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 
Abstract—This paper proposes a two-layer in-depth secured management architecture for the optimal 

operation of energy internet in hybrid microgrids. In the cyber layer of the proposed architecture, a two-level 
intrusion detection system (IDS) is proposed to detect various cyber-attacks (i.e. Sybil attacks, spoofing 
attacks, false data injection attacks) on wireless-based advanced metering infrastructures. The sequential 
probability ratio testing (SPRT) approach is utilized in both levels of the proposed IDS to detect cyber-attacks 
based on a sequence of anomalies rather than only one piece of evidence. The process of making a decision 
in the proposed IDS is a random walk that starts from a point between two thresholds and moves toward one 
of them concerning received data samples. The feasibility and performance of the proposed architecture are 
examined on the IEEE 33-bus test system and the results are provided for both islanded and grid-connected 
operation modes.  

Index Terms— Advanced metering infrastructure, data security, hybrid microgrid, energy internet, energy 
management, architecture. 
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NOMENCLATURE 
BGit Cost of the ith DGU at interval t 
BGridt Cost of the upstream grid at interval t 
DRi/URi Ramp down/up rate of the ith DGU  
f(S|H) Conditional mass function  
h(X) Cost objective function 
m Number of observations with type H1 in a sample set  
n Sample set size 
Ni Number of time intervals 
Nd/ Nd-dc/ 
Nd-ac Number of DGU in the  MG/dc sub-grid/ac sub-grid 

NLoad-dc Number of loads in dc sub-grid 
Nb number of buses 
NLoad Number of loads in the MG 
PGrid,mint/ 
PGrid,maxt Min/max power of the upstream grid 

Pload-dc The  load in the dc sub-grid 
Pinj,tj/ Qinj,tj Active/reactive power injected to the jth bus at interval t 
PGimin/ 
PGimax Min/max output power of the ith DGU  

Pconvmin/ 
Pconvmax Min/max power of the ac-dc converter 

Pi,maxline,t maximum capacity of the ith feeder 
Plmi/Plfi Measured/forecasted load value of the ith bus 
PGridt Power purchased/sold from/to utility at interval t 
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PLoss-dc Power loss in dc-sub-grid 
RESt The spinning reserve at interval t 
SGion/SGioff Startup/shutdown cost of the ith DGU  
Srssi/Sli Binary sample of the ith smart meter related to the first/second level of the IDS 
SSPRT,ki Kth Input sample of the SPRT method related to ith smart meter 
uit ON/OFF Status of the ith DGU  
UEi/LEi Upper/lower forecasting error bounds 
Ui/Li Upper/lower bound of the SPRT 
Vmini/Vmaxi Min/max voltage of the ith bus 
V/ Magnitude/phase of the voltage 
X Control variables 
Y/Ө Magnitude/phase of the line impedance 
ii Standard deviation/mean value of the signal strength data set related to ith smart meter 
αi User-selected false positive value 
βi User-selected false negative value 

I. INTRODUCTION 
he concept of the smart grid was first introduced as a digitalization scheme for legacy centralized power 

grids. This digitalization process was performed by placing digital metering devices and sensors in the grid 
to provide real-time data related to the status of the system. Afterward, the idea of creating an interactive 
energy-information-oriented grid, which allows consumers to generate and share green energy, was discussed 
by corporations like IBM and EPRI. This idea which nowadays is known as the energy internet (EI), is 
considered the third industrial revolution [1]. According to a report from the KEMA, it is demonstrated that 
investing $16 billion on the EI can cause $64 billion worth of projects and directly create more than 28,000 
jobs in the United States in only four years [1]. In this regard, many countries such as United States, Germany, 

T 
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Japan, China, etc. have allocated huge funds in this area [2-4]. The idea of EI brings many benefits to the 
grid. This paper addresses some of the problems in energy management and cybersecurity of EIs. 
Technically, MGs can be classified into three different categories: ac, dc, and hybrid [5]. The concept of 
hybrid microgrid (HMG) is proposed to make benefit from both ac and dc MGs at the same time. Generally, 
in comparison with ac, and dc MGs, which are well-studied topics, hybrid MGs have more challenges. 
Implementation of advanced metering infrastructure (AMI), which is one of the key technologies in modern 
power systems, creates bidirectional communication between consumers and electricity provider companies.  

