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Intelligent Signal Classification in Industrial
Distributed Wireless Sensor Networks-Based IIoT

Mingqian Liu, Member, IEEE, Ke Yang, Nan Zhao, Senior Member, IEEE, Yunfei Chen, Senior Member, IEEE,
Hao Song, and Fengkui Gong, Member, IEEE

Abstract—In industrial sensor networks, complex industrial
environments may be encountered leading to a mix of signals
of different types. Complicated interference caused by mixed
signals on industrial equipments may significantly degrade the
classification rate of signals, which may result in a long training
time in order to extract features. In addition, with limited channel
resources, it is difficult to make the global optimal decision
in industrial distributed wireless sensor networks (IDWSN). To
address this problem, a signal classification method using feature
fusion is proposed for industrial Internet of things (IloT) in this
paper. In the proposed method, the received signals of nodes are
processed by frequency reduction and sampling pretreatment,
based on which intelligent representations of signals are obtained.
Using federated learning, the data samples are trained with the
feature fusion network. Moreover, the trained deep learning
network is used on each sensor node to classify signals, the
results of which will be transmitted to aggregation center. In the
aggregation center, the improved evidence theory method is used
to aggregate the recognition results of each sensor node to achieve
the final classification. Simulation shows that the proposed
method has excellent classification performances. Notably, it is
not required for the proposed method to transmit signals from
nodes to the aggregation center, which could effectively protect
the privacy of industrial information.

Index Terms—Industrial Internet of things, industrial dis-
tributed sensor networks, signal classification, feature fusion,
federated learning, alpha-stable noise

I. INTRODUCTION

NDUSTRIAL internet of things (IloT), integrate Internet,
new-generation information technology and industrial sys-
tem. In IIoT, a various of entities and front-ends, such as
machines, raw materials, control systems, information sys-
tems, products and people, are interconnected. A number
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of advanced technologies are needed to facilitate efficien-
t and reliable IIoT networks, including the comprehensive
deep perception of industrial data, real-time transmission and
exchange, rapid computing process and modeling analysis
for intelligent control, operation optimization and production
organization mode change [1]-[2]. The birth of industrial
distributed wireless sensor networks (IDWSN) technology has
further promoted the development of IIoT. IDWSN is able
to overcome many problems in traditional field bus technolo-
gies and industrial Ethernet technologies. Furthermore, the
significant advantages of IDWSN, such as massive nodes, the
wide-range distribution, multiple data transmission paths, and
simple network layout, result in a wide range of applications
[31-[5].

One key and enabling technology of IDWSN is wireless
signal classification, which is used to identify the modula-
tion information of wireless signals. Wireless signal clas-
sification is essential in many applications, such as signal
demodulation, suspicious transmission monitoring, anomaly
detection, and interference localization [6]-[7]. In a distributed
network, propagation and radio environments vary fast with
great randomness. Even for the same signals, transmissions
at different times may generate different signals observed at
a receiving sensor. Moreover, since all users operate in a
distributed fashion without centralized control, interference
in such an environment will become uncontrollable and un-
predictable. The artificial noise, such as alpha-stable noise,
will worsen this issue by causing considerable interference to
industrial signals. To achieve the global optimal hypothesis
testing, it is required that the complete observation data are
transmitted to the primary node without loss. However, the
limitation of channel capacity in sensor networks makes this
not possible [8]. To cope with this local signal processing
can be utilized in a complex industrial environment for the
purpose of effective signal classification out of mixed signals
with various modulation methods, frequent parameter changes,
and strong interference. Artificial intelligence has been widely
used in signal classification [9]-[10]. The signal classification
leveraging artificial intelligence has been proven effective to
address the problems of signal classification.

