
1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

Transactions on Industrial Informatics 

 

Manuscript ID TII-20-5532 

 

 

Comparison of a bat and genetic algorithm generated sequence against lead through 

programming when assembling a PCB using a 6 axis robot with multiple motions and speeds  

 

C.A. Griffiths, C. Giannetti, K.T. Andrzejewski, A. Morgan, 

 

 
Abstract— An optimal component feeder arrangement and robotic 

placement sequence are both important for improving assembly 

efficiency. Both problems are combinatorial in nature and known 

to be NP-hard. This paper presents a novel discrete hybrid bat-

inspired algorithm for solving the feeder slot assignment and 

placement sequence problem encountered when planning robotic 

assembly of electronic components. In our method, we use the 

concepts of swap operators and swap sequence to redefine position 

and velocity operators from the basic bat algorithm. Furthermore, 

we propose an improved local search method based on genetic 

operators of crossover and mutation enhanced by the 2-opt search 

procedure. The algorithm is formulated with the objective of 

minimizing the total traveling distance of the pick and place 

device. Through numerical experiments, using a real PCB 

assembly scenario, we demonstrate the considerable effectiveness 

of the proposed discrete Bat Algorithm (BA) to improve selection 

of feeder arrangement and placement sequence in PCB assembly 

operations and achieve high throughput production. The results 

also highlighted that the even though the algorithms out 

performed traditional lead through programming techniques, the 

programmer must consider the influence of different robot 

motions and speeds. 

Keywords— Assembly Optimization; Printed Circuit Board; Feeder 

Slot Assignment;  Sequencing Problem; Genetic Algorithm, Discrete 

Bat Algorithm. 

1. Introduction 

Implementation of automated assembly of electronics Printed 

Circuit Board (PCB) offers some distinct advantages over 

manual methods due to its reliability, flexibility and ability to 

handle high production demand [1, 2]. Since assembly of 

electronic components is a complicated task, several 

technologies that utilize sophisticated machines are used in 

industry to perform intricate operations [2]. Automated 

assembly system usually comprises of several sub-systems, 

those include: part feeding system, work holding and pick and 

place devices.  

 

In order to take full advantage of automated machines, 

assembly processes such as component placement require 

further optimisation to determine the optimal assembly 

configuration [3]. In the design of an efficient assembly system, 

it is necessary to determine the optimal (or near-optimal) 

assembly operations planning, including: i) allocation of 

components to machines; ii) component feeder allocation; iii) 

component sequence allocation and iv) placement of pick and 

place machine [2, 3]. Furthermore, a decision must be made 

regarding the criterion in which the production performance 

should be optimized. In the literature, one of the most 

commonly considered criteria is makespan minimization or, in 

the context of repetitive assembly, cycle time minimization [4-

6].  

 

When minimising cycle-time, component placement 

sequencing is considered a bottleneck of PCB assembly, hence 

finding the optimal solution to this problem can yield 

significant improvements in real situations, especially for 

assembly of complex board designs [7]. The sequence 

allocation problem for PCB assembly has been widely studied 

in the literature with early work introduced by  Ball & Magazine 

[8] and Ahmadi & Mamer [9]. Mathematically, the sequence 

allocation problem can be formulated as a variant of the travel 

salesman problem and it requires the use of heuristic algorithms 

to find efficient solution for complex designs with high number 

of components due to its combinatoric nature and the fact that 

is a NP-complete problem. In the literature, several approaches 

have been proposed to solve this problem using evolutionary 

programming [10-13], integer programming [14], particle 

swarm optimisation [15] and Bees algorithm [1, 16]. The need 

for production efficiency and flexibility faced by PCB 

manufactures requires continuous research on best optimisation 

approaches alongside technological advances.  

 

In a recent paper, a novel methodology using an articulated 6-

axis robot for assembly of PCB components has been proposed 

[17]. The authors employ a genetic algorithm (GA) to reduce 

cycle time for robot path motions. Further research investigated 

optimisation issues for pick and place operations of multi-

gripper robots [18], proposing an intelligent system that 

combines an efficient swarm intelligence algorithm based on 

Ant System and Tabu Search with reinforcement learning to 

reduce cycle time and energy consumption.  

 

PCB manufacture would traditionally be made using high 

investment production automation equipment. Since the use of 

articulated robots is becoming more popular in prototype 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

electronic assembly due to improved accuracy, flexibility and 

low cost, the development and evaluation of new algorithms to 

optimise their operations is very desirable for electronic board 

manufacturer. Basic Lead through (LT) programming is the 

most common method way to plan robot paths, but as has been 

identified, heuristic approaches have been effective in 

optimising sequences. However, consideration of multiple 

modes of robot motion and robot speed is often overlooked and 

there is a need to factor in these motions to fully optimise a 

sequence of operations.  

 

In this paper, we study and evaluate the application of a 

modified version of a hybrid discrete bat algorithm (BA) to find 

an optimal PCB components sequence allocation that reduces 

cycle time, using a highly flexible articulated 6-axis robot. The 

proposed discrete version of the BA is validated using a KUKA 

KR16 robot and considers four different movement types. The 

performance of the BA is compared against traditional GA and 

LT programming approaches together with four KUKA 

movement types and speeds. The research offers further 

insights on suitability of best optimisation practices for 

reducing cycle time in assembly processes. 