The main issue for the economic and efficient operation of MGs is the management and optimal scheduling 
of DGUs main grid, and loads [6]. In [7], the authors suggested a stochastic management framework for the 
optimal scheduling of HMGs. In that paper, various kinds of renewable energy sources, batteries, and DGUs 
are considered and unscented transform is employed to model the uncertainties of the system. To tackle the 
management problem in renewable MGs, a probabilistic management scheme based on the 2m point 
estimation approach is presented in [8]. In [9], a secured energy management scheme for HMGs is introduced. 
In that paper, the complete model of PEM-fuel cells, which includes optimal hydrogen production strategy 
and thermal recovery, as well as electric vehicles, reconfigurable structure, and several renewable energy 
sources are considered. Authors in [10] introduced a novel cloud-fog-based architecture for energy 
management in networked MGs considering dynamic line rating and reconfigurable structure. A cyber-attack 
resilient optimal scheduling framework is proposed in [11] for industrial internet of things-based microgrids. 
In [12] authors utilized the software-defined networking approach to improve cybersecurity in the energy 
management of distribution networks. Reference [13] proposed an energy management scheme for EIs in 
which a deep-reinforcement learning algorithm is used to solve the operation problem.  A game-theory-based 
energy management framework for EIs is introduced in [14], [15].   

Due to an increase in the number of cyber-attack incidents involving power utilities in recent years, data 
security has attracted the attention of researchers in this area. Authors in [16] proposed a machine-learning-
based anomaly detection scheme to detect cyber-attacks in the AMIs. In that paper, a novel modified 
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symbiotic organisms search-based approach is employed to improve lower and upper bound estimation 
training by accurate adjusting of the parameters. A novel SAE deep-learning-based method is introduced in 
[17] to detect cyber-attacks in smart grids. This paper also proposes a two-stage model to describe cyber-
attacks within smart grids. In [4], a secured management framework for HMGs considering identity-based 
cyber-attacks is proposed. 

In this paper, a novel two-level intrusion detection system (IDS) is proposed to enhance the security in-
depth within the system’s cyber level. The proposed IDS includes two levels: 1) identity level, 2) integrity 
level. At the identity level, we use the received signal strength (RSS) of data packets to detect identity-based 
cyber-attacks (i.e. Sybil attack and spoofing attack) on loads’ smart metering devices. The second level of 

the proposed IDS makes use of the forecasted load demand of the consumers, which central control uses for 
one-day ahead optimal scheduling, to detect integrity attacks. Sequential probability ratio testing (SPRT), 
which is implemented in both levels separately, computes a test statistic based on the collected information 
and statistical data and uses these test statistics to observe the sequence of samples and decide whether the 
system is under attack or not. It is worth noting that the proposed IDS has several advantages over traditional 
detection methods. For instance, since the SPRT, which is utilized in both levels separately, is a statistical 
sequential decision-making method, the proposed IDS makes decisions based on a sequence of samples rather 
than only one piece of evidence. This sequential behavior can result in more trustworthy detections. Another 
advantage of the proposed method is its ability to build a sequence of statistics where each step builds on the 
prior steps. Also, in contrast with deep-learning-based methods, which require high computation power to 
train, the proposed method is highly effective from computation power standpoint. Additionally, the proposed 
IDS can detect various cyber-attacks (i.e. Sybil attack, Spoofing attack, false data injection attack (FDIA)) at 
the same time. Our test system, which is constructed based on the IEEE 33-bus system, includes three WTs, 
two PVs, two MTs, and one fuel cell unit. To summarize, the main contributions of this work can be named 
as below: 

 Developing a secured data-driven architecture for the optimal operation of HMGs. 
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 Developing a novel two-layer IDS based on SHT to detect integrity-based and identity-based cyber-

attacks in AMIs. 
 Simulating FDIA on an IEEE test system-based case study and analyzing the results. 

The rest of this paper is organized as follows: Section II focuses on the proposed management architecture 
and presents the model. In this section, an energy management scheme for the system’s physical operation, 

possible cyber-attack scenarios, network model, and the proposed SPRT based IDS are explained in detail. 
Section III is devoted to the simulation results and the main conclusion of the paper can be found in section 
IV. 

II. PROPOSED TWO-LAYER MANAGEMENT ARCHITECTURE  
EI, which can be considered as a new way of thinking about the development of sustainable energy systems, 

is one of the most promising structures for future energy grids. The EI provides the info-energy infrastructure 
required by smart cities in which smart homes, factories, utilities, electric vehicles, etc. can easily generate 
green energy and exchange energy and information. Generally, EI includes three main levels 1) technology 
level: this level, which is also known as the physical level, is the main core of the EI that includes physical 
components such as loads, generation units, physical devices, etc. 2) market level: market level mainly 
reflects the commercial side of the EI, and 3) cyber level: this level is related to the data flow in different 
levels of the system.   
A. Physical layer: Hybrid ac-dc Microgrid operation 
A.1 Problem Formulation & Constraints 

The cost objective function of the HMG incorporates the cost of all components within the system as 
follows: 

1 1
1

1
( ) ( [ max{0, }

max{0, }] )

i dN N

t i
t t t on t t
i Gi Gi Gi i i

off t t t t
Gi i i Grid Grid

Min h X u P B S u u
S u u P B

 





