABLE I
BEST PARAMETERS OF THE CPOD.

Parameters VOC 2012 motor. prod.
Number of Iterations 100 90
Number of Particles 20 50

Number of Neighbors 10 15
Number of Clusters 25 20
Number of Epochs 950 420
Error Learning Rate 0.005 0.002

B. CPOD Vs State-of-the-art Object Detection Algorithms

The aim of this experiment is to compare CPOD with
three baseline algorithms, FastRCNN [4], Park et al. [10], and
Yolo [29] in terms of accuracy and runtime. Fig. 4 present
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Fig. 4. CPOD Vs State-of-the-art Object Detection Algorithms: Accuracy
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Fig. 5. CPOD Vs State-of-the-art Object Detection Algorithms: Runtime

the accuracy of the CPOD approach on VOC 2012, and
motorcycle wheel production line image databases, compared
with FastRCNN [4], Park et al. [10], and Yolo [29]. By varying

with the number of images used as input, CPOD outperforms
the two baseline algorithms in terms of accuracy, determined
by mAP measure. In fact, the accuracy of CPOD exceeds
84%, where the accuracy of the other algorithms does not
reach 80%. This is explained by the fact that the CPOD
cleans the database before the learning process, the learning
is highly focused on similar clusters, and the parameters are
well selected using the particle swarm optimization. Fig. 5
present the runtime of the CPOD approach on VOC 2012, and
motorcycle wheel production line image databases, compared
with FastRCNN [4], Park et al. [10], and Yolo [29]. By varying
with the number of image queries from 1 to 10, 000 queries,
CPOD outperforms the two baseline algorithms in terms of
runtime. In fact, the runtime of CPOD does not exceed 250
seconds with handling 10,000 queries, where the runtime of
the other algorithms reach 1, 700 seconds with handling the
same number of user queries. This is explained by the fact that
the CPOD explores only the similar clusters for each image
query, where the whole images database is used by the state-
of-the-art object detection solutions, and for this for dealing
each image query.

TABLE II
CPOD VS STATE-OF-THE-ART OBJECT DETECTION ALGORITHMS:

TRAINING TIME (IN HOURS).

Algorithms VOC 2012 motor. prod.
CPOD 5.26 1.74

FastRCNN 6.75 2.38
Park et al. [10] 7.79 3.19

Yolo 5.71 2.05

Table II compares training time (hours) between CPOD,
FastRCNN, Park et al. [10], and Yolo. CPOD processes images
faster than FastRCNN, Park et al. [10], and Yolo algorithms.
This is mainly explained by the fact that CPOD efficiently
eliminates hundreds to thousands of bounding boxes in the
pre-processing step. Moreover, small number of similar images
are trained by each learner.

V. DISCUSSION AND FUTURE PERSPECTIVES

This section discusses the main findings from the applica-
tion of CPOD to the object detection problem.
• The proposed framework is not only able to identify

the objects from the images database, but studying the
different correlations and similarities between the images
and find out disjoint groups among them. In the context of
object detection, we argue that considering the clustering
techniques in the preprocessing step allows to quickly
identify the objects.

• From a deep learning research standpoint, CPOD is an
example of combining different methods to optimize the
learning process. In our specific context, outlier detection,
clustering, particle swarm optimization, and convolutional
neural network meet the object detection for exploring
the smart manufacturer data. This adaptation is imple-
mented in different phases, such as removing noises, find
similar clusters, learning process, and hyper-parameters
optimization.
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• Another finding of this study is that the learning process
benefits from the data preprocessing by using outlier
detection, clustering. Thus, each model learns from clean
and similar images, this accelerates the learning process,
by creating simple smaller models. Each model is de-
signed for identifying objects from homogeneous, and
similar images.

• The last observation is that the framework is generic
and could be applied in any computer vision problem,
contrary to the other algorithms, which can deal only
a particular computer vision problem. Object detection
problem illustrated in this paper is just an example of
application of our framework. Other computer vision
problems such as classification and others may be solved
by our framework.

Motivated by the promising results shown in this paper,
different directions may be investigated:

1) Improving the clustering step. k-means has been used
as clustering technique in this research work to split the
images database into different homogeneous and similar
clusters. Additional techniques can possibly be used for
improving the clustering process, and then reduce the
number of shared features among the images of different
clusters. Thus, an interesting topics for future work is
to integrate other clustering techniques into the CPOD
framework, such as intelligent hierarchical, overlapping,
or methods from other fields such as entity resolution
and/or record linkage. Another thing that can be done
is to find an appropriate mechanism to automatically
fix the number of clusters. Using several runs to find
the best value of the number of clusters is not very
efficient in practice. One way to address this issue is to
create a knowledge base containing each training images
database, with the best value of the number of clusters,
and then study the correlation between the meta-features
of the images databases (number of features, number of
images, luminous pixel values, etc.), and the best values
of the number of clusters. This can help to automatically
predict the best value of the number of the clusters of
the new images database.

2) Improving the learning step. We plan to boost the
performance of the CPOD and apply it to more complex
computer vision applications in the smart manufac-
turer environment by exploiting the high-performance
computing tools such as GPUs, supercomputers and
cluster computing. In this context, the aim is to cre-
ate independent job for each cluster of images by
respecting the high-performance computing challenges
including threads divergence, synchronization, commu-
nication, memory management, and load balancing. In
this context, strategies to deal with load balancing seems
promising. One way to address this issue is to develop
clustering strategies allowing to find out equitable clus-
ters in terms of number of images per cluster. Another
way is to develop new strategies for repairing clusters,
to find clusters with approximately the same number
of images. Applying CPOD on MapReduce is also an

alternative approach for improving both the training, and
the inference step.

3) Case studies. In this paper a case study of an application
of CPOD in the smart manufacturer data is shown.
Motivated by the promising results shown in this first
case study, we plan to extend CPOD for solving domain-
specific complex problems requiring learning from big
data. This can be found, for instance, in the context of
intelligent transportation applications or in the context
of medical data. Other potential use is the learning from
sensor data, notably for realtime applications related to
Internet of things and cyber-physical systems such as
road traffic management and related services, energy
management in smart buildings and smart grids, where
the learning process is required to be performed within
a very short latency [30].

VI. CONCLUSION AND FUTURE WORK

This paper presents the CPOD (Clustering with Particles
for Object Detection) framework. CPOD is used for solving
the object detection problem in smart factory environments.
The approach starts by cleaning the outliers using the local
outlier factor, which considered as noises on the learning step.
Next, the approach explores the different correlations between
the images and learn from similar clusters, which allows to
create more focused models, one for each cluster. Particle
swarm optimization is used as well to optimize the parameters
of CPOD during the preprocessing as well as the learning
steps. To evaluate the CPOD framework, intensive experiments
have been carried out on two image retrieval databases; one
standard database (VOC 2012) as well as one real smart
factory dataset (motorcycle wheel production line data). The
results achieved are very promising compared to baseline
object detection solutions in terms of both a faster runtime
as well as higher accuracy. As future avenues of research,
we plan to investigate other intelligent techniques in order
to improve the CPOD framework and make it competitive
and applicable for real-world applications. In the future, the
modified CPOD prototype should be designed to deal with
complex scenarios in smart manufacturer data, where objects
may move continuously within short video frames.
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