Deep learning, as a powerful and efficient artificial intelli-
gence technology, has unique technical advantages and could
bring in significant performance gains in many application and
fields, such as accuracy, efficiency, and robustness [11]-[13].
With deep learning, complex machine learning algorithms
can be efficiently realized with the preferable performance.
Recently, deep learning has been utilized to develop electro-
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magnetic signal recognition methods. In [14], the bispectrum
estimation of the electromagnetic signal and the sparse self
encoder were applied in identifying signals. However, this
method cannot guarantee the global optimization in the consid-
ered model. In [15], a signal recognition method was designed
based on the wavelet fuzzy neural network method to address
the problem caused by various types of noise. Unfortunately,
this method does not perform well in convergence speed and
is easy to end in local extremum. In [16], the performance
of different deep reinforcement algorithms in resource allo-
cations is discussed. Most existing classification algorithms
depend on a strong assumption of the Gaussian white noise,
which is normally unrealistic in industrial applications with
complicated and mixed signals. With alpha-stable noise, the
modulation classification of signal is very challenging. In
[17], a joint estimation algorithm based on the generalized
cyclic spectrum is proposed. In [18], a new method based
on explicit countless cost function and global optimization is
designed. The authors in [19] put forward a modulation type
classification method using sparse signal decomposition (SSD)
of additive mixture Gaussian noise and impulse noise with an
over complete mixture dictionary.

In an environment of industrial distributed networks, the
main challenge exists in the training of learning model, where
nodes have to transmit data for global optimal classification
performance. To support distributed learning system, enor-
mous resources are required for signal processing and data
exchange. However, due to the scarcity of channel resources,
how to use limited resources to effectively execute distributed
learning is a key issue. Different from the existing methods,
where data need to be delivered from nodes to a main server
for training and learning, we will use distributed data that
collected and stored on multiple edge nodes to train machine
learning model as federated learning. With federated learning,
the privacy of users’ personal data can be protected, and
the signal classification could be improved by deep learning
technologies. In view of these tremendous benefits, federated
learning has been deemed as a promising technology in
IDWSN signal modulation classification, vehicular Internet of
Things and other fields [20].

In this paper, a novel wireless signal classification frame-
work leveraging federated learning is proposed. The main
contributions of this paper are summarized as follows:

o We propose a feature fusion network, where the deep
information of intelligent representation is fused with the
shallow information at different levels. The deep feature
fusion structure will also be used as the input of the
shallow feature fusion structure, expanding the amount of
feature information. The shallow feature can encompass
part of the deep feature information for the recognition
accuracy improvement.

o The neural network based on feature fusion is developed
for the signal detection of distributed sensors. Compared
with existing methods, this structure can automatically
learn and extract features. Moreover, the classification
performance can be improved without affecting the trans-
mission performance.

o Federated learning is employed for learning and recogni-
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Fig. 1: System model of signal classification in IDWSN-based
IoT.

tion in distributed networks, which solves the problem of
bandwidth limitation and protects the privacy of data. D-
S evidence theory is adopted to aggregate the recognition
for classification performance enhancement.

The rest of this paper is organized as follows. The system
model of signal classification for IDWSN is shown in the
Section II. In Section III, the intelligent representation of
electromagnetic signals is presented. Federated learning on
distributed sensors is developed in Section IV. In section
V, specific experiments are given to verify the classification
performance. Finally, Section VI show the main research
findings of this paper.

II. SYSTEM MODEL

As shown in Fig. 1, system model of signal classification in
IDWSN-based IIoT is considered in this paper, which consists
of one transmitter and multiple parallel sensor nodes. In an
IDWSN, wireless signals are broadcast by transmitters and
sent on parallel channels that experience independent channel
noise. In order to reduce channel resource consumption and
protect privacy, signals need to be processed and classified
locally on sensor nodes, and the wireless signals s(k) received

on distributed sensor nodes can be expressed as
s(k) =x(k) +e(k),k=0,1,...N — 1, (1)

where e(k) represents artificial noise in IDWSN, which can
be described as the alpha-stable noise. Alpha-stable noise is
expressed as characteristic function:

p(t) = exp{jot — y[t|*[1 + jfsgn(t)w(t, a)]  (2)

where
1, t>0,
sgn(t) = 0, t=0, 3)
-1, t<O0,
| tan(an/2), a#1,
o0 = { ot a1 @

0 < a < 2 stands for the characteristic index, v > 0 is the dis-
persion parameter and —1 < 5 < 1 is the index of skewness,
J represents the location parameter. x(k) are wireless signals,
which are comprised of amplitude modulation (AM) signal,
frequency modulation (FM) signals, binary phase shift keying
(BPSK) signals, quadrature phase shift keying (QPSK) signals,
8 phase shift keying (8PSK) signals, 2 amplitude shift keying
(2ASK) signals, 4 amplitude shift keying (4ASK) signals, 2
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frequency shift keying (2FSK) signals and 4 frequency shift
keying (4FSK) signals.