 

2. Literature Review 

Optimisation of PCB assembly processes has been widely 

studied in the literature with focus on different SMT and 

different aspects of the process optimisation. Since the 

determination of optimal component sequencing and feeder-

slot allocation are considered crucial factors for improving the 

efficiency of assembly operation in electronic manufacturing, 

many authors have focussed on solving one or both problems.  

Ball & Magazine [8]  assumed a fixed feeder arrangement and 

solved the placement sequencing problem with an heuristics 

approach, modelling it as a rural postman problem, while 

Ahmadi and Mamer [9] proposed an heuristic approach to solve 

the component allocation and sequencing problem as a 

collection of interdependent traveling salesman problems. 

Grunow et al. [19] applied an heuristic method to optimise 

operations of a pick-and-place manipulator with a revolving 

head, modelling the problem as a Vehicle Routing Problem.   

 

In the literature, many authors have considered both the feeder 

arrangement and component sequence allocation problem 

trying to solve them simultaneously through integrated 

approaches. Ellis et al. [21] developed a heuristic approach for 

solving the feeder arrangement problem and the placement 

sequencing problem simultaneously for a turret-type machine. 

Their solution consists of a set of rules to generate an initial 

component placement sequence and feeder arrangement along 

with an improvement procedure to improve the initial solution. 

The effectiveness of the approach was demonstrated on a Fuji 

CP4-3 machine and real PCB data. Deo et al [20] proposed an 

approach based on GA for simultaneously optimizing 

component placement sequence and feeder assignments in the 

assembly of PCBs. Ho & Ji [22] developed a hybrid GA to 

minimise the total travelled distance for a sequential pick-and-

place machine. The algorithm was tested on a PCB with 200 

components and 10 components type, showing efficient 

performance. Kulak et al [23] proposed an integrated approach 

using a novel GA to solve feeder assignment and component 

sequencing for commonly used collect-and-place machines 

with a revolver-type placement head. Their approach integrated 

a clustering algorithm for generating sub-sections of the PCB 

and grouping the corresponding placement operations. To solve 

this allocation problem, two different heuristic strategies were 

proposed and detailed numerical experiments were carried out 

to evaluate the performances of the proposed GAs. Li et al. [24] 

modelled the sequencing placing problem for a multi-head 

surface mounting machine as a travel salesmen problem and 

used a GA to find the optimal feeder allocation [17]. 

 

The survey indicates that approaches based on GAs are widely 

used by many researchers, showing state-of-the-art result on a 

benchmark for the problem. In more recent times, Swarm–

based optimisation algorithms (SOAs) have also emerged. 

SOAs are metaheuristic nature-inspired algorithms that that 

mimic swarm behaviour in order to solve optimisation 

problems. These methods have shown excellent performance 

when applied to a range of different assembly processes 

optimisation problems, including the PCB sequence allocation 

problem. Castellani et al. [1] further improved this method by 

developing a new problem-specific implementation of the Bees 

Algorithm with five new operators to simultaneously minimise 

assembly time and optimise feeder arrangement using a 

machine of the moving-board-with-time-delay type [25]. 

Nilakantan et al [3] proposed a model to minimise 

simultaneously cycle time and energy consumption using a 

particle swarm optimiser for a robotics assembly line. Parallel 

Pick-and-Place (PPNP) optimisation was studied in [18]. The 

authors also used swarm intelligence algorithm based on Ant 

System and Tabu Search to find an optimal routing and 

configuration of assembly pickup and placement positions.  

 

Among metaheuristic nature inspired algorithms, the BA is an 

emerging approach that was proposed for the first time by Yang 

[26]. The basic BA is based on the use of echolocation 

characteristics of microbats. Echolocation behaviour of 

microbats was formulated in a way that when associated with 

an objective function provides an effective optimisation 

algorithm. BA, in its original form, was proposed for solving 

mainly continuous optimization problems. And indeed, many 

experimental results reported by researchers [27-30] have 

demonstrated its superior performance and ability to compete 

with other metaheuristic optimisation algorithms. In industrial 

and production engineering, BA was implemented by Kaven & 

Zakian [28] who used it for size optimisation of skeletal 

structures consisting of trusses and frames. Various 

optimization problems comprising size, shape, and topology 

were implemented to demonstrate the ability of the present 

enhanced BA. An implementation of BA for solving the 

multistage, multimachine and multiproduct scheduling problem 

was proposed in [31]. The authors’ aim was to minimize both 

the earliness and tardiness penalties cost, correctly sequence the 

operations required to manufacture components, and to satisfy 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

the assembly precedence relationship. Experimentally, it was 

found that the quality of the solutions obtained from BA based 

scheduling tool can be improved significantly after applying the 

necessary parameter setting identified by the statistical tools. 

The results obtained using BA optimized settings outperformed 

those using a non-optimized setting. Research has been carried 

out using BA with the intention of addressing real-world 

discrete optimization problems. Osaba et al. [29] present a 

discrete version of the BA to solve the well-known symmetric 

and asymmetric Traveling Salesman Problems. They propose 

an improvement in the basic structure of the classic BA and 

compared its performance in 37 instances with the results 

obtained by several different optimisation techniques. They 

report that the presented improved BA outperforms 

significantly all the other alternatives in most of the cases. 

