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An Effective Deep Neural Network for Lung
Lesions Segmentation From COVID-19
CT Images
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Abstract—Automatic segmentation of lung lesions from
COVID-19 computed tomography (CT) images can help to
establish a quantitative model for diagnosis and treatment.
For this reason, this article provides a nhew segmentation
method to meet the needs of CT images processing un-
der COVID-19 epidemic. The main steps are as follows:
First, the proposed region of interest extraction implements
patch mechanism strategy to satisfy the applicability of 3-D
network and remove irrelevant background. Second, 3-D
network is established to extract spatial features, where
3-D attention model promotes network to enhance target
area. Then, to improve the convergence of network, a com-
bination loss function is introduced to lead gradient opti-
mization and training direction. Finally, data augmentation
and conditional random field are applied to realize data
resampling and binary segmentation. This method was as-
sessed with some comparative experiment. By comparison,
the proposed method reached the highest performance.
Therefore, it has potential clinical applications.

Index Terms—Conditional random field, COVID-19, data
augmentation, deep network, lung lesions segmentation.
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[. INTRODUCTION

INCE December 2019, a new coronavirus pneumonia

(COVID-19) has constituted a global epidemic threat. It
is highly contagious and spreads quickly, causing huge damage
to the world health and economy in the short term. As of January
11,2021, COVID-19 has spread to more than 191 countries and
regions around the world, with a total of 90 216 381 confirmed
cases, 1 933 487 cases involving deaths, and a mortality rate
of about 2.14% [1]. Commonly, viral nucleic acid testing, gene
sequencing, and viral antibody serological testing are the gold
standard methods for the diagnosis of COVID-19 [2]. However,
due to technical limitations, it is impossible to quickly and
accurately screen suspected cases. Computed tomography (CT)
imaging diagnosis can detect some suspected features, such
as single or multiple ground glass-like lesions, solid lesions,
and thickened leaflet intervals [3]-[5]. In addition, chest CT
examination has the advantages of short time, 3-D structure and
high sensitivity, it is currently one of the routine auxiliary ex-
amination methods for the screening, diagnosis, and evaluation
of COVID-19 [6], [7].

At present, CT imaging diagnosis for COVID-19 depends on
the clinical experiences of radiologists [8], [9]. The professional
level and the personal judgment of different doctors dominate
the inconsistent diagnosis [10]. In addition, radiologists and
specialists need to browse more than 300 CT slices of each
patient to diagnose and analyze COVID-19 lesions. Because
of the pandemic and the shortage of medical resources, the
efficiency and accuracy of disease diagnosis present serious
challenges [11]-[13]. By CT images segmentation, intuitive
3-D structures and accurate digital models can be obtained
[14]. It can quickly locate suspicious COVID-19 lesions and
calculate quantitative data, such as volume, shape, and density
of the lesions. Thus, it is possible to reduce the burden on
doctors and improve work efficiency. It also reduces the time
that high-risk patients stay in the hospital to wait for the CT
examination results, thereby avoiding cross infection [15]. But
the lung lesions of COVID-19 are usually complex with no
obvious regularity [16], [17]. Fig. 1 shows the coronal slices of
two sets of CT images. In order to show clearly, lesions part was
enlarged locally, where one of them reveals that lesions adhere
to tissues and vessels [see Fig. 1(a) and (c)]. Another is lesions
which grow into sprawling [see Fig. 1(d) and (f)]. Thus, how to
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Fig. 1. CT images of a COVID-19 infected lung. (b) and (e) are the
original CT images; (a) and (d) represent the local enlargement of the
right lungs; (c) and (f) represent the local enlargement of the left lungs.

extract lung lesions from COVID-19 CT images effectively and
accurately is still a difficult challenge.

Many researchers have explored methods to segment lung
lesions from COVID-19 CT images. For examples, Fan et al.
[18] proposed a lung infection segmentation deep network (Inf-
Net) to automatically identify infected areas in CT images.
In their work, a semisupervised framework based on random
propagation was applied to make up for the lack of data. But
it was necessary to manually screen the slices with infected
areas. Qiu et al. [19] presented a lightweight model MiniSeg
for efficient COVID-19 segmentation to achieve coping with
insufficient data and fast training. They simplified the model
structure, which had the advantages of light weight and high
efficiency, but also brought a certain loss of accuracy. Yan et al.
[20] established a new network to analyze the COVID-19 infec-
tion. They could improve global energy to enhance the border
of infection. Then, a feature mutation module was introduced
to adaptively adjust the global attributes of the features used to
segment the COVID-19 infection. They introduced the pyramid
space fusion function to deal with features of different scales, but
italso increased the difficulty of training. Saeedizadeh et al. [21]
proposed a segmentation framework to segment the chest area
infected by COVID-19 in CT images. A proper regularization
term was added to improve the connectivity of the target area.
Since they mainly focused on the connected component, this
also caused the locally spreading lesion structure to be easily
ignored. Abdel-Basset et al. [22] presented a semisupervised
model based on few-shot learning for COVID-19 segmentation.
Their work solved the problem of insufficient data and realized
efficient small sample learning. But the spatial information of
the 3-D structure was not considered.