In the analog modulation type, the modulation signal can
be expressed as

s(t) = Acos[2m fet + H(t) + ¢o], 5)

where A represents the instantaneous amplitude of the signal,
fe stands for the carrier frequency, ¢g denotes the modulation
phase and @ is the carrier initial phase. AM modulation signal
can be expressed as

A =mg+my, (6)

where m; denotes the baseband modulation signal and m rep-
resents the DC component. FM modulation signal is expressed
as

A=1 @)

For digital modulation signal, whose baseband waveform
can be expressed as follows

= ang(t— kT), ®)

where a,, is the symbol sequence sent by the transmitter, g(¢)
stands for the equivalent filter including shaping filter, channel
filter and matching filter. Different types of modulation have
the different symbol sequence renderings. MPSK signals can
be written as

s(t)

where ¢; denotes the phase modulation function, which is
given by

= Aelrfettei) 9)

i =2 0=0,1,..,M—1, (10)
MASK signals are expressed as follows
s(t) = Ael?rFet) (11)
MFSK signals can be expressed as
s(t) = el (wet2mhit) (12)

where f; denotes the modulation frequency.

III. INTELLIGENT REPRESENTATION OF WIRELESS
SIGNALS

A. Generalized Envelope Square Spectrum

Since the alpha-stable noise does not have the second-order
or higher-order statistics, the signal disturbed by alpha-stable
noise do not have the effective envelope square spectrum. The
main reason is that there is a large impulse pulse, resulting in
a large amplitude in the disturbed signal, so it is necessary to
preprocess the signal by

_ (tre=mmmemr — La(t)
R TE )

where H(.) denotes the Hilbert transform. The signal of any
point can be written as x(t) = r cosf, so we can obtain

1) rcos B ( 9

13)

(# _
1+ef"r'e]9|

f (rcost) = P

(14)

Trer 1> cosb,
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Fig. 2: Generalized envelope square spectrum of AM and FM.

T [—1, 1]. Therefore,
the above functions can map the amplitude of the processed
signal to a range of [—1,1], and do not change the phase
information of the signal.

The square of the processed signal envelope can be ex-
pressed

where the value range of ( —2 — 1) 18

u(t) = a* (t) = f(2)* + H[f ()]".

Using classical spectrum estimation to estimate the power
spectrum of the signal as follows

15)

2

P(w) = ; (16)

LAENES

where Uy (e?) is Fourier transform of the N-point observa-
tion data of U ().

B. Fractional Lower Order Cyclic Spectrum

Fractional low-order moment is a powerful tool for analyz-
ing and processing non-Gaussian signals. If the characteristic
index of random signal is alpha, the fraction low-order mo-
ment of the signal x(t) with alpha-stable noise is defined as

C(p, )™,

where p represents the fractional factor, whose value range is
0 <p<a<2 C(p,a)is aconstant related to p and a. There
are two methods of calculation for signal cycle spectrum based
on low-order fractional moments as follows: one is based on
covariance and the other is based on the low-order covariance
of fractions. On the basis of fractional lower moment, the
definition of p-order covariance of x(t) can be expressed as

E[|IX|"] = (17)

Z)<p—1>}7

2
where 7 denotes the time delay, p stands for the order factor,
and its value range is [1,]. « is the characteristic index of
alpha-stable noise, and its value range is [1, 2]. If COV, (¢, 7)
is a periodic function of ¢, it is expanded into a Fourier series,
and the coefficient of the Fourier series is the fractional low-
order cyclic autocorrelation function of the signal, which is

expressed as
I
e—j27\'€t> ,

where e represents the cyclic frequency of order p. By per-
forming the Fourier transformation of RS ,(7), we can obtain

COV, ,(t,7) = Ela(t + %)x*(t - (18)

T (p—

R () = <x(t i %)J;*(t -3 (19)
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Fig. 3: Fractional lower order cyclic spectrum of 2ASK and
4ASK.

the fractional low-order cyclic spectral density function of
signal x(t) as
+oo

a R;p(T)e_ﬂ”fth,

SNOEN

where f stands for the normal frequency. Obviously, when the
order factor p = 2, the fractional lower order cyclic spectral
density function is the second order cyclic spectral density
function.