   

  

             (1) 
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In (1), h(X) denotes the overall cost of the HMG, and X contains the active power purchased/sold from/to 

the main grid, output power of DGUs, and their ON/OFF status as follows: 
1 (2 )

1 2
1 2

[ , ] , 1 ;
[ , ] ; [ , ,..., ]
[ , ,..., ] , {0,1}

[ ]
d

d

g g n Ni d i
t t t t t t tg G Grid G G G GN
t t t t tg N k
t tGrid Grid

X P U n N t N
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U u u u u
P P

      

 

 



                         (2)     

The above cost objective function must be optimized considering several technical constraints in both ac 
and dc sub-grids. 

1 1
d DC Load DCN Nt t tGi conv Load DC Loss DCi k

P P P P 

 

 

                                 (3) 
Equation (3), indicates the balance between power consumption and generation in the dc sub-grid: 

,
1

cos( )bNinj t t tj j n jn jn j nn
P V V Y   



                                         (4) 
,

1
sin( )bNinj t t tj j n jn jn j nn

Q V V Y   


                                         (5) 
The rest of the constraints are presented as follows: 
- Converter, upstream grid, and DGUs’ capacity limit: 

,min ,max
,min ,max
,min ,max

t t tGi Gi Gi
t t tconv conv conv
t t tGrid Grid Grid

P P P
P P P
P P P

 

 

 

                                                       (6) 

- spinning reserve: 
,1 1, max , max Red LoadN N t t tLoad k lossi k

t t t
i Gi Gridu P P P P s

 

                      (7) 
- feeder capacity limit: 

,max,| | LineiLine t
iP P                                                                       (8) 

- bus voltage limit: 
min maxtm m mV V V                                                                        (9) 

- ramp-rate constraint: 
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1| | ,t tGi Gi i iP P UR DR                                                         (10) 

B. Cyber layer 
In the proposed architecture, smart metering devices are assumed as immobile wireless-based devices 

which communicate with MGCC through wireless networks. Each bus is equipped with a smart meter that 
measures the load value and reports it to the MGCC at regular time intervals. The AMI system operates based 
on IEC 62559 standard and DLMS/COSEM protocol, which are designed for metering applications. 
According to IEC 62559 standard [22] and DLMS/COSEM protocol [23], the IP address of the source and 
target of any data packet within AMI networks must be attached to the data itself. Also, the MGCC is aware 
of the IP address of all nodes within the network, and signal receivers in the system are equipped with an 
antenna that measures the RSS of received signals and sends these values along with data packets to the 
MGCC.  
In this work, two types of cyber-attacks are addressed:  
1) Integrity attack: integrity attack is one of the most common cyber-attacks in wireless-based systems. In 

this type of attack, hacker tends to change the content of data packets in the location of the meter or the 
communication path. There are various scenarios for such attacks such as FDIA. Reference [24] 
investigated the effects of FDIAs on critical infrastructures and also presented a comprehensive overview 
of the existing countermeasures to defend against such attacks. 

2) Identity-based attacks: Second class of cyber-attacks are identity-based attacks. In this class of cyber-
attacks, the adversary forges the identity of nodes in the system. These attacks are usually carried out in 
two ways: Sybil attack and spoofing attack. Sybil attack is a type of attack in which the adversary hacks 
a legitimate node and uses that node to impersonate the identity of other nodes and gain control of the 
network. In a spoofing attack, the hacker individually forges the identity of nodes on the network and 
uses their identity to launch the attack. 
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B.1 The Proposed SPRT Based Intrusion Detection System 

In this section, a two-level IDS is proposed in which each level detects one of the above cyber-attacks.  
B.1.1 Identity Level  

The RSS of an immobile transmitter in wireless networks is relatively constant and has a predictable 
distribution [18]. RSS is strongly influenced by the distance between the transmitter and receiver and the 
communication path. Therefore, in stationary networks, RSSs can be considered as a unique fingerprint to 
distinguish different signal sources. To this end, in this section, the RSS values are employed to develop an 
IDS. For each smart meter, during the operation time, the corresponding RSS values related to each smart 
meter are saved in the MGCC to form a historical data set for each specific meter. In order to evaluate the 
authenticity of a signal transmitter, a normal distribution function is fitted to the preceding historical data set 
of that specific meter. Regarding the obtained distribution function, for every received data packet a binary 
sample is computed as follows: 