In summary, although there have been some methods for
processing COVID-19 CT images, there are still some problems
that need further improvement as follows:

1) Due to the variable and complex tissue structures of
the infected lung area, accurate segmentation is still a
challenge;

2) Compared with entire lung CT images, the infected area
occupies only a small part. Thus, there are mismatches
between positive and negative samples.

3) The infected area is usually spreading over multiple lay-
ers, which means it has 3-D characteristic information.

Therefore, 2-D slice processing methods are not appropriate
for the COVID-19 CT images. Also, 3-D structures methods will
face huge computational pressure.

To solve these problems, this article proposes a novel method
for lesions segmentation from COVID-19 CT images. It mainly
includes the following contributions: First, the proposed Region
of Interest (ROI) extraction implements patch mechanism strat-
egy to satisfy the applicability of 3-D network and remove re-
dundant background information. Second, 3-D attention model
is introduced to extract spatial features and promote network
to enhance target area. Finally, to effectively converge this net-
work, a combination loss function is introduced to lead gradient
optimization and training direction. This article provides a new
segmentation method to meet the needs of CT images processing
under COVID-19 epidemic.

[I. METHODS

This work proposes a novel method to achieve segmentation
of COVID-19 infection area. The main steps are as follows: First,
infected area is located and cropped by proposed ROI extraction.
Then, a new module is added into deep learning model to
extract features. Also, data augmentation and combinational
loss are applied to improve the performance of model. Finally,
conditional random field (CRF) is used to classify the obtained
continuous probability distribution and then results are verified
and evaluated.

A. ROI Extraction

In COVID-19 infected lungs, the area of lesions is usually
less than 5% of the total volume, which is a problem of high
data imbalance. To prevent the model from being covered by
the background pixel features, focusing on the image features
around the target is important. Thus, a localization strategy is
proposed to obtain voxel patches with a high proportion of lesion
area. Fig. 2 shows the entire process of ROI extraction. The
principle of data screening is to display the lesion boundary
contour characteristics as much as possible. After measurement,
voxel patches of 64 x 64 x 64 size can be better satisfied. Because
COVID-19 CT images are unified into 512x512 slice size with
an indeterminate layer height structure, each slice is divided into
eight parts for X-axis and Y-axis. Also, layer height is expressed
as z, so the number of cuts and the remainder in Z-axis is
[2/64] and r € [0, 63]. In consideration that the upper and lower
layers are mainly background, the remainder is approximately
allocated to the upper and lower layers for edge trimming.

Then, to determine whether the voxel contains lesions, a
grayscale histogram of voxel is established. When three cluster
centers appear in the gray histogram, lesions are judged to exist,
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w; = exp (—lll;iNr'ld(i,i))

Fig. 2. ROI extraction. The figure shows the process of ROI extrac-
tion, which represents voxel patches grayscale histogram, calculation of
probability value, probability distribution and center point conversion.
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Some examples of data augmentation.

Fig. 3.

as shown in Fig. 2. Where, 1, 2, and 3 represent lungs, lesions,
and tissues, respectively. To ensure sufficient lesion areas and
cover the boundary contour, calculation method is given as
follows:

w; = exp (— g%l]{[ld(l,])) (1)

where w; represents the probability of the selected node, NV
represents the non-lesion area, and d(4,j) indicates distance
from nonnodes to nodes. The probability value of a nonlesion
area is defined as 0, which makes voxels that are close to the
lesion contour obtain the maximum probability as a boundary
layer. Finally, 60% of max(w;) are selected as the new boundary
points, and one of them is taken as the cutting center.