The fractional lower order cyclic spectrum of MASK signal
can be expressed as follows

(20)

ELQU + fo+ 2)Q (f+ fo— £)
+Q(f = fo+ 5)Q(F = fo— 3, e=m/T
Se =\ QU+ o+ QU+ fo—5), e=—2fo+m/T
QU — fo+Q(fF—fo—2), e=2fo+m/T
0, other

21
and the fractional lower order cyclic spectrum of MFSK signal
can be expressed as

EP
2 QU+ S+ (f+fo—5) o= por
Tor-pr -l T
o] mleU+h+s)
-z = Q*(f + fo— %)eﬂ[%(a+2fo)] e=12fo
—Q(f = fo+73) +m/2T
Q(f = fo = 5)e a2,
0, other

(22)
The fractional lower order cyclic spectrum of BPSK signal
is
SO + o+ 5)Q7(f+ fo— )
QU fo+3)Q° U = Jo— 5],
QU + fo+ 2)Q" (f—fo — §)e~ /%0
+Qf = fo+ §Q (F+fo — 5)e ],

e=m/T

other

(23)
and the fractional lower order cyclic spectrum of MPSK (M >
4) signals can be written as

[ #RUA D+ fo—5)
Se={ +QU ~fo+$Q(f ~fo- 5], e=m/T
0, other

24)

IV. SIGNAL CLASSIFICATION BASED ON FEATURE FUSION
AND FEDERATED LEARNING IN IDWSN
A. Feature Fusion Based on DenseNet

In traditional CNN layers, input « is mapped to F'(x), and
then F(z) is used to fit the target distribution. But ResNet

e =42fo +m/T

cyclic spectrum of 2FSK and
4FSK.

5 2

Fig. 5: Fractional lower order cyclic spectrum of BPSK, QPSK
and 8PSK.

connects the input directly to the output layer through a bypass
between the input and output, so that the object to be fitted
by the layer changes from F'(z) to G(x). In abstract, such a
connection makes the layer only need to fit 0, which greatly
reduces the problem of gradient disappearance of the deep
network in the learning process. DenseNet goes further and
lead into the concept of Densenlock. In a DenseBlock module,
the input of each layer comes from the output of all previous
layers of this layer. The basic structure of DenseNet is shown
in the Fig.6.

DenseBlock1
S %t St bd

DenseBlock1
Um0 v® _v® »0

| AUOD)

\‘ v”\\/‘;—»

i

Fig. 6: Basic structure of DenseNet.
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From the Fig. 6, we can see that DenseNet will first make a
convolution for the input tensor with the kernel size of [7 x 7]
and the step size of 2. Then make the maximum pooling with
the kernel size of [3 x 3] and step size of 2. After that, there is
the alternate connection between DenseBlock and Transition
Layer. Finally there is a classification layer with [7 x 7] global
average pooling, 1000 full connections and SoftMax. The
Transition Layer is composed of BN layer, [1 X 1] convolution
layer and [2 x 2] average pooling layer to reduce the number of
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Fig. 7: Structure of DenseBlock.

feature maps. If a DenseBlock outputs m characteristic graphs
and inputs the Transition Layer, then the Transition Layer will
output #m characteristic graphs, where 0 < 6 < 1 is the
compression factor. In this paper, = 0.5 is taken, that is, the
number of channels to the next DenseBlock will be reduced by
half after the transition layer compression. At the same time,
in order to avoid overfitting, dropout operation is also used
to reduce branches randomly. The structure of DenseBlock is
shown in Fig.7, each two layers are connected by BN-ReLu-
Conv, where Conv includes a [1 x 1] convolution and a [3 x 3]
convolution operation.