0 [ 2 , 2 ]
1 .i i i i iirss

RSSS o w                        (11) 
where µi and i present the mean value and standard deviation of the historical data set. equation (11) 

indicates that if the RSS value of the received data, which is related to i th smart meter, lies out of the range, 
the MGCC will suspect the signal source. Since there are several uncertainties associated with the RSS (e.g. 
weather condition, air temperature, etc.), it is not reasonable to decide about the authenticity of the signal 
source by considering only one signal sample. To overcome this problem, the SPRT approach, which is 
explained in the next section in detail, is employed to decide based on the sequence of signals rather than 
only one sample. In the first level of the IDS, the input of the SPRT is Srss and the output is a binary decision 
that determines if an identity attack has occurred.   
B.1.2 Integrity Level 

The integrity level is responsible to examine the contents of the data packet, which is the load value 
measured by smart meters. This process is carried out by comparing the measured load value with the 
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corresponding value forecasted in MGCC. For each data packet received by MGCC, the following binary 
sample (Sli) is computed: 

, , ,| |i il i l m l fe P P                                                               (12) 
,

, ,

0 0
1

i i i
l l fi

l i i i i i
l f l l f

e LE PS LE P e UE P                          (13) 

B.1.3 Sequential Probability Ratio Test 
SPRT, which is also known as sequential hypothesis testing, is a statistical decision-making process that is 

introduced by Wald. A [19]. This method can be considered as a random walk with an upper (Ui) bound and 
lower (Li) bound. In this method, the first two hypotheses called the null hypothesis (H0) and the alternative 
hypothesis (H1) are defined in such a way that the null and alternative hypotheses are associated with the 
lower and upper bounds respectively. These hypotheses are defined as below: 

 H1: The smart meter is under attack. 
 H0: The smart meter has a normal operation. 

During the decision-making process, concerning each new sample, a test-statistic is calculated. The process 
will continue until the test statistic reaches or exceeds one of the thresholds. Thresholds are defined based on 
user-selected false positive and false negative rates. Although it is desirable to have zero false positive and 
false negative rates, but there is a tradeoff between these values and the number of samples required by the 
process to reach a decision. In other words, decreasing false positive and false negative values increases the 
number of samples required by the process to reach a decision. For simplicity, from now on, each input 
sample is considered as an observation and a sample set is defined as a finite number of observations (i.e. 
SSPRT,1, SSPRT,2…., SSPRT,n). According to the (iid), the likelihood ratio of a sample set of size n is calculated 
as follows [19]: 

1 1

0 0

, 1
, 0

|
| 11

1ln( ) ln( )1
( )ln( ) * ( )*( )

i i
i

T i i
SPRT k
PRT k

i nH iki H kSk PRn P P
P P

f SPR m n mf S 


 


       (14) 
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where P0i=PRki(SSPRT,ki=1|H0) and P1i=PRki(SSPRT,ki=1|H1). At each step of the process when a new sample 

is received and added to the sample set, the likelihood ratio of the new sample set (PRTi) is computed. If 
PRTiLn(Li), the null hypothesis is accepted, if Ln(Ui)PRTi , the alternative hypothesis is accepted, and if 
Ln(Li) PRTi  Ln(Ui), no decision is made and the process waits for the next observation. After a decision 
is made, the process is restarted, meaning that the current sample set is cleared and a new blank sample set 
is generated. According to [19], the thresholds are obtained as follows: 

)1(( )/i i iU                                                               (15) 
) ( /  (1 )i i iL                                                               (16)      

Let λi denotes the ratio of the number of observations with type H1 (SSPRTi=1) to the number of total 
observations in a sample set with size n that SPRT accepts the alternative hypothesis if the sample set includes 
at least λi×n ones. According to (14), if we neglect the surplus of the likelihood ratio over thresholds, the λi 
is obtained as follows: 

1
0

1 1
0 0

11ln( ) ln( )1
1(ln( ) ln( ))1

ii
i ii

i i
i i

Pn P
P Pn P P







 




 



                                                 (17) 

Since the number of observations (Ni) required by the SPRT to reach a decision is not predetermined, the 
expected value of Ni can be calculated as follows [19]: 

0
1 10 0
0 0

(1 ) ln( ) ln( )( | ) 1ln( ) (1 ) ln( )1

i i i ii
i ii i
i i

L UE N H P pP PP p
    




  


                        (18)           

When the decision is made to accept H0, and by: 
1

1 11 1
0 0

ln( ) (1 ) ln( )( | ) 1ln( ) (1 ) ln( )1

i i i ii
i ii i
i i

L UE N H P pP PP p
    




  


                           (19) 

When the decision is made to accept H0. 
 