B. Data Augmentation

To reduce overfitting and realize data resampling, a 3-D
voxel enhancement method is adopted to augment data. Fig. 3
shows some examples of data augmentation. In the augmentation
strategy, a total of seven methods are adopted, including: random
rotation, brightness shift, random spatial shift, random spatial
shear, random spatial zoom, elastic transformation, and random
channel shift. Random rotation realizes a rotation of the image
within the angle range. A brightness shift changes the brightness
of the voxels. Random spatial shear completes random cropping.
Random spatial zoom can scale a picture randomly. Elastic

MaxPool
AvgPool

CXDxHxW

CXDxHxW
. J/

Fig. 4. lllustration of 3-D attention module.

transformation realizes the random standard deviation of each
dimension of pixels. Finally, random channel shift shifts the
channel value by a random selected from the specified range.
Thus, including the original voxels, an enhancement method
is randomly selected in each epoch, and then network training
begins.

C. 3-D Attention Module

3-D U-Net [23] is a classic network model widely applied
in medical image processing. Normally, skip-connection of it
is directly transmitted from shallow to deep level. Since fea-
tures of low latitude contain many background information, the
target area cannot be focused. Inspired by [24], to improve the
saliency of object, this work proposes a 3-D attention struc-
ture to increase the attention to the object. Fig. 4 shows the
proposed 3-D attention module. The input feature maps are
defined as F' € RE*P*H>*W The main purpose is to increase
the target weight in each 1 x D x H x W. It has been verified
that average pooling and maximum pooling are reliable weight
calculation methods. Thus, Fy,, € R>*P**W and F,,,. €
RVPXHXW are defined as output of average pooling layer and
maximum pooling layer and calculated, respectively. Then, after
average pooling and maximum pooling processing, the final
weights are obtained through the 3-D convolutional layer and
the sigmoid activation layer. Finally, the weights are multiplied
by the input F' € RE*P*H*W 1o obtain a weighted feature map
M(F) € RE*P*HxW in a 3-D space. The main calculation
method is expressed as follows:

M(F) =F® (f * (Favngmam))3X3X3 2

where F,,, denotes the feature map of average pooling, F}y,qx
means the feature map of max pooling, * is convolution op-
eration with 3 kernel size, and ® expresses the elementwise
multiplication.

D. 3-D Attention U-Net Structure

Structure of 3-D Attention U-Net is revealed in Fig. 5.
Encoder—decoder structure is retained, where the first half con-
tains the encoding path for feature extraction and the other half
uses the full-resolution segmented decoding path. In this study,
four levels of structure are built to the traditional U-Net structure,
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Fig. 5.

Proposed network architecture for lesion extraction.

and the parameters are reduced by dropout. Each level structure
realizes two times 3-D convolution to extract features with the
3x3x3 kernel size, and the activation is finally completed with
ReLU. In down sampling process, 3-D maximum pooling of
2x2x2 structure is performed to prevent overfitting. Therefore,
number of channels doubles each time down sampling in the en-
coding path in turn to perform deep feature extraction accurately
and effectively.

In the decoding path, it is symmetrical with the encoding
path structure to ensure that the final output matches the size of
the input structure. During up-sampling, a 2x2x2 3-D upward
convolution is used with a step size of 2. In each level, the
3-D convolution with the 3x3x 3 kernel size is completed twice
and activated by ReLU function. Along decoding path, number
of feature channels is gradually reduced by half and aligned
with number of encoding path channels. SoftMax function is
applied to map the final 64-channel vector into two channels.
The traditional U-Net [23] skip connection adopts a cascading
method to realize matrix splicing. Although the feature maps are
guaranteed to be uniform in size, the bottom layer information
easily covers the characteristics of the high layer information.
Therefore, 3-D Attention Module is used to realize skip connec-
tion, so that the information with more target features is merged
into high layers, reducing the interference of the background
area.

E. Binary Segmentation

The segmentation results obtained by the SoftMax activation
function are a set of continuous values of [0,1]. Normally, the
processing is performed by threshold segmentation. However,
finding a suitable threshold is a difficult challenge, and the
relationship between voxel points cannot be considered. This
work utilized CRF model to obtain the corresponding binary
segmentation results.