Similar findings were reported by Amara et al. [27] who 

proposed as a new concept of Swap Operator and Swap 

Sequence to redefine respectively BA position and velocity 

operators for Traveling Salesman Problem. They have also 

redefined the local search procedure with genetic crossover 

operator and 3-opt search algorithm. Saji and Riffi [30] have 

also validated the performance of BA in benchmark to solve the 

symmetric TSP problem which they achieved by adapting the 

2-arc crossover method to enhance their local search. Their 

computational results agree with the other researchers studying 

the BA for discrete TSP. A study by Charkri et al. [32] on 

continuous optimisation problems compared the BA with ten 

other algorithms using non-parametric statistical tests. The 

statistical test results show the superiority of the directional bat 

algorithm. Studies on shortest path planning using a BA by 

Lijue et al. [33] found that the BA outperforms the alternatives 

in most cases. In order to further improve robot path efficiency, 

Saraswathi et al. [34] combined the best qualities of the cuckoo-

search algorithm and the BA and found that efficiency in 

reaching the target was increased when compared to individual 

algorithms 

 

As shown in the literature review, a plethora of approaches were 

proposed by scholars for solving sequence component 

placement problems for component assembly. However, there 

are relatively few studies that focus on PCB assembly sequence 

optimisation for articulated 6-axis robots. These robots are 

becoming increasingly popular in assembly processes due to 

high flexibility and lower cost, hence the development of new 

optimisation methods suitable for these robots is very desirable. 

Motivated by previous results showing efficiency of the BA 

algorithm over other optimisation methods, this research 

presents a novel adaptation of a hybrid BA discrete algorithms 

to solve the placement sequence problems in electronic 

component assembly when using a 6-axis articulated robot for 

prototype assembly processes. Results of the algorithms are 

compared with the state of the art GA approach described in 

[17]. 

 

3. Problem Statement  

The assembly operation of the printed circuit board can be 

achieved using variety of placement technologies, however the 

main focus of this paper is to present the procedure of finding 

the best solution for a 6-axis robot. Assembly systems typically 

have a facility for holding the circuit board in place, magazine 

equipped with feeder racks for component supply and end 

effectors devices responsible for picking up and placing the 

components. Once set up the components are sequentially 

collected from stationary feeders located along the side of the 

component holding jig and transferred onto their designated 

place on circuit board. The process optimization will be used to 

determine an optimal allocation of component feeders and an 

optimal component placement sequence. 

 

In this paper, we focus on solving the second problem, namely 

the component placement sequence, while we assume that the 

component feeder allocation is fixed. Figure 1 shows the 

example of placement sequence path. Allocation of component 

feeders and component placement sequence are determined to 

minimize the total travelled distance by the device responsible 

for the pick and place operations and hence reduce cycle time.  

 
Figure 1. Placement sequence notation 

 

The component sequence problem can be described as the 

vehicle routing problem with the robot end-effector 

corresponding to a vehicle with limited loading capacity. The 

assembly operation works as follows: the end effector traverses 

to feeder rack, from which it picks up component by using an 

appropriate tool and travels to place the component on the PCB. 

After completing the placement tour, the placement head travels 

back to the magazine, collects another component, and 

commences the next placement tour [19]. In the placement 

sequence’s problem, the cost function is the sum of all 

remaining paths, that is the collection of paths from position of 

each component in sequence to the position of subsequent 

feeder. In Figure 1 notation, we define it as ‘subsequent feeder 

path’, using dashed iReturn vectors. Hence the cost function can 

be described as: 

 

∑ ∑ 𝐷𝑖𝑗√(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

+ (𝑧𝑖 − 𝑧𝑗)
2𝑚

𝑗=1
𝑛
𝑖=1            (3) 

 

where: 

n – vector describing sequence of component placement 

destinations 

m – vector of consequent feeders from which component are 

picked 

𝐷𝑖𝑗  – decision variable, such that: 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

𝐷𝑖𝑗 = {
1     if following component 𝑗 + 1 is stored in feeder 𝑖
0     otherwise                                                                          

    (4) 

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖  – Cartesian coordinates of the position of ith feeder 

𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗  – Cartesian coordinates of the destination of jth 

component  

 

There are however some major assumptions and operation 

specifications of the assembly system, upon which this 

investigation is based: 

• Each component type is setup only once in the feeder 

magazine for simplification, as this approach 

eliminates the component retrieval problem; 

• Both the component magazine and the worktable 

remain stationary and only the robot is mobile; 

• The end effector is capable of picking one component 

at a time. 

 

4. Bat Algorithm for the sequence allocation problem 

The BA algorithm’s search engine is based on bats searching 

for prey use sonar based echolocation. By emission of very loud 

sound pulses and listening for the echo that bounces back from 

the surrounding objects, the bats are able to navigate in the dark, 

avoid obstacles, detect and even identify the type of its prey. 

Their pulses vary in properties and can be correlated with their 

hunting strategies, depending on the species [26]. Echolocation 

behaviour was formulated in such way that it can be used as a 

search algorithm, which in association with the appropriate 

objective function has proved to be effective way to find 

optimal solution to many combinatorial problems. 

Echolocation used by bats is characterized by three parameters: 

emission rate, loudness and pulse frequency. Emission rate 

corresponds with the number of pulsed emitted by bat per 

second and increases as bat reduces distance between it and its 

prey. The researchers discovered that when bats are hunting, 

their rate of pulse emission can be increased from 10 up to 200 

pulses per second giving the indication of the impressive 

resolution of bat’s sonar and signal processing power.  