In the traditional convolutional neural network, if the net-
work has L layer, then there will be L connections. But in
DenseBlock, the output of previous layers can be used as the
input of each layer, that is, the input of [th layer comes from
the output of all the previous [—1 layers. One of the advantages
of DenseNet is that the network is narrower, the parameters
are less, and a large part of the reason is due to the design
of DenseBlock. In DenseBlock, the number of output feature
maps of each convolution layer is exceedingly small (< 100),
far less than other networks which have hundreds of feature
maps. At the same time, this connection makes the transfer
of features and gradients more effective, so the network is
easier to train. And since each layer of DenseBlock is directly
connected with input and loss, the gradient disappearance can
be alleviated. In addition, this DenseBlock has the effect of
regularization, which has a certain inhibitory effect on the over
quasi contract samples. In this paper, four DenseBlocks are
used in the networks, the first is 6 layers, the second is 12
layers, the third is 24 layers, and the fourth is 16 layers. Based
on DenseNet, this paper presents a feature fusion networks,
whose structure is shown in Fig. 8. The feature fusion layer
is added to the original network. The feature fusion layer
is mainly used to combine the deep information of input
data intelligent representation with the shallow information
in different degrees, so as to expand the amount of feature
information, the shallow features can also contain part of the
deep feature information to improve the recognition accuracy.

The structure of feature fusion layer is shown in the Fig.9.
There are four feature fusion structures in the networks, which
are mainly divided into three types as follows: 1) For the third
feature fusion structure from left to right, input layer 1 and
input layer 2 are the output of last two convolution layers.
Input layer 2 is the deeper convolution layer in the whole
network. Usually the feature dimension of input 2 is smaller,
so we connect with the deconvolution layer to increases the

| e }_'| Do }_'-_’

Fig. 9: Structure of feature fusion layer.

dimension size of the feature. And then the features of the
two layers are processed by unit operation layer Information
fusion. 2) For the first two feature fusion structures, input
layer 1 is a shallow convolution layer for classification, and
input layer 2 is the output layer of the previous feature fusion
structure, which also passes through the deconvolution layer.
Then we connect two layers through the unit operation layer,
so that the shallow feature map integrates the information
of multiple deep feature maps to a certain extent during
prediction. 3) The last feature fusion structure is to combine
the previous fusion features. In order to operate the unit,
convolution or deconvolution is also needed to ensure the
size of the feature. The purpose of unit operation layer is
to combine feature maps which have the same size. We can
point multiplied, added and subtracted, maximized or spliced
the corresponding elements of the two layers. In this paper,
we choose the splicing operation. The feature map is spliced
according to the fourth dimension of it. The spliced feature
map keeps the same size of the original map, but the number
of channels is the sum of input channels. At the same time, in
order to avoid too much data, [1 x 1] convolution kernel can
be used to reduce the number of characteristic channels.

From the above analysis, the steps of feature fusion based
on DenseNet is summarized in Algorithm 1.

Algorithm 1 The steps of feature fusion based on DenseNet.

1: The feature matrix of size [224 x 224 x 2] is put into the
feature fusion network, and set the number of convolution
kernel channels K, convolution layers N in DenseBlock
and compression factor 6 in Transition Layer;

2: Carry on 7 x 7 conv with step 2 and 3 x 3 maxpool with
step 2;

3: The output features x obtained in the second step
are through the structure of DenseBlockI-Transition
Layer1-DenseBlock2-Transition Layer2-DenseBl- ock3-
Transition Layer3-DenseBlock4. The output of the ith
Transition Layer is recorded as x;;

4: Fuse x and x3. Deconvolution the fusion results to the
same size with x9 and fuse them. Then deconvolution the
fusion results with x; and fuse them to get the final fusion
features;

5: [7 x 7] global average pool and 1000D full-connected;

6: Use SoftMax classifier to get finally result.