Input data

Convolution

Down sampling

Up sampling

Attention feature maps
Concat

Element-wise multiplication
Connection

Predicted value and label are defined as y; and ;. So, CRF
satisfies Gibbs distribution [25] as follow:

P(X =) = —— exp(~E () 3)

Z(I)

where energy function is expressed as

E(x) =Y diw)+ Y o)) 4)

iev (i.4)CE

where ¢;;(x;) denotes potential function, which is output by
neural network, and can be expressed as

¢i (vi) = —logP (z;) (5)

¢ij(x;, xj) denotes binary potential function, and is expressed
as

s (wi,25) = p (w5, 25) (wy exp(—|p; — p;[)
+uwsexp (—1fi = fiI")) ©)

where p(z;, z;) is Potts model [26]. |p; — p,| denotes the dis-
tance voxels and |f; — f;| expresses grayscale difference. w;
and w, are the weights that adjust the impact of paired items.
Binary potential function combines relationship between space
and gray, taking into account global association between pixels.
Therefore, CRF can make voxels divided correctly as far as
possible on boundary.

F. Combination Loss Function

The assessment of segmentation results requires to verify the
overlap rate of voxels. Therefore, the training direction of the
network should be to maximize the spatial overlap between
the predicted results and the standard results. Dice Similarity
Coefficient (DSC) is an important metrics to represent the spatial
overlap rate on the images. The dice loss Lg;.. proposed by
Soomro et al. [27] makes the network parameters to be trained
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in the direction of decreasing DSC value. It is defined as follows:

Z Ypred- * Ygﬁrue +e
Z Ypred + Z Y;Srue +e

where Y}, is ground truth, and Y),..4 is the prediction result,
which represents heat maps in the range of [0,1] .x is the matrix
multiplication element by element. Finally, € is a parameter,
usually a small value, in case the denominator is O and the
calculation is wrong. The value of the dice loss L ;.. is obtained
from

DSC = Mean ( @)

Ldice =1-DSC (Y;fruea Ypred) . (8)

It has been proved that dice loss makes the training results
unreliable in the gradient problem [28]. In the experiments of this
work, dice loss usually causes the results to be not converged. In
addition, Binary cross-entropy loss L. can avoid the problem
that learning rate reduced during gradient descending. Since the
learning rate can be controlled by the output error. Ly is defined
as

Lbce = - Z [ytrue In Ypred + (1 - yt'rue) In (1 - ypred)]~
©))
In order to combine the improved training direction of DSC
and the advantages of stable learning rate, the work composes
two loss values through the weighting factors and combination
loss L.y is defined as follows:

Lbce = wlLbce + wZLdice (10)

where w; and w, are their respective weights, and their sum is
1. By combining, new loss is established.

IIl. RESULTS AND DISCUSSION
A. Data

This work tested the proposed method in private dataset and
public dataset. Private dataset concluded 89 data infected with
COVID-19 and were obtained from the Fifth Medical Center
of the PLA General Hospital. All patients were scanned with
LightSpeed VCT CT64 scanner from entrance of chest cavity to
posterior costal angle. Scanning parameters were set as 120 kV
voltage, 40-250 mA automatic current, 25 noise index, and
0.984:1 pitch. All CT slice thickness were 0.625 mm. Three
medical experts were involved in the identification and labeling
of lesion area as ground truth, where 45 data were applied for
training and 44 left were utilized for testing. Some comparative
and ablation experiments were established based on private
dataset to test the consistency of this work. On the other hand,
the public dataset established by Fan et al. [18] were applied
in this work. Based on their work, 1700 data are divided into
1650 training and 50 testing. Public dataset was used to test the
performance of this work by comparing other popular methods.

B. Crop Size

Limited by the calculation, the current methods of medical
images processing are mainly based on 2-D network model.
Usually, it is difficult to perform well with a 2-D network

structure. This is because infected area of COVID-19 is mul-
tilayer continuous, containing 3-D structure. Thus, data crop is
performed during ROl extraction to realize a 3-D feature network
structure. Also, 64 x64 x64 voxels are selected as crop size for
following reasons:

1) 64x64x64 size structure satisfies 2'® , which is consistent
with 512x512 slice size in space ratio. Therefore, the
extracted cropping voxels occupy the same computing
pressure as the 2-D network model and can satisfy the
3-D feature extraction without increasing calculation and
storage burden.

2) Most of lung lesions are generally covered by 64 voxels.
Thus, the edge information of them can be retained by
these voxels.

3) 64x64x64 voxels conform the binary structure in X-
axis, Y-axis, and Z-axis. Thus, no extra interpolation
operations are required during convolution, pooling, and
upsampling.