 

4.1 Basic Bat Algorithm 

The basic algorithm is described in accordance with the 

following idealized three rules: 

1) All bats use echolocation to know the difference 

between prey and background barriers they navigate 

within. 

2) All bats searching for prey fly randomly with velocity 

vi at position xi with a fixed frequency fmin, varying 

wavelength ʎ and loudness A0. The bats are able to 

adjust the rate and frequency of the emitted pulses. 

3) Although the loudness can vary in many ways, on this 

particular occasion, the assumption is made that the 

loudness varies from large positive A0 to a minimum 

constant Amin. 

 

The BA flow chart is presented in Figure 2. First, the virtual bat 

population is initialized, which involves defining position, 

velocity, frequency, emission rate and loudness for each of the 

virtual bats generated. Next, the iteration process begins by 

generating new solutions through adjusting frequency and 

updating velocities and positions as shown in equations from 5 

to 7 below 

                            𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽,                     (5)                           

                            𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡 − 𝑥𝑏𝑒𝑠𝑡)𝑓𝑖 ,                      (6) 

                                       𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡 ,                              (7) 

 

where β is random number within the range from 0 to 1, 𝑓𝑚𝑖𝑛, 

𝑓𝑚𝑎𝑥  are minimum and maximum frequency values 

respectively, 𝑥𝑏𝑒𝑠𝑡  designates the current global best position 

found to the point by comparing the values of the cost function 

of all the solutions. For the local search part, which is subjected 

to verification of condition: > 𝑟𝑖, a new solution is generated by 

performing a local random walk. A new position (solution) is 

generated according to equation 6, which states: 

 

                              𝑥𝑛𝑒𝑤 = 𝑥𝑏𝑒𝑠𝑡 + 𝜀𝐴𝑡 ,                                            (8) 

 

where 𝜀  is a number in range [-1, 1] and 𝐴𝑡  is the average 

loudness of all the bats within this virtual generation.  After this 

step, condition validation follows such as 𝑟𝑎𝑛𝑑 <  𝐴𝑖  and 

𝑓(𝑥𝑖) < 𝑓(𝑥𝑏𝑒𝑠𝑡). For each bat that accepts the condition, the 

emission rate and loudness are updated as follows: 

 

                                𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − exp (−𝛾𝑡)],                      (9) 

                                         𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡 ,                                 (10) 

 

where 𝛾  and 𝛼  are constants. The algorithm runs until the 

termination criteria are satisfied.  

 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

 
Figure 2. BA flow chart 

 

4.2 Global search: velocity and position updating 

In order to shift the BA into discrete space, some level of 

modification is required. In our proposed discrete algorithm, we 

have implemented the intelligent link between all the bats in the 

population. Hence, during the global search, each bat moves in 

a way depending on its position in relation to the best bat of the 

population. To represent the solution/position of each bat, we 

use a n-dimensional vector 𝑥𝑖 which is characterized by nodes 

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛). As for the velocity representation, we used 

swap sequence procedure, described by 𝑣𝑖 = {𝑐𝑖1, 𝑐𝑖2 … . 𝑐𝑖𝑚  }. 

This procedure was first presented by Wang et al. [35], and 

Amara et al. [27] has implemented similar concept in their 

version of hybrid discrete BA. The swap sequence is an array 

of swap operators 𝑐𝑖, each including indexes of two nodes that 

when exchanged in the current solution, allow the response to 

get closer to the global best solution 𝑥𝑏𝑒𝑠𝑡 =
(𝑥𝑏𝑒𝑠𝑡1, 𝑥𝑏𝑒𝑠𝑡2, … , 𝑥𝑏𝑒𝑠𝑡𝑛 , ). Hence, the velocity of each bat is 

the collective of all of the swap operators required to move from 

current position 𝑥𝑖 to global best position 𝑥𝑏𝑒𝑠𝑡 . Each bat that is 

going to perform a movement, examines its velocity first. The 

move the bat performs, depends largely on the frequency. In our 

approach, the frequency 𝑓𝑖 is the probability with which each of 

the swap operators is to generate the new solution. To improve 

convergence rate, we added a condition that only the swap 

operators, which produce an improvement to overall solution 

quality, are executed. For example, if 𝑓𝑖 = 0.4 and the swap 

sequence contains seven swap operators, for each operator there 

is 4/10 chance that the operator will be applied, assuming that 

each operator brings an improvement to the solution. Figure 3 

presents swap sequence mechanism. As pointed out by Wang et 

al. [35] the order of swap operators within a swap sequence is 

significant from the point of view of solution. The application 

of similar swap operators in distinct order may produce a 

distinct solution from the original solution. In the example 

shown, the current position is 𝑥𝑖
𝑡 = (7,2,5,3,1,4,6) and the best 

position is 𝑥𝑏𝑒𝑠𝑡 = (4,5,7,6,1,2). The velocity is the array of 

swap operators required to transform the current position into 

best position, hence: 𝑣𝑖
𝑡 = [(1,6), (2,3), (3,6), (4,7), (6,7)] . 