Table I Characteristics of DGUs and ac-dc converter 
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    Min Max Bid Startup/  Ramp Bus  

         Type   Power Power ($/kWh) shutdown Up/Down  Number 
    (kW) (kW)   cost ($) Rate   

Micro-turbine 2 100 1300 0.475 75 185 12 
Micro-turbine 3 90 1100 0.475 70 150 25 
Wind-turbine 2 0 550 1.073 0 - 30 
Wind-turbine 3 0 450 1.073 0 - 21 
Photovoltaic 2 0 400 2.584 0 - 16 

AC-DC converter -1500 1500 - - - 18 
Fuel cell 50 700 0.494 38.5 110 DC MG 

Wind-turbine 1 0 200 1.073 0 - DC MG 
Micro-turbine 1 35 300 0.48 60 60 DC MG 
Photovoltaic 1 0 250 2.584 0 - DC MG  

 

 
Fig. 1 schematic illustration of the test system and attack points 

III. SIMULATION RESULTS 
In this section, the optimal scheduling of the HMG, operation of HMG under cyber-attack, and performance 

analysis of the proposed SPRT based IDS are presented. The test system includes three WTs, two PVs, one 
fuel cell unit, and two MTs. Table I shows the characteristics of DGUs and converter and Fig. 1 presents the 
schematic illustration of the test system. Complete data related to the market price, dc sub-grid load demand, 
generation pattern of WTs and PVs, and ac sub-grid load factor is presented can be found in [8] and Fig. 2. 
The ac and dc sub-grids are connected through ac-dc converters on bus 18 and the voltage levels in the ac 
and dc sub-grids are 12.66 kV and 1kV respectively. All renewable energy sources (i.e. WTs and PVs) have 
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the same generation pattern as Fig. 2 but with different capacities. In order to achieve more realistic results, 
the ramp-up/down rate of DGUs is considered. In our architecture, MGCC schedules the loads and DGUs 
for a day ahead based on system characteristics and forecasted values. Then in the operation moment, it uses 
the real-time data collected by smart meters to provide a balance between consumption and generation in the 
system. It is worth noting that in simulations, the cost objective function of the HMG is minimized using 
heuristic method [20]. 

 
(a)                                                (b) 

 
(c)                                                (d) 

Fig. 2 (a) ac MG load factor, (b) dc sub-grid load demand, (c) WT and (d) utility grid power [4] 
A. HMG optimal scheduling 

In this section, we focus on the optimal scheduling of HMGs. The scheduling is carried out for 24 hours 
considering both grid-connected and islanded operation modes.  

A.1 Grid-Connected Mode 
Table II shows the optimal output power of DGUs and the converter in the grid-connected operation mode. 

As can be seen from Table I and Fig. 2, the power generation price for different DGUs as well as the energy 
market price at different hours of the day are different. Therefore, it is more efficient to turn off expensive 
units during the hours when the market price is lower than DGUs’ generation price. According to Table IV, 
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by comparing the operation cost of the system in grid-connected mode with the operation cost of islanded 
mode, in which HMG is not connected to the utility grid and all of the loads are supplied by DGUs, it can be 
seen that this is a beneficial policy to decrease the operation cost of the system. As can be seen from Table 
IV, in grid-connected mode, the maximum voltage deviation constraint (i.e. 0.1pu) is satisfied.  

 
 
 
 
 
 

Table II Optimal output power of DGUs in grid-connected mode 
PV1 WT1 Fuel MT1 AC-DC MT2 MT3 WT2 WT3 PV2 

    Cell   Converter           
0 24 0 35 97.2 0 0 65.45 53.6 0 0 24 50 0 76.2 0 0 65.45 53.6 0 0 18 0 0 132.2 0 94.8 48.95 40.1 0 0 30 0 0 123 0 244.8 82.5 67.5 0 0 41 0 0 127.2 0 393.5 112.2 91.8 0 0 36 110 35.02 -6.9761 184.7 500.8 99 81 0 27.3 48 219.3 95.02 -179.56 369.4 650.5 132 108 44 62.5 52 329.1 155.02 -373.65 554.4 800.4 143 117 100 85 52 439.1 215.01 -563.14 738.7 950.4 143 117 136 97.5 60 549.1 275.01 -741.64 922.6 1099 165 135 156 117 58 657.9 299.87 -898.81 1073 1100 159.5 131 187 118 62 691.1 297.21 -945.77 1231 950 170.5 140 188 115 58 700 300 -957.25 1300 857.2 159.5 131 184 125 54 628.9 287.89 -879.74 1300 974.5 148.5 122 200 118 57 519 271.04 -736.54 1300 1007 156.8 128 188 87.5 60 611.6 292.28 -810.93 1300 923.6 163.9 134 140 65 66 538 232.28 -646.32 1300 911.6 181.5 149 104 47.5 70 428.3 271.83 -553.59 1300 761.6 192.5 158 76 10 80 321.1 223.68 -364.74 1300 611.6 220 180 16 0 90 211.1 164.03 -204.09 1296 662.1 247.5 203 0 0 84 312.9 224.03 -386.95 1297 731.1 231 189 0 0 78 218.6 176.4 -259.99 1115 581.1 214.5 176 0 0 72 108.6 119.25 -104.84 945.4 431.8 198 162 0 0 44 0 59.366 64.634 1003 282.2 121 99 0 
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Table III Optimal output power of DGUs in islanded mode 