C. Initialization

In order to quantify the segmentation with ground truth, four
indexes were applied in the work: TP, TN, FP, and FN represent
true values, true negative values, false positive values, and false
negative values. They represent relationship between predicted
value and true value. Based on TP, TN, FP, and FN, some metrics
are defined as follows: Accuracy (ACC), Precision (PRE), Recall
(REC) [29], and DSC [30]. They are expressed as

_ TPLTN
ACC = TPT+PTNiFP+FN
PRE = TP+EP

_ TN (12)
REC = TN+ET,
DSC = XTP+EN+FP

where DSC is different from dice loss. The dice loss is calculated
by heat maps, which are continuous values between [0,1].

Ablation experiments were designed to verify the effect of
3-D Attention module. U-Net network model was built as a
basic structure. Based on it, the model was expanded into three
dimensions, and the input data were converted from the slices to
voxels. Then, the combination of spatial attention and channel
attention was applied as an improvement in the cascade parts of
3-D U-Net model. Finally, the attention module was converted
to 3-D Attention module, and 3-D Attention U-Net was built.
All network training used four samples of a small batch, Adam
optimizer [31], batch normalization, normal distribution initial-
ization, and deep supervision. The epoch was 1000, and the size
of epoch was further discussed.

Fig. 6 shows results of three randomly selected segmentation
come from 3-D Attention U-Net, which were obtained when
the epoch was 200, 500, and 1000, respectively. Because the
loss is already below 0.1, 200 epochs are an effective choice.
Thus, some discussions were made by 200 epochs. Also, as
epoch increases, DSC is still increasing by a small degree. If the
calculation is sufficient (1000 epochs), more accurate results
can be got by increasing epoch. Table I shows the results of
ablation experiments. Comparing with the segmentation results
of U-Net and 3-D U-Net model, 3-D U-Net network structure
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DSC: 78.69%

DSC: 79.20%

DSC: 86.03% DSC: 100%

DSC: 85.32%

Fig. 6 Segmentation results of 3-D Attention U-Net, where, 1, 2, and 3 represent three different data. (a), (b), and (c) are obtained when epoch is

200, 500, and 1000. (d) is the ground truth.

TABLE |
PERFORMANCE OF EXPERIMENTS ON PRIVATE DATA (MEAN + STANDARD DEVIATION)

Method (%) ACC PRE REC DSC
U-Net [32] 93.64+8.11 68.27+21.87 98.29+1.56 57.18+18.41
3D U- Net [23] 93.75+8.86 72.58+16.62 98.38+1.82 61.43%17.26
Attention U-Net [24] 92.39+8.39 54.45+19.83 97.53+2.15 441241724
Semi-Inf-Net_resnet 66.8448.31 34.20+20.27 73.65+8.25 36.31414.40
Semi-Inf-Net_res2net 56.90+7.17 22.08+14.77 64.58+5.80 23.52+11.85
Semi-Ing-Net_vgg 65.99+4.59 36.73£19.05 64.99+5.90 45.10£16.45
The proposed method 94.43+6.35 65.17+18.88 96.33+4.46 66.06+15.13

achieved higher ACC (93.75%). Thus, 3-D structure can learn
more texture information of lung lesions and perform well
than 2-D structure. In all ablation experiments, the proposed
method obtained the highest accuracy (94.43%), which proved
effectiveness of the proposed module. Notably, 3-D Attention
U-Net reached a smaller REC. This is because the other models
get more TP value than 3-D Attention U-Net, which may have
a high probability lead to an oversegmentation. In terms of
attention structure, the strategy of Woo er al.’s [24] attention
module is to obtain the target weight of slices on each channel
and each channel. The 3-D Attention Module retains the depth
information, so the feature maps have more feature information.

Eight datasets were selected randomly to show the segmen-
tation results of U-Net, 3-D U-Net, and 3-D Attention U-Net
in Fig. 7, where green curve shows the ground truth, red curve
is the processing results of 3-D Attention U-Net, white curve

represents the processing results of 3-D U-Net, and yellow curve
reveals the processing results of U-Net. In all curves, red curve
is the closest to the ground truth. The 3-D Attention model
shows more lesion contours when cascading low-dimensional
features and contains more comprehensive information when
fusing features. Thus, 3-D Attention U-Net ultimately performs
better.

In addition, to assess 3-D Attention Module, four datasets
were randomly selected to extract the first-level cascading fea-
ture maps under 3-D U-Net and 3-D Attention U-Net. Also, an
instance of them was extracted all feature maps of four levels.
All feature maps were shown in Fig. 8, where al—a4 and b1-b4
represent the feature maps extracted by 3-D Attention U-Net
and 3-D U-Net, respectively. It can be seen that lesion area has
more boundary contour information in 3-D Attention model,
whereas feature maps information of 3-D U-Net are relatively



6534

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 9, SEPTEMBER 2021

Fig. 7.
white coms from 3-D U-Net, and yellow is obtained from U-Net.