The frequency of the current bat when flying was randomly 

chosen as 0.4, therefore 40% of the swap operators randomly 

selected among the group of five will be applied. The greyed 

area within the array shows that operators (2,3) and (3,6) were 

selected. The new position is the current position after 

application of two swap operators according to the description 

above.  

 
Figure 3. position update based on velocity and frequency 

 

4.3 Parameter tuning 

The performance of an algorithm depends largely on the 

parameters of the algorithm. In BA, parameter control can be 

done in such a manner that the values of the parameters that 

include the loudness and rate of pulse emission can be varied as 

the iterations proceed. In this way, the BA provides inbuilt 

mechanism to automatically move from the exploration stage to 

exploitation stage when the optimal solution is approaching 

[36]. Frequency probability was set up in a way that assist the 

global search in early stage of the iterations. The probability 

check (rand>f, where rand is random number in range from 0 to 

1 allows high rate of finding new solution in early stages, 

favouring quick convergence towards good quality solutions. 

The sigmoid function used to describe the change of frequency 

as generation progress is presented in equation 11.  

𝑓𝑖 = 𝐴 ∗ (1 + exp (−𝛽 ∗ (𝑡 − 𝜀))−1                (11) 

 

where, A, β and ε are parameters that determine the shape and 

position of the function. 

 

In our method, the loudness is updated according to equation 

10. The additional condition was introduced such that, loudness 

is reduced only if the new solution sees improvements with 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

regard to previous step, which indicated that those bats are 

moving towards the optimal position. The emission rate is the 

force driving the local search. Equation 12 maintains the change 

of emission rate and a sigmoid function updates the rate as the 

iteration proceeds.  

𝑟𝑖 = 𝐵 + 𝐴 ∗ (1 + exp (𝛽 ∗ (𝑡 − 𝜀))−1         (12) 

 

where, A, B, β and ε are parameters that determine the shape and 

position of the function.  

 

This constructed parameter control introduces an inbuilt 

capability to automatically transit into areas where there is 

possibility of obtaining promising solutions by intensifying the 

local search. This transition or zooming is accompanied by the 

automatic switching from diversified explorative moves to local 

intensified exploitative moves, which results in the high 

convergence rate in early stages of the iterations, compared to 

other algorithms (Chawla & Duhan 2015). 

 

5. Experimental setup 

The performance of the proposed BA to find the best assembly 

sequence that reduces cycle time is evaluated against a more 

traditional GA. In the study a KUKA KR16 6 axis industrial 

robot was used together with component feeders and two PCB 

components. The following section will describe the robot and 

the component. 

 

5.1 Eurorack Serge filter as an example product for 

optimised assembly 

The Eurorack Serge filter was selected for this study due to its 

complexity and variety of components (figure 4). The assembly 

of a PCB can be achieved with a wide range of technologies. In 

this research the procedure will be completed with a 6-axis 

robot. The component provides a good representation of the 

PCBs that would be prototyped or produced in small batches 

for beta testing rather than that of an established high-volume 

system. The assembly starts with placement of the PCB boards 

in the main fixture, then robot end effector places components 

collected from fixed feeders located in close proximity to the 

boards. The Eurorack Serge filter consists of seven variants of 

100 components that mainly consists of resistors, capacitors, 

diodes, ICs and power connectors. Once all of the components 

are assembled in sequence the parts can be soldered in position. 

 

 

 

 

Figure 4. Eurorack Serge Filter PCBs 

 

5.2 KUKA Robot 

The study used a KUKA KR16 6 axis industrial robot with 

component feeders and two PCB components placed in an 

optimum position within the assembly workspace. All of the 

assembly positions were programmed using KUKA KRL 

language (figure 5). To benchmark the algorithms the initial 

program sequence was based on a lead through (LT) program 

that started from the top of the main PCB and worked through 

each position until it reached the bottom, this method was then 

repeated for the second PCB (figure 6). The GA and BA (figure 

7) sequences were then programmed. For each program a timer 

command was added in order to compare the speed of the 

program. The KUKA robot has six different types of path 

motion, and four of these are relevant to the proposed assembly. 

The motion types are as follows: 

• Point to Point (PTP) – This motion type involves 

following the quickest path between two points and is 

not necessarily a straight path. 

• Linear (LIN) – The linear motion type follows a 

straight path and uses more joints in constant motion 

to trace the straight path. 

• Spline Point to Point (SPTP) – This is similar to the 

PTP motion, however it allows for continuous spline 

motions where points are estimated and a smoother 

motion is available. 

• Spline Linear (SLIN) – As with the SPTP this motion 

type uses splines between linear motions. 

 

Also, for each of the motions used there are velocity controls 

(percentage based). The efficacy of the algorithms can be 

influenced by the various motion types and the speed setting of 

the robot, therefore motion types and speed controls were 

applied to each of the programs. By comparing all of the robot 

potential in terms to motion type and speed it will be possible 

to identify the relationships between the algorithms and the 

assembly method. 

 
 

Figure 5. Assembly positions 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

 
Figure 6. LT sequence 

 
Figure 7. BA sequence. 

 

6. Results 

For the Optimal Motion Type and Placement sequences thirty-

six practical experiments were used to sequence the placing of 

individual components on two PCBs, where the main objective 

was to minimize the total distance travelled by the robot. Using 

the solutions created with a LT program and the optimized BA 

and GA, a time difference that also considers robot motion type 

(LIN, PTP, SLIN, SPTP) and velocity has been found (Table 

1). The main results are as follows: 

 

• The BA and GA sequences are faster than LT 

sequences for all of the motion types and at all 

velocities tested. 