PV1 WT1 Fuel MT1 AC-DC MT2 MT3 WT2 WT3 PV2 
    Cell   Converter           0 24 680.3 157.2 -705.27 310.6 1094 65.45 53.6 0 0 24 698.8 209.24 -781.84 495.6 1027 65.45 53.6 0 0 18 665.2 149.24 -682.21 439.9 981.7 48.95 40.1 0 0 30 696.6 171.82 -745.38 456.3 955.6 82.5 67.5 0 0 41 691.2 228.95 -792.96 612 1003 112.2 91.8 0 0 36 685.3 172.79 -720.07 650.9 1050 99 81 0 27.3 48 581.2 215.14 -661.58 766.1 935.1 132 108 44 62.5 52 621.1 266.75 -777.36 951.1 877.1 143 117 100 85 52 663.6 257.54 -830.09 1044 969.8 143 117 136 97.5 60 617.8 235.32 -770.65 1229 939.5 165 135 156 117 58 649.8 253.02 -843.81 1300 1090 159.5 131 187 118 62 640 295.4 -892.88 1300 1100 170.5 140 188 115 58 645.6 274.41 -877.23 1300 1100 159.5 131 184 125 54 700 264.15 -927.15 1300 1100 148.5 122 200 118 57 590.2 258.02 -794.7 1300 1100 156.8 128 188 87.5 60 639.2 231.98 -778.3 1300 1100 163.9 134 140 65 66 532.2 274.67 -682.85 1300 1100 181.5 149 104 47.5 70 422.2 214.67 -490.35 1240 1058 192.5 158 76 10 80 419.4 274.67 -514.1 1300 1059 220 180 16 0 90 528.8 298.22 -656.01 1298 1006 247.5 203 0 0 84 610.8 298.83 -759.63 1300 1004 231 189 0 0 78 664.1 265.12 -794.26 1300 854.4 214.5 176 0 0 72 583.8 235.5 -696.3 1163 704.4 198 162 0 0 44 581.9 287.92 -745.83 1111 554.4 121 99 0  

A.2 Islanded Mode 
The simulation results related to the optimal scheduling of HMG in islanded mode are presented in Table 

III. As can be seen from Table IV, the operation cost in the islanded mode is higher than the grid-connected 
mode. This is due to the absence of a utility grid that can provide cheap energy in some hours. According to 
Table III, at peak load hours (i.e. middle of the day) most DGUs operate near their maximum generation 
capacity, and also it can be seen that in the scheduling the priority is given to the cheaper DGUs. Since the 
power generation capacity of DGUs in the ac sub-grid is lower than demand, at all hours of the day DGUs in 
the dc sub-grid inject power to the ac sub-grid. According to Table IV, similar to the grid-connected mode, 
the maximum voltage deviation constraint (i.e. 0.1pu) is satisfied in the islanded mode. Also, it can be seen 
from that table that power loss is reduced in the islanded mode which is the result of local load supply. 
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B. Operation of HMG Under Cyber-Attack 

In order to investigate the effect of cyber-attacks on the operation of HMGs in steady-state, in this section 
FDIA with 35% severity is launched against the measured load demand values of the buses 7, 8, 20, 21, 24, 
25, 29, 30, 31, and 32 as illustrated in Fig. 1. It is worth noting that these buses are the most loaded buses in 
the grid which contain a total load of 2100 kW. The attack is performed in the 12th hour of the day, which is 
the peak load hour. It is assumed that the attacker manipulates the data packet either in the location of the 
meter or on the communication path and reduces the measured load demand value of these buses by 35% of 
their actual demand. The analyses are provided for both islanded and grid-connected operation modes. It is 
worth noting that in this work, the dynamic effects of FDIA on the operation of the system are neglected, and 
also the energy not supplied penalty factor is considered as the maximum market price in the operation day 
(i.e. 4 $/kWh). 