Performance of 8 data with different methods, where green is ground truth, red represents the processing results of 3-D Attention U-Net,

Fig. 8.

Feature maps of the attention model. The figure lists the feature maps at the cascade of the 3-D Attention model and the 3-D U-Net model;

where a1 ~ a4 represent the feature maps of the 4 sets of data at the first level of the 3-D Attention model; b1 ~ b4 represent the corresponding 4

sets of data are featured maps at the first level of 3-D U-Net cascade.

fuzzy and almost blend with the background. In the process of
gradually increasing in dimension of 3-D U-Net network, the
information obtained by feature maps gradually disappears. In
contrast, level-four feature map still has a fuzzy boundary in
3-D Attention U-Net. It can be seen that 3-D Attention module
gradually depicts the mask map of the target area during training.
It uses the mask image and the original input feature to do dot
product. Finally, the effect of background suppression and target
highlighting are achieved.

Also, Semi-Inf-Net_resnet, Semi-Inf-Net_res2net, and Semi-
Inf-Net_vgg models based on Inf-Net [18] were reestablished
and trained, which are designed as the same purpose. ACC, PRE,
REC, and DSC were calculated for assessments. Quantitative
results were added in Table I. Because Fan er al. [18] needed to
screen the slices with infected areas in advance, they could not
effectively transfer to the 3-D structure. The proposed method
has better performance.

D. Data Augmentation Assessment

For data augmentation, this work designed two sets of exper-
iments for assessment. Epochs were set as 200, 500, and 1000

Loss, Accuracy and Dice prediction

nd Dice prediction

081 08
o 064 Toss o 98] E—Try
T Accuracy T Accuracy | |
04 ocepred| 0.4 ‘ Dice_pred |
02 ( ) 021 (500,0.02618)
(200,0.04821) (500,0.03248
N o T1000.0.02168) ‘""_EE{”’ ___ (1000,0.01133)
00! e 001
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch
(@) (b)

Fig. 9. Loss, accuracy, and dice prediction in 3-D Attention U-Net at
1000 epochs, where (a) represents results under data augmentation and
(b) is obtained by original data.

with 3-D Attention U-Net. One group applied data augmentation
and the other group kept using original data. Fig. 9 plotted the
loss, accuracy, and dice prediction of two sets experiments.
Also, loss with 200, 500, and 1000 epochs were recorded.
Generally, a higher loss will be obtained when data augmen-
tation is applied for training. This is because augmentation
data changes at each epoch randomly, which makes data more
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TABLE II
PERFORMANCE OF DATA AUGMENTATION (MEAN-STANDARD DEVIATION)

TABLE IV
PERFORMANCE OF DIFFERENT LOSS (MEAN-STANDARD DEVIATION)

Method DSC (%) ACC (%)
Original Data (epoch=200) 55.88+1529 91.30+8.94
Augmented Data (epoch= 200) 61.291+16.39 93.22+6.81
Original Data (epoch= 500) 584711646 93.16+8.44
Augmented Data (epoch=500) 64.151+16.66 94.26+7.79
Original Data (epoch= 1000) 60.26+16.87 93.44+8.03
Augmented Data (epoch=1000) 66.061+15.13 94.431+6.35

TABLE IlI
PERFORMANCE OF DIFFERENT WEIGHTS WITH COMBINATIONAL LOSS
(MEAN+STANDARD DEVIATION)

Method DSC (%) ACC (%) PRE (%)

[0.3,0.7] 58.57+16.97 92.03+9.05  53.12%18.56
[0.5,0.5] 56.97+17.64 92.37+8.58  52.28+19.26
[0.6, 0.4] 55.67+16.46 90.85+9.73  48.43%17.89
[0.8,0.2] 61.291+16.39  93.22+6.81  65.171+18.88
[0.9,0.1] 57.75+17.26 92.26+6.69  51.70£21.56

complicated in structure and space. Table II shows the results
of these two experiments. Comparing quantitative results of
two sets of experiments, although 3-D Attention U-Net with
data augmentation obtained higher loss in training dataset, it
achieved higher accuracy in testing dataset with 200 (61.29%),
500 (64.15%), and 1000 (66.06%) epochs. This is because data
augmentation can retain the main characteristics of the original
data and make dataset as diverse as possible. Finally, the models
have stronger generalization ability, and their performance upper
limit is improved, thereby reducing the degree of overfitting.
Therefore, in a limited private database, data augmentation
method is a very effective strategy.

