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Wind-Farm Power Tracking via Preview-Based
Robust Reinforcement Learning

Hongyang Dong and Xiaowei Zhao

Abstract—This paper aims to address the wind-farm power
tracking problem, which requires the farm’s total power gen-
eration to track time-varying power references and therefore
allows the wind farm to participate in ancillary services such as
frequency regulation. A novel preview-based robust deep rein-
forcement learning (PR-DRL) method is proposed to handle such
tasks which are subject to uncertain environmental conditions
and strong aerodynamic interactions among wind turbines. To
our knowledge, this is for the first time that a data-driven
model-free solution is developed for wind-farm power tracking.
Particularly, reference signals are treated as preview information
and embedded in the system as specially designed augmented
states. The control problem is then transformed into a zero-
sum game to quantify the influence of unknown wind conditions
and future reference signals. Built upon the H∞ control theory,
the proposed PR-DRL method can successfully approximate the
resulting zero-sum game’s solution and achieve wind-farm power
tracking. Time-series measurements and long short-term memory
(LSTM) networks are employed in our DRL structure to handle
the non-Markovian property induced by the time-delayed feature
of aerodynamic interactions. Tests based on a dynamic wind farm
simulator demonstrate the effectiveness of the proposed PR-DRL
wind farm control strategy.

Index Terms—Reinforcement learning, wind farm control,
model-free control, wind power, renewable energy.

I. INTRODUCTION

As one of the most important renewables, wind energy plays
a key role in the essential move towards net-zero emissions.
Over 200GW wind power capacity has been installed in
Europe by 2020, accounted for 14% of the total electricity
demand. With the rapid development of wind energy, how
to operate wind farms efficiently has become a bottleneck
problem in the wind industry. The main challenges of wind
farm control problems come from the uncertain wind condi-
tions and the time-varying aerodynamic couplings among wind
turbines in the farm. A commonly-used wind farm control
strategy is to establish analytical or parametric wind-farm
models firstly and then design controllers based on them.
Following this pattern, many model-based methods have been
proposed to optimize the power generation of wind farms
[1], [2]. However, due to high system complexities, model-
based wind farm control methods suffer from uncertainties
and unmodelled dynamics, and thus in practice they could
have quite different performance compared with theoretical
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results. Model-free methods are promising alternatives to avoid
these drawbacks. Some attempts to this end were presented
in [3], [4], [5], [6], [7], [8]. Notably, several reinforcement
learning (RL)-based methods were proposed in [5], [6], [7],
[8] to maximize wind-farm power generation. However, all
these elegant results either employed mean power outputs
or still relied on the power outputs estimated by underlying
wake models to carry out the learning process. They cannot
react to real-time/instantaneous measurements or handle time-
series data. Also, they lack the extending capacity to undertake
complex tasks that require dynamic control trajectories, such
as farm-level power tracking used in grid ancillary services.

Wind farms are gradually replacing traditional power plants,
leading to low-inertia power systems and a decrease in the
available supply of ancillary services. Therefore, employing
wind farms to provide ancillary services becomes necessary
to ensure the safety and stable operation of the power grid.
This has aroused extensive research interest recently [9], [10],
[11], [12], [13], [14], [15], [16]. For example, wind farms can
achieve secondary frequency control (SFC, or referred to as
automatic generation control (AGC) in the literature) - a main
ancillary service that can be employed to regulate grid fre-
quency [9], balance power supply with load [10], and maintain
scheduled power exchanges between areas [11]. To achieve
this, the farm’s total power generation is required to track a
reference power signal set by the system operators over several
minutes or tens of minutes [9], and the power generation of
each turbine in the farm needs to be controlled cooperatively
in order to achieve a good tracking performance. We note that
wind-farm power tracking is a much more complicated task
than wind-farm power generation maximization. Particularly,
the instantaneous control inputs can lead to a long-term
influence on turbines’ aerodynamic interactions and the whole
farm’s power generation outputs, rendering power tracking a
difficult task for wind farms. Some studies [12], [13], [14],
[15], [16] achieved this goal by carrying out induction control
for all the turbines in the farms. However, these important
results either depended on underlying simplified wake models
or relied on accurate estimations of future power generations
(or other states that are directly related to power generations,
such as rotor-averaged wind velocities). They are sensitive to
modelling errors and uncertainties, degrading their feasibility
and applicability in practical applications.