B. Signal Classification Based on Federated Learning

In a distributed sensor network, the unknown transmission
data sequence is broadcast by the transmitter and transmitted
on a parallel channel experiencing independent channel noise.
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It is assumed that each sensor has the same number of
observations and all the sensors in the network collect and
process the noisy data series at the same time. Due to the
variations of propagation and transmission environments, even
if the transmitter sends the same signal, different signals may
be observed on the receiving sensor. To reach the global
optimization of hypothesis testing, the complete sensor ob-
servation data are required to be collected by the master node.

This is a strong and unrealistic assumption, as limitation of
channel capacity in sensor networks makes the master node
impossible to obtain a complete set of original observations.
In order to reduce the requirement of channel bandwidth, local
sensors are deployed to have the relevant chip, so that the sig-
nal processing can be completed locally. The following details
the federated learning on the distributed sensor network, which
is divided into training and testing. The structure of federated
learning process in IDWSN is shown in Fig.10.

The data is sent out by the transmitter and reaches the
sensor in the network through the parallel channel. Each
sensor node has set up the neural networks but has not been
trained. After each sensor receives the signal, its intelligent
representation is calculated and put into network training.
Different from the traditional training, after getting the loss
function of this training, we do not rush to the next step of
gradient optimization but send the loss function of each node
to the aggregator. Then aggregate the results according to some
rules and return them to each node, and then each node uses
the global loss function for gradient optimization to achieve the
goal of global aggregation. Then it repeats until the global loss
function reaches an ideal state. This can not only improve the

quality of the model, reduce the channel resource occupation,
but also effectively protect the privacy of the data.

The loss function and the batch size of all sensors are sent
to the aggregator for aggregation and the aggregator receives
the data of NV sensors. According to the weighted average, the
loss function after aggregation can be expressed as follows:

N
Z Llossi X bz
i=1

Lloss =~

N
> bi
=1

where L;,ss is the loss function after aggregation, Ljss, 1S
the loss function of the ith sensor and b; is the batch size
of the ith sensor. These results are sent back to each sensor.
After receiving the aggregator’s return, each sensor uses the
global loss function to continue to train the local network,
and repeats until the loss function tends to be stable or the
accuracy reaches the ideal value.

Each sensor uses gradient descent to update the network
locally, then the local update in the ¢th sensor is carried out
as follows:

(25)

wl(t) = wi(t — 1) — nVFi(wi(t — 1)), (26)

where 7 > 0 is the learning step, and the model parameter
W is updated along the negative gradient direction following
F;. In [22], this method has been proved to have global
convergence and good convergence performance for convex
optimization problems.

From the above analysis, the training process of feature
learning are given by algorithm 2.

Algorithm 2 Training process of feature learning.

1: The received signal is intelligently represented and obtain
the two channel characteristic matrix;

2: The feature matrix is used to train the neural network
locally. After get the cross entropy loss function of each
batch, send the loss function to the master node;

3: The main node merges the loss function from each node
and returns the result to each node;

4: The node uses the received loss function for gradient
descent training to complete the network training.
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C. Multi-source Classification Fusion in IDWSN

The structure of the classification fusion is shown in the
Fig.11. After each node receives signals, signals are classified
locally by using the trained networks. We use SoftMax as the
classifier, so the probability of each node’s decision-making
results can be obtained. And Then it is transmitted to the
aggregator for aggregation to get the final classification results.
This paper uses D-S evidence theory for aggregation, and we
will introduce the specific steps as follows.

In this paper, we classify 9 different types of signals, so
O = {01,0,,...,69} is taken as the classification framework,
where 61,05, ...,y represent 9 signal categories, respectively.
We use m;(f;) to denote the probability that the signal is
6; in the classification results of the ith sensor. Then the
set vector of the independent basic probability distribution of
evidence generated by the ith sensor classification result is
M; = {m;(61),m;(62),...m;(612)} and M; is in the same
way. Evidence theory uses evidence conflict degree to fuse
evidence. The common expression methods of conflict degree
include conflict coefficient, evidence distance, cosine similar-
ity, etc. The evidence distance dis;(M;, M;) is usually used
to describe the degree of difference between two evidences
measured by the sensor as a whole, which can express as

dis (M;, M;) = \/O.S(Mi — M))"D(M; — M;), (27

where ¢, = 1,2,...,N, M;,M; are the set vectors of
evidence basic probability assignment of sensor node 7 and
7, respectively. N represents the number of the sensors. D
stands for n X m matrix, which is called Jaccard coefficient
and can be expressed as

dir diz din
doy  dop -+ don

D= ) ) ) ) ) (28)
dyi de dnn

where d;; = |[AN B|/|[AUB|, A,B € O and || is used
to calculate the cardinality of a set. The evidence distance
dis j(M;, M;) also meets the following conditions