Table IV Power loss, operation cost, and maximum voltage deviation of different cases 
Operation    Power  Total  Maximum 

Mode Case Loss  Cost  Voltage     (kW) ($) Deviation (pu) Grid-Connected No attack 2825.7 46499 0.059 Islanded No attack 2615.6 48802 0.068 operation mode %35 Attack 2460.3 54140 0.041  
B.1 Grid-Connected Mode 

In the grid-connected operation mode, when the hacker decreases the measured load value data, the MGCC 
decides to decrease the output power of DGUs. The moment DGUs reduce their power generation, the 
upstream grid (bus1) acts as a slack bus, and by injecting more power into the network does not allow the 
balance between generation and consumption to be disturbed. The MGCC that observes the real-time value 
of power exchanged with the upstream grid, increases the output power of dispatchable units to avoid 
purchasing expensive power from the upstream grid.  
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B.2 Islanded mode 

Table V shows the output power of DGUs when an integrity attack with 35% severity is carried out. In this 
scenario when the attacker decreases the measured load value of buses, the MGCC sees 735 kW additional 
power in the system. At this moment, MGCC tends to reduce the power generation of DGUs to restore the 
power balance in the system. But due to the ramp rate limit of DGUs, their power generation can be decreased 
by a certain amount. In the case where an attack with %35 severity is carried out at the 12th hour, if all DGUs 
reduce their power output concerning the ramp-rate constraints, still 227.43 kW additional power will remain 
in the system. At this point, MGCC, which does not have any other plans to restore the balance, sends the 
emergency shutdown command to the fuel cell unit. Note that MGCC makes all of these decisions based on 
the false data received from meters.  The moment the fuel cell turns off, the actual balance in the system is 
lost. At this moment, the only choice for MGCC to keep frequency in the range is to cut off some loads. After 
the shutdown-startup period of the fuel cell, which is neglected in this work, has passed, it turns on again. 
But due to its ramp rate limitation, it should start from its minimum capacity and increase its output step by 
step. In order to reduce load shedding in the system, all DGUs increase their output as much as they can. 
Tables V shows the output power of DGUs and hourly load shedding in the grid. As can be seen from Table 
IV, due to energy not supplied penalty cost, the operation cost of the system has increased 5,338$.  Therefore, 
according to Tables V and IV, a successful attack can affect the performance of the system for hours and 
highly increase the operation cost of the system. Also, this kind of attack by preventing consumers from 
being supplied causes social damages as well.  

 
Table V Hourly load shedding and output power of DGUs and converter in the islanded mode when 

integrity attack with %35 severity is carried out 
PV1 WT1 Fuel MT1 AC-DC MT2 MT3 Load 

    Cell   Converter     Shedding 0 24 680.3 157.2 -705.3 310.6 1094 0 0 24 698.8 209.24 -781.8 495.6 1027 0 0 18 665.2 149.24 -682.2 439.9 981.7 0 
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0 30 696.6 171.82 -745.4 456.3 955.6 0 0 41 691.2 228.95 -793 612 1003 0 0 36 685.3 172.79 -720.1 650.9 1050 0 27.3 48 581.2 215.14 -661.6 766.1 935.1 0 62.5 52 621.1 266.75 -777.4 951.1 877.1 0 85 52 663.6 257.54 -830.1 1044 969.8 0 97.5 60 617.8 235.32 -770.7 1229 939.5 0 117 58 649.8 253.02 -843.8 1300 1090 0 118 62 50 300 -307.5 1300 1100 528.862 115 58 160 300 -417.3 1300 1100 412.945 125 54 270 300 -533 1300 1100 350.097 118 57 380 300 -626.5 1300 1100 149.482 87.5 60 490 300 -697.1 1300 1100 72.1813 65 66 532.2 274.67 -682.9 1300 1100 0 47.5 70 422.2 214.67 -490.4 1240 1058 0 10 80 419.4 274.67 -514.1 1300 1059 0 0 90 528.8 298.22 -656 1298 1006 0 0 84 610.8 298.83 -759.6 1300 1004 0 0 78 664.1 265.12 -794.3 1300 854.4 0 0 72 583.8 235.5 -696.3 1163 704.4 0 0 44 581.9 287.92 -745.8 1111 554.4 0  

C. SPRT-Based Intrusion Detection System Performance Analysis 
In this section, we analyze the performance of the SPRT based IDS. Regarding (17), in order to investigate 

the effects of different parameters of the SPRT on λi, a sensitivity analysis considering two scenarios is 
considered.  In the scenario, the false-negative value is fixed and the λi-n diagram is plotted for different 
values of αi. Note that in Fig. 3, it is assumed that P1i=0.85 and P0i=0.1. As can be seen from Fig. 3, there is 
a reverse relation between λi and n, meaning that the fraction of observations with type H1 required for the 
IDS to accept the alternative hypothesis decreases when the sample set size goes up. Fig. 3 indicates that for 
a fixed sample set size (n), decreasing αi increases the λi which is what we expected. In general, it can be 
concluded that however lower false positive and false negative rates result in a more accurate model, but on 
the other hand, it slows down the detection process. Therefore, there is a trade-off between the model 
accuracy and decision-making speed. 