• For all three sequences LIN motions are the slowest 

and PTP is the fastest (figure 8). 

• The BA is marginally better than the GA for LIN, PTP 

and SLIN, but for the SPTP motion the GA is faster 

(table 1). 

• When comparing the algorithms relationship to the 

velocity setting of the robot, overall it can be seen that 

as the robot goes faster the influence of the algorithm 

is reduced (figure 9).  

• The BA when using PTP motion is the sequence that 

is more influenced by the velocity of the robot. 

• Both algorithms when run in SLIN motion are less 

influenced by the robot velocity. 

 

In terms of efficiencies, table 2 shows significant differences 

when comparing heuristic sequencing to LT sequencing. The 

difference between the slowest build is (LT with a LIN motion 

of 30% velocity) and the quickest (BAT with a PTP at 75% 

velocity) is 84.26%. If we compare the LT and BAT builds 

across all velocities, you see an efficiency between 64.54-

71.43%. Even for a build of 100 components this is significant 

and scaling up the production of PCBs with more components 

will see similar the advantages to the manufacturers 

 

Table 1. LT, BA and GA build times for different robot motions 

and velocities. 

 
Robot motion type LIN PTP SLIN SPTP 

velocity % LT build time [ms] 

30 400404 114684 243552 246756 

50 251952 80208 152892 154800 

75 177720 63084 107472 108828 
 

BA build time [ms] 

30 397116 114384 242508 245112 

50 249972 80052 152208 153768 

75 176376 63012 107016 108168 
 

GA build time [ms] 

30 397188 114480 242604 244368 

50 250008 80124 152268 153408 

75 176424 63048 107076 107916 

 

 
 

Figure 8. Assembly time for sequence and motion types 

 

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

LIN PTP SLIN SPTP LIN PTP SLIN SPTP LIN PTP SLIN SPTP

LT BA GA

t 
[m

s]

Sequence and motion type

30% Velocity

50% Velocity

75% Velocity

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

 
 

Figure 9. The influence of robot velocity on BA and GA 

sequences and motion types 

 

Table 2. Efficiency differences 

 
Velocity slowest fastest Optimised 

efficiency (100 

components) 

30% LT LIN 

400404 [ms] 

BA PTP 

114384 [ms] 

71.43% increase 

50% LT LIN 

251952 [ms] 

BA PTP 

80052 [ms] 

68.22% increase 

75% LT LIN 

177720 [ms] 

BA PTP 

63012 [ms] 

64.54% increase 

Difference between whole range 

Slowest Fastest  

 

84.26% increase 
LT LIN 30% 

velocity 

400404 [ms] 

BA PTP 

75% 

63012 [ms] 

 

 

 

 

7. Conclusions 

This research investigated the use of an automation cell that 

utilised a 6-axis robot to assemble an electronic component. 

The manufacturing process required an optimal placement 

sequence for improved production efficiency. To achieve this a 

novel discrete hybrid BA and a GA was used for solving the 

feeder slot assignment and placement sequence problem. 

Numerical experiments were conducted to identify the 

effectiveness of the algorithm and validation was performed 

using a KUKA KR16 robotic assembly cell with various path 

planning programs and motion velocities. 

• The BA and GA provide a better solution to reducing 

the the total distance travelled by the robot when 

compared to LT programming solutions. A LT 

sequence using LIN motions at 30% resulted in the 

slowest assembly time (400404 ms) and Bat sequence 

using PTP motions at 75% velocity was the fastest 

(63012 ms). The optimised order sequence reduces the 

total distance travelled by the KUKA robot and a 

theoretical time saving of 84.26% could be obtained 

through optimisation leading to an important 

improvement in assembly time.  

• Experimental results were tested using the KUKA 

robot to validate the algorithms ability to improve 

placement sequences. Knowing that four different 

robot motion types are used in real automation 

sequences, each was compared. For the LT and BA 

and GA sequences LIN motions are the slowest and 

PTP is the fastest. The BA is marginally better than the 

Genetic algorithm for LIN, PTP and SLIN, but for the 

SPTP motion the GA is faster. 

• In addition to automation movement types, three 

different velocities were considered for each sequence 

type and each movement type. The research shows that 

there is a relationship between the algorithms and the 

velocity setting of the robot. As the robot goes faster 

the influence of the algorithm is reduced. The BA 

when using PTP motion is the sequence that is more 

influenced by the velocity of the robot. Both BA and 

GA sequences are less influenced by the robot velocity 

when using SLIN motions. Importantly it should be 

noted that in larger more complex programs with more 

complex part geometries it is likely that the 

programmer will used multiple speeds and motion 

types to meet the specifications of the assembly. 

• 6 axis robots provide an automation solution that 

allows for flexible manufacturing. The manipulation 

capabilities they possess mean that they can be used 

for traditional activities but also complete complex 

tasks that are normally associated with specialised 

automation. This research has shown that a BA 

inspired and GA can be used with 6 axis robots to 

optimise PCB assembly. With a focus on makespan 

minimization, the algorithms out performed traditional 

LT programs. However, the results also showed that 

when using such a sequence optimization method the 

programmer must holistically consider the different 

robot motion types and the velocities in which the 

robot operates with. 