« Non-negativeness:dis j(M;, M;) > 0;

o Non-degeneracy:dis ;(M;, M;)= 0 < M;=M;;

o Symmetry:disj(M;, M;)=dis;(M;, M;).

The trust degree between evidence can be calculated as

Xij = 1 — diS](Mi, Mj), (29)

so their reliability matrix is

1 X12 X1N
X21 1 X2N
x=1 " . . (30)
XN1 XN2 v 1

From the above matrix, we can calculate that the credibility
of the evidence of sensor node 7 to other nodes is

n

j=1,5#i
Normalize the credibility one by one, then we can get their
respective weights as follows

_ Sup(M;)

i = N :
Zl Sup(M;)
J=

3D

(32)

Finally, using the above weight to fuse the evidence, the
probability m(6;) of each classification is

N
m(@l) = ij X mj(ﬁi) (33)
j=1
where M = {m(01),m(0z),...m(012)} denotes the final
classification result.
The signal classification algorithm based on federated learn-
ing in IDWSN-based IIoT is summarized in Algorithm 3.

Algorithm 3 Signal classification based on federated learning
in IDWSN.

1: The received signal is intelligently represented, and obtain
the two channel characteristic matrix;

2: The feature matrix is input into the trained feature fusion
network for local recognition. Use SoftMax classifier
to obtain the set vector of basic probability M; =
{m;(01),m;(02),...m;(6g)}, and send it to the main node;

3: After the master node receives the set vector of basic
probability distribution from each node, use D-S evidence
theory to get the weight of each node vector;

4: Fuse set vector of basic probability distribution by weight
and obtain the classification results.

The details of Algorithm 3 can be discussed as fol-
lows: main node is to receive the set vector M; =
{m;(01),m;(02),...m;(612)} of independent basic probability
distribution of evidence generated from the classification re-
sults of each sensor, and then use (28) to obtain the trust degree
between each node and form the reliability matrix shown in
(29), and combine (30) and (31) to obtain the weight of each
result to get the final classification results.

V. SIMULATION RESULTS AND ANALYSIS

To demonstrate the effectiveness and superiority of the
proposed method, simulation experiments are conducted in
this section. Nine types modulation signals are considered,
including AM, FM, BPSK, QPSK, 8PSK, 2ASK, 4ASK,
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TABLE I: Classification performance with the different number of DenseBlocks and revolution layers.

Revolution layers
3 4 5 6 7 8
DenseBlocks
3 82.87% | 84.91% | 85.45% | 87.70% | 87.75% | 87.84%
83.5% 85.4% 86.29% 88.9% 88.99% | 88.47%
5 83.56% | 85.57% | 86.46% | 88.21% | 88.24% | 88.77%
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Fig. 12: Classification performance of different signals versus
different GSNRs.
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Fig. 13: Classification performance of different o versus
different GSNRs.

2FSK and 4FSK. The simulation parameters of nine types of
wireless signals used in this simulation are: frequencies of
2FSK signals are 20MHz and 40MHz, frequencies of 4FSK
signal are 15MHz, 25MHz, 35MHz and 45MHz, respectively.
The carrier frequency of other signals is 30MHz. The pulse
width is set to 10 and the sampling frequency is 120MHz. The
number of samples used in training and testing of each type
of signals are 10000 and 1000, respectively.

Tab. 1 shows the classification performance of signals under
different DenseBlocks and revolution layers. It should be
noted that the table shows the number of layers in the first
DenseBlock, and the number of layers in the second, third,
fourth and fifth DenseBlocks is 2, 6, 9 and 8 times of the first.
From Tab. 1, when the number of DenseBlock is 4 and there
are 6 layers in the first one, the classification performance
tends to be stable. Increasing the number of neurons will
not significantly increase the performance, or even slightly

Classification Correct Rates(X100%)

0 2 . 6 s
GSNR(dB)
Fig. 14: Classification performance of different 8 and J versus
different GSNRs.
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Fig. 15: Classification performance of different roll-off factors
versus different GSNRs.

decrease.