E. Loss Function Improvement Assessment

The work tested the convergence effect of loss function. The
experiments designed as: Binary cross-entropy, dice and com-
bination loss were designed as loss in model with 3-D Attention
U-Net, respectively. Also, combination loss was divided into
five groups weights: [w;,w,] = [0.3, 0.7], [0.5, 0.5], [0.6, 0.4],
[0.8, 0.2], [0.9, 0.1]. Loss, accuracy, and dice prediction were
plotted respectively.

Table III shows combination loss with different weights.
All epochs were set as 200. In the discussion of weights, the
weight coefficient of [0.8, 0.2] achieved relatively better results.
Thus, a deeper experiment and discussion were done. Three
sets of experiments were made by 3-D Attention U-Net with
different loss functions. [0.0, 1.0], [0.8, 0.2], and [1.0, 0.0]

Method DSC (%) ACC (%) PRE (%)
[0.0, 1.0] 622141796 93224873  61.25+19.82
(0.8, 0.2] 66.06£1513  94.43+635  69.91+18.43
[1.0,0.0] 62071671 93204852  61.46£19.36
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Fig. 10. Loss, accuracy, and dice prediction of 3-D Attention U-Net,
where (a), (b), and (c) represent convergence curves of network with
dice loss, Binary cross-entropy loss, and combination loss, respectively.

weight coefficients represented dice, combination, and binary
cross-entropy loss. The epochs were 1000, in which the loss
value of all networks is almost stable. Fig. 10 shows the loss, ac-
curacy, and loss prediction of three experiments, where when the
epoch is 200, the network with dice loss reaches the lowest loss
0.03527 [Fig. 10(a)]. By contrast, combination loss and binary
cross-entropy loss reach the loss of 0.04821 [see Fig. 10(b)]
and 0.05262 [see Fig. 10(c)]. This proves that the dice loss
can balance the imbalance of positive and negative samples
to a certain extent, making the network converge quickly. In
addition, the dice loss stabilizes after 200 epochs. However,
combination loss and binary cross-entropy loss still have an
obvious downward trend. This also proves that the gradient form
of dice loss in the training process is not optimal, which causes
loss to easily fall to the local minimum, so the relative global
optimal value cannot be obtained. Table IV shows the DSC,
ACC, and PRE of the three experiments after 1000 epochs.
Comparing combination loss and binary cross-entropy loss,
the network with combination loss has achieved greater DSC
(66.06%). This is because dice loss is more in line with the
real goal of maximizing DSC segmentation during the training
process, and binary cross-entropy loss has a better gradient form.
w; and w, are weights to balance the training direction and
gradient to a certain extent, so as to achieve better convergence
efficiency and training effect. It is worth mentioning that al-
though experiments show that [0.8, 0.2] weight has a better
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TABLE V
PERFORMANCE OF THRESHOLD AND CRF (MEAN-STANDARD DEVIATION)

Data (%) ACC (Threshold) ACC (CRF) DSC (Threshold) DSC (CRF)
Data 1 98.4177 98.4207 (0.0030) 76.8035 76.8223 (0.0188)
Data 2 96.3318 96.3425 (0.0107) 80.8095 80.8539 (0.0444)
Data 3 98.5073 98.5218 (0.0145) 49.9936 50.0322 (0.0386)
Data 4 98.9464 98.9482 (0.0018) 85.3116 85.3234 (0.0118)
Data 5 98.8487 98.8518 (0.0031) 74.1078 74.1276 (0.0198)
Data 6 99.0345 99.0372 (0.0027) 74.1078 74.1276 (0.0198)
Data 7 99.1189 99.1291 (0.0102) 46.7005 46.9193 (0.2188)
Data 8 98.9582 98.9624 (0.0042) 64.6838 64.7394 (0.0556)
Data 9 95.8088 95.8317 (0.0229) 62.0497 62.1785 (0.1288)
Data 10 94.6930 94,7132 (0.0202) 62.0497 62.1785 (0.1288)

TABLE VI
PERFORMANCE OF EXPERIMENTS ON PUBLIC DATA (MEAN--STANDARD DEVIATION)