Let Ni denote the size of the sample set in which the SPRT decides to accept a hypothesis. Since SSPRT i is 
a random variable and also according to (18) and (19), the expected values for Ni are functions of four 
parameters (i.e. P1i, P0i, αi, βi), with these variable specified we can calculate the expected values. To this 
end, Fig. 4 shows the relation between the P1i and the expected Ni in which the SPRT hits the upper threshold 
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(i.e.  E(Ni|H11)). In Fig. 4 αi=βi=0.01. This diagram is plotted considering three different values for P0i. As 
can be seen, increasing P1i decreases the E(Ni|H11) and in contrast, increasing P0i when P1i is fixed increases 
the expected value. It can be concluded that increasing P1i, as well as decreasing P0i, results in a faster 
detection process. 

 
Fig. 3: λi vs n, when βi is constant  

 
Fig. 4 E(Ni|H11) vs P1i 

In order to evaluate the performance of the proposed IDS, a scenario consisting of two cyber-attacks (i.e. 
FDIA and spoofing attack) is launched against the test system. In the attack scenario, the hacker penetrates 
the system at the 5th hour of the day and individually forges the IP address and identity information of the 
smart meter of bus 9, and sends false data to the central control. Since the hacker and the legitimate node 
have different geographical locations, their signal communication path, and RSS values are different. 
According to [21], the mean value and standard deviation of the RSS historical data set for the legitimate 
node are considered as µi=-89.4 dBm and i=3.09 and for the adversary is considered as µi=-69.4 dBm, 
i=5.69. It is worth noting that the RSS data are generated using the random normal distribution. Also, the 
hacked measured power data are generated using a uniform normal distribution such that their deviation from 
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the corresponding forecasted values is in the range of [0.08× Pl,fi, 0.2× Pl,fi]. Note that since the received data 
with a deviation of more than 0.2× Pl,fi are directly considered as the attack, data with deviation out of [0.08× 
Pl,fi, 0.2× Pl,fi] range is not generated. 

Table VI and Table VII show the performance of the proposed IDS. In the following results, parameters of 
the integrity level are UEi=0.2, LEi=0.8, P1i=0.95, P0i=0.1, αi=0.01, and βi=0.02 and parameters of the identity 
level are P1i=0.96, P0i=0.05, αi=0.01, and βi=0.02. As can be seen from Table VI and Table VII, the identity 
level has detected the spoofing attack with two samples and the integrity level has detected FDIA with three 
samples. Note that during the process, after a decision was made in any of the levels, the probability ratio 
related to that level becomes zero. In the case of Sybil attacks, since the RSS value of the Sybil node is 
different from other nodes, when the Sybil node impersonated the identity of other nodes and sends 
information to the hybrid MGCC, the proposed IDS can easily detect the anomaly and detect the attack. 

Table VI Performance of the integrity level 
Hour RRS of the  RSS of Probability ratio Decision 
  legitimate node adversary node   vs thresholds   
1 -87.73 - Ln(Lrssi)<-3.16<ln(Urssi) 

No decision 
2 -90.15 - -6.33<ln(Lrssi) No attack 
3 -89.48 - Ln(Lrssi)<-3.16<ln(Urssi) 

No decision 
4 -91.72 - -6.33<ln(Lrssi) No attack 
5 -92.39 -64.68 Ln(Lrssi)<+2.95<ln(Urssi) 

No decision 6 -90.99 -76.54 Ln(Urssi)<+5.90 Attack 7 -88.42 -69.41 - - 8 -88.73 -78.71 - - 
9 -91.94 -69.78 - - 

Table VII Performance of the identity level 
Hour Forecasted received Probability ratio Decision 

  load of bus 9  data   vs thresholds   
1 58 58 Ln(Lli)<-2.89<ln(Uli) No decision 
2 58.5 58.5 -5.78<ln(Lli) No attack 3 53.1 53.1 Ln(Lli)<-2.89<ln(Uli) No decision 4 55.8 55.8 -5.78<ln(Lli) No attack 
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5 63 68.29 Ln(Lli)<+2.25<ln(Uli) No decision 6 62.82 70.93 Ln(Lli)<+4.50<ln(Uli) No decision 7 63.9 76.13 Ln(Ui)<6.75 Attack 8 71.1 76.88 - - 9 77.4 89.55 - -  

IV. CONCLUSION 
This paper proposed an in-depth secured management architecture for optimal operation of EI HMGs. The 

proposed architecture consists of two layers: the physical layer and the cyber layer. Results showed the good 
performance of the proposed optimal scheduling method in minimizing the operation cost of the system by 
optimally adjusting the output power of DGUs and energy storage. Also, the performance of the proposed 
IDS was examined using a test case. The results of this part showed the good performance of the proposed 
IDS in detecting cyber-attacks. Additionally, in order to investigate the effect of cyber-attacks on the HMGs, 
FDIA with 35% severity executed on the test system. The results showed that a successful cyber-attack can 
highly damage the grid and cause economical losses and load shedding. 
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