Using the network structure with the best performance
obtained above, this neural network has four DenseBlocks and
the number of convolution layers of each DenseBlock is 6,
12, 36 and 54. Fig. 12 shows the classification performance
of different types wireless signals versus different GSNRs.
According to the Fig. 12, the average classification rates are
greater than 85% when the GSNR is greater than 5 dB. When
the GSNR is more than 10 dB, the classification rates can
reach more than 90%, so the proposed signal classification
method is effective and feasible.

Fig. 13 shows the classification performance with different
alpha-stable noise characteristic parameter o values. From the
Fig. 13, the classification performance will gradually improve
with the increase of . However, the classification performance
improvement is exceedingly small when « is greater than 1.5.
The proposed method has better classification performance for
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Fig. 16: Classification performance compare with different
deep networks in Gaussian noise environment.

non-Gaussian noise and is also robust to the characteristic
parameter o.

Fig. 14 shows the classification performance with different
(£ and 6. From Fig.14, ¢ has a great impact on classification
performance. With the increasing of J, the accuracy of classi-
fication is decreasing, and the decreasing speed is faster. We
also carried out the classification performance with different
roll-off factors, and the results are shown in Fig. 15. From
Fig. 15, we can see that the roll-off factor has a great impact
on the classification performance under low GSNR, but the
impact is smaller with the increasing of GSNR. When GSNR
is greater than 10dB, the effect of roll off coefficient has been
reduced to less than 5%.

Under the same simulation experiment environment and
parameter settings, we compare the classification performance
of the proposed method in Gaussian noise environment with
that of the method based on ENN in [21] and the comparison
results are shown in Fig. 16. From Fig. 16, we can be seen
that the proposed method has better performance than that in
[21] when the SNR is less than 5dB. In addition, the proposed
method is suitable for signal classification in Gaussian noise
environment.

In the same simulation environment and the same signal
parameter settings, feature fusion network based on Dense-
Blocks is compared with the method in [19] and DenseNet
without feature fusion with o = 1.2, and the comparison results
are shown in Fig. 17. The average classification rate of the
proposed method is significantly higher than other methods
when the GSNR is less than 10 dB. The computational
complexity of the proposed method as follows: the complexity
of intelligent representation is O(K N log N), where K is the
number of data segmentation; the complexity of federated
learning is O(K M), where K denotes the total number of
global aggregation executions and M represents the number
of nodes, respectively; the complexity of the feature fusion

D
network is O(>" M?-K? - Cy_1 - C}), where D stands for the

depth of the flg%work, M; denotes the length of the output
feature side of the Ith layer, K, represents the size of the
convolution core of the Ith layer, and Cj is the number of
output channels of the [th layer.
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Fig. 17: Classification performance compare with different

methods.

VI. CONCLUSION

To cope with complicated wireless signals in industrial
Internet of things, an intelligent signal classification frame-
work is developed in this paper. To extract accurate fea-
tures that can fully represent the characteristics of wireless
signals, the generalized envelope square spectrum and the
fractional low-order cyclic spectrum are obtained through
the intelligent representations of wireless signals. Then, the
feature fusion neural network based on DenseNet is used
to classify the signals locally on sensors receiving signals.
Furthermore, the federated learning is used to fuse the learning
process and recognition results of each sensor node in order
to recognize the modulation recognition of signals. Finally,
extensive simulation studies have been carried out to verify the
effectiveness of the proposed framework. Simulation results
show that the proposed framework possesses an excellent
signal classification performance in industrial distributed wire-
less sensor networks, which significantly outperform that of
the existing methods using sparse signal decomposition. In
this paper, the aggregation frequency has optimization space.
It can be considered to dynamically adjust the aggregation
frequency according to some rules, to further reduce resource
consumption without affecting performance.
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