Method (%) ACC PRE REC DSC
U-Net [32] 86.78 +9.88 57.59+19.67 90.64+10.73 55.691+16.91
U-Net++ [33] 86.92+7.30 50.16+19.43 85.2349.06 62.34+18.68
DeepLab [34] 82.89+5.29 62.83+£7.12 87.49+6.05 43.93+7.58
DI-U-Net [35] 90.67+6.80 61.93+18.88 90.99+7.70 69.541+16.63
Dense U-Net [35] 92.79+4.49 69.80+12.51 93.93+4.88 73.60+11.31
Inf-Net [18] 89.51+6.93 58.90+14.44 87.9549.01 69.881+12.58
Semi-Inf-Net [18] 92.01+4.71 65.741+12.96 91.46+6.35 74.11+10.87
Mini-Seg [19] 87.53+8.24 56.4248.73 97.641+3.56 55.97+7.73
COVID-SegNet [20] 86.79+5.09 57.80+12.14 91.52+4.50 50.01+7.98
TV-UNet [21] 92.34+4.78 67.941+12.06 93.67+4.66 72.941+10.60
Proposed Method 93.92+3.87 78.261+9.94 96.39+2.92 75.22+11.25
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Fig. 11.  Probability map obtained from the output layer.

effect. But this is volatile. In practical applications, parameters
need to be adjusted according to different datasets to balance
the training effect. When the epoch is 1000, loss almost reaches
the lowest value. Three sets of comparative experiments proved
the feasibility of combination loss in handling of COVID-19 CT
images.

F. CRF Assessment

Fig. 11 shows the probability obtained from the output layer.
The main controversial position comes from the voxels of about
0.5 intensity on boundary. In this study, 0.5 threshold group
and CRF method were designed to compare the segmentation
results. Ten data with ACC and DSC were quantitative assessed
in Table V. The results of increase magnitude with CRF were

calculated in contrast to threshold. Although the performance
improvement is small, it proves that CRF has important poten-
tial in dealing with boundaries and connected domains. That
is because CRF obtains the relationship between pixel values
by establishing a global energy field using gray value and the
actual relative distance, so that the picture is segmented at the
boundary as much as possible. Also, the isolated segmentation is
reduced. This has certain advantages when dealing with COVID-
19 infected areas with connected characteristics. In contrast,
threshold segmentation can only get independent features of
each pixel. Also, the strategy also avoids looking for the best
threshold.

G. Performance Evaluation

This work was tested on public dataset and compared with
some latest methods. Table VI shows the quantitative results
of these experiments. From property of public dataset, it has
achieved higher performance than private dataset. This is be-
cause the diversification of data improves the model perfor-
mance. In addition, many classic models are difficult to achieve
better performance, such as U-Net [32], U-Net++ [33], and
DeepLab [34]. Therefore, these common networks are still
challenging for COVID-19 CT images. Some networks have
achieved higher REC, but the appropriate DSC index was not
reached, such as Mini-Seg [19] and COVID-SegNet [20]. This
may be caused by larger true negative values, which may lead to
aclinical missed diagnosis. Also, the proposed method achieved
the highest DSC, which means that the segmented infected area
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has the greatest coincidence rate with the clinician’s standard.
Other confirmatory metrics have also reached acceptable values.
Due to the imperfection of public dataset, small sample learning
is very important, such as [18] and [22]. This work solved this
problem by data augmentation. In addition, it has more potential
for spatial applications of 3-D structures. There are still some
improvements in this article, such as improving the recognition
rate of negative samples and reducing false positive values. This
also provides a direction for us to improve next.

IV. CONCLUSION

The work proposed an automatic method applied to lung
lesions segmentation of COVID-19 from CT Images. Proposed
ROI extraction was applied to focus on lung lesions. Also, data
augmentation and combination loss were applied to improve the
training effect. Despite the presence of unclear boundaries in the
infected area, morphological changes, and poor contrast with the
vascular tissue, 3-D Attention Module can focus on boundary
contour information. Thus, the network can learn more details of
target area. In postprocessing, the applied CRF can pay attention
to the correlation of each voxel point to improve the accuracy of
voxel point classification near boundary.

The proposed method was compared with some common
models and other algorithms designed for COVID-19 segmen-
tation. Also, DSC, ACC, PRE, and REC were applied as as-
sessment metrics. The results show that this work has higher
performance in the private dataset and the public dataset. In
addition, discussions on data augmentation, epoch, loss func-
tion, and CRF were conducted to verify their effectiveness. Due
to the similarity of case structures, the proposed model also
has certain potential in other physiological parts, such as lung
nodules and liver lesions. Code of this work has been released
at: https://github.com/USTB-MedAl/3DAttUnet.
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