• In future studies the findings of this research will be 

focused in two directions. The first is to modify the 

algorithm to use multiple robot motions within a single 

program. A rule based system will also be used to 

recognise the accuracies achievable with different 

velocities. The second direction will be to verify the 

accuracy of the robot interface when commanded to 

modify a trajectory and re sequence an established 

path.  

 

References 

[1] Castellani, M., Otri, S., & Pham, D. T. (2019a). Printed 

circuit board assembly time minimisation using a novel Bees 

Algorithm. Computers and Industrial Engineering, 133(April), 

186–194. https://doi.org/10.1016/j.cie.2019.05.015 

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

75% velocity 50% velocity 30% velocity

t 
[%

]

LIN BA

LIN GA

PTP BA

PTP GA

SLIN BA

SLIN GA

SPTP BA

SPTP GA

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

[2] Crama, Y., Van De Klundert, J., & Spieksma, F. C. R. 

(2002). Production planning problems in printed circuit board 

assembly. Discrete Applied Mathematics, 123(1–3), 339–361. 

https://doi.org/10.1016/S0166-218X(01)00345-6 

[3] Nilakantan, J. M., Huang, G. Q., & Ponnambalam, S. G. 

(2015). An investigation on minimizing cycle time and total 

energy consumption in robotic assembly line systems. Journal 

of Cleaner Production, 90, 311–325. 

https://doi.org/10.1016/j.jclepro.2014.11.041 

[4] Altinkemer, K., Kazaz, B., Köksalan, M., & Moskowitz, H. 

(2000). Optimization of printed circuit board manufacturing: 

Integrated modeling and algorithms. European Journal of 

Operational Research, 124(2), 409–421. 

https://doi.org/10.1016/S0377-2217(99)00169-1 

[5] Ji, P. (2008). Minimizing Cycle Time for PCB Assembly 

Lines : An Integer Programming Model and a Branch-and-

Bound Approach. Information & Management Sciences, 19(2), 

237–243. 

[6] Kodek, D. M., & Krisper, M. (2004). Optimal algorithm for 

minimizing production cycle time of a printed circuit board 

assembly line. International Journal of Production Research, 

42(23),50315048.https://doi.org/10.1080/00207540412331285

814 40(4), 293–307. https://doi.org/10.1016/S0360-

8352(01)00030-4 

[7] Ong, N., & Tan, W. (2002). Sequence placement planning 

for high-speed PCB assembly machine. Integrated 

Manufacturing Systems, 13(1), 35–46. 

https://doi.org/10.1108/09576060210411495 

[8] Ball, M. O., & Magazine, M. J. (1988). Sequencing of 

insertions in printed circuit board assembly. Operations 

Research, 36(2), 192–201. 

https://doi.org/10.1287/opre.36.2.192 

[9] Ahmadi, R. H., & Mamer, J. W. (1999). Routing heuristics 

for automated pick and place machines. European Journal of 

Operational Research, 117(3), 533–552. 

https://doi.org/10.1016/S0377-2217(98)00231-8 

[10] Ho, W., & Ji, P. (2005). A genetic algorithm to optimise 

the component placement process in PCB assembly. 

International Journal of Advanced Manufacturing Technology, 

26(11–12), 1397–1401. https://doi.org/10.1007/s00170-004-

2132-5 

[11] Loh, T. S., Bukkapatnam, S. T. S., Medeiros, D., & Kwon, 

H. (2001). A genetic algorithm for sequential part assignment 

for PCB assembly. Computers and Industrial Engineering, 

40,2001,293-307. 

[12] Ong, N. S., & Khoo, L. P. (1999). Genetic algorithm 

approach in PCB assembly. Integrated Manufacturing Systems, 

10(5), 256–265. https://doi.org/10.1108/09576069910280648 

[13] Wang, W. P., & Tseng, H. E. (2009). Complexity 

estimation for genetic assembly sequence planning. Journal of 

the Chinese Institute of Industrial Engineers, 26(1), 44–52. 

https://doi.org/10.1080/10170660909509120 

[14] Broad, K., Mason, A., Rönnqvist, M., Frater, M., Broad, 

K., Mason, A., … Frater, M. (1996). rch Society Stable URL : 

Optimal Robotic Component Placement. The Journal of the 

Operational Research Society, 47(11), 1343–1354. 

[15] Chen, Y. M., & Lin, C. T. (2007). A particle swarm 

optimization approach to optimize component placement in 

printed circuit board assembly. International Journal of 

Advanced Manufacturing Technology, 35(5–6), 610–620. 

https://doi.org/10.1007/s00170-006-0777-y 

[16] Alkaya, A. F., & Duman, E. (2015). Combining and 

solving sequence dependent traveling salesman and quadratic 

assignment problems in PCB assembly. Discrete Applied 

Mathematics, 192(2015), 2–16. 

https://doi.org/10.1016/j.dam.2015.03.009 

[17] Andrzejewski, K. T., Cooper, M. P., Griffiths, C. A., & 

Giannetti, C. (2018). Optimisation process for robotic assembly 

of electronic components. International Journal of Advanced 

Manufacturing Technology, 99(9–12), 2523–2535. 

https://doi.org/10.1007/s00170-018-2645-y 

[18] Moghaddam, M., & Nof, S. Y. (2016). Parallelism of Pick-

and-Place operations by multi-gripper robotic arms. Robotics 

and Computer-Integrated Manufacturing, 42, 135–146. 

https://doi.org/10.1016/j.rcim.2016.06.004 

[19] Grunow, M., Günther, H. O., Schleusener, M., & Yilmaz, 

I. O. (2004). Operations planning for collect-and-place 

machines in PCB assembly. Computers and Industrial 

Engineering, 47(4), 409–429. 

https://doi.org/10.1016/j.cie.2004.09.007 

[20] Ellis, K. P., Vittes, F. J., & Kobza, J. E. (2001). Optimizing 

the performance of a surface mount placement machine. IEEE 

Transactions on Electronics Packaging Manufacturing, 24(3), 

160–170. https://doi.org/10.1109/6104.956801 

[21] Deo, S., Javadpour, R., & Knapp, G. M. (2002). Multiple 

setup PCB assembly planning using genetic algorithms. 

Computers and Industrial Engineering, 42(1), 1–16. 

https://doi.org/10.1016/S0360-8352(01)00062-6 

[22] Ho, W., & Ji, P. (2005). A genetic algorithm to optimise 

the component placement process in PCB assembly. 

International Journal of Advanced Manufacturing Technology, 

26(11–12), 1397–1401. https://doi.org/10.1007/s00170-004-

2132-5 

[23] Kulak, O., Yilmaz, I. O., & Günther, H.-O. (2007). PCB 

assembly scheduling for collect-and-place machines using 

genetic algorithms. International Journal of Production 

Research, 45(17), 3949–3969. 

https://doi.org/10.1080/00207540600791608 

[24] Li, S., Hu, C., & Tian, F. (2008). Enhancing optimal feeder 

assignment of the multi-head surface mounting machine using 

genetic algorithms. Applied Soft Computing Journal, 8(1), 522–

529. https://doi.org/10.1016/j.asoc.2007.02.012 

[25] Castellani, M., Otri, S., & Pham, D. T. (2019b). Printed 

circuit board assembly time minimisation using a novel Bees 

Algorithm. Computers and Industrial Engineering, 133(May), 

186–194. https://doi.org/10.1016/j.cie.2019.05.015 

[26] Yang, X. S. (2010). A new metaheuristic Bat-inspired 

Algorithm. Studies in Computational Intelligence, 284, 65–74. 

https://doi.org/10.1007/978-3-642-12538-6_6 

[27] Amara, J., Hamdani, T. M., & Alimi, A. M. (2015). A new 

Hybrid Discrete Bat Algorithm for Traveling Salesman 

Problem using ordered crossover and 3-Opt operators for Bat’s 

local search. In 2015 15th International Conference on 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3082877, IEEE
Transactions on Industrial Informatics

Intelligent Systems Design and Applications (ISDA) (pp. 154–

159). https://doi.org/10.1109/ISDA.2015.7489217 

[28] Kaveh, A., & Zakian, P. (2014). Enhanced bat algorithm 

for optimal design of skeletal structures. Asian Journal of Civil 

Engineering, 15(2), 179–212. 

[29] Osaba, E., Yang, X. S., Diaz, F., Lopez-Garcia, P., & 

Carballedo, R. (2016). An improved discrete bat algorithm for 

symmetric and asymmetric Traveling Salesman Problems. 

Engineering Applications of Artificial Intelligence, 48, 59–71. 

https://doi.org/10.1016/j.engappai.2015.10.006 

[30] Saji, Y., & Riffi, M. E. (2016). A novel discrete bat 

algorithm for solving the travelling salesman problem. Neural 

Computing and Applications, 27(7), 1853–1866. 

https://doi.org/10.1007/s00521-015-1978-9 

[31] Musikapun, P., & Pongcharoen, P. (2012). Solving Multi-

Stage Multi-Machine Multi-Product Scheduling Problem Using 

Bat Algorithm. International Conference on Management and 

Artificial Intelligence, 35, 98–102. 

[32] Asma, C., Rabia, K., Mohamed, B and Xin-She, 

Y.(2017) New directional bat algorithm for continuous 

optimization problems Expert Systems With Applications 69 
159–175. 
[33] Lijue, L., Shuning, L., Fan, G and Shiyang, T. (2020) 

Multi-point shortest path planning based on an Improved 

Discrete Bat Algorithm. Applied Soft Computing Journal 95 

(2020) 106498 

[34] Saraswathi M., Bala G., Murali, B., Deepak, BBVL 

(2018). Optimal Path Planning of Mobile Robot Using Hybrid 

Cuckoo Search-Bat Algorithm. Procedia Computer Science 

133 (2018) 510–517 

[35] Wang K.-P., Huang L., Zhou C.-G., and Pang W. (2003), 

"Particle swarm optimization for traveling salesman problem," 

in Machine Learning and Cybernetics, 2003 International 

Conference on, vol. 3. IEEE, pp. 1583-1585. 

[36] Chawla M. and Duhan M. (2015), “Bat Algorithm: A 

survey of the state-of-the-art”, Applied Artificial Intelligence, 

29: 617–634. 

 

Authorized licensed use limited to: SWANSEA UNIVERSITY. Downloaded on May 26,2021 at 21:31:03 UTC from IEEE Xplore.  Restrictions apply. 