The deep reinforcement learning (DRL)-based control strat-
egy has the potential to address the aforementioned limitations
of the existing wind farm control approaches for farm-level
power tracking. DRL [17] is a cutting-edge artificial intelli-
gence area, which has been applied in many systems such as
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board games, robots, satellites, and power systems [18], [19],
[20], [21]. A DRL agent focuses on improving its control pol-
icy to optimize a long-term reward via its interactions with the
environment. Distinct from conventional DRL design, a novel
preview-based robust DRL (PR-DRL) structure is proposed
in this paper to handle time-varying references and uncertain
environmental conditions. Specifically, reference signals are
treated as preview information and embedded in the system
as augmented system states. This allows us to transform the
tracking control problem into a zero-sum game and therefore
quantify the influence of the uncertain environmental condi-
tions and future reference signals. Also, time-series states are
employed to address the non-Markovian property of wind-
farm power tracking problems, guaranteeing the fundamental
requirement of DRL. Built upon the H∞ control theory and the
deep deterministic policy gradient (DDPG) algorithm [22], our
PR-DRL method can approximate the solution of the resulting
zero-sum game. In addition to the actor-critic mechanism, an
additional deep neural network (DNN) structure, termed a
distractor, is employed in our design to evaluate the worst-case
exogenous inputs (i.e. unknown wind conditions and future
reference signals) with respect to a user-defined performance
index, bringing strong robustness to the whole system. Long
short-term memory (LSTM) networks are employed in our
PR-DRL to handle time-series data and address the non-
Markovian property induced by the time-delayed feature of
aerodynamic interactions. The main contributions of this paper
are summarized below.

• To our knowledge, this is for the first time that a data-
driven model-free solution is developed for wind-farm
power tracking. The proposed PR-DRL method addresses
this challenging problem by employing only the system’s
input & output data without requiring any analytical
model. It overcomes the drawbacks of model-based wind
farm control methods [1], [2], [9], [12], [13], [14], [15],
[16] that are sensitive to modelling errors and uncertain-
ties.

• The proposed PR-DRL method addresses the limitations
of existing DRL-based wind farm control methods [5],
[6], [7], [8]. It can handle complex tasks (i.e. power track-
ing) under uncertain environmental conditions, bringing
strong adaptability and robustness to the whole system.
Compared with the recent robust DRL algorithm in [23],
our PR-DRL can deal with preview information and avoid
the additional internal loop for actor updating as required
in [23], rendering an easy-to-implement framework with
enhanced generality.

• The proposed PR-DRL method does not need the assump-
tion of full-flow state measurements, which was used in
most recent wind-farm power tracking methods [15], [16].
It only needs time-series measurements at turbine rotors
(instead of at all spatial cells of the staggered grid over
the whole flow field as in [15], [16]) and uses LSTM
networks to capture the key information regarding power
tracking tasks. This feature offers strong applicability to
real wind farms.

The remainder of this paper is organized as follows. The PR-

DRL method is designed in Sec. II. Then it is adapted in Sec.
III to handle wind-farm power tracking tasks. After that, case
studies with a dynamic wind farm simulator are demonstrated
in Sec. IV. Finally, we conclude the paper in Sec. V.

II. DEVELOPMENT OF PREVIEW-BASED ROBUST DRL
A. Preview-Based Robust Control

A preview-based robust DRL method for tracking control
problems is proposed in this section. We start with a general
discrete-time system:

x(k + 1) = f(x(k), u(k), w(k)) (1)

In Eq. (1), x(k) ∈ Rn and x(k + 1) ∈ Rn are the system
state and its successor, respectively. In addition, u ∈ Rm
denotes the system’s control input, w ∈ Rl denotes the external
disturbance, and f(x, u, w) is an unknown mapping from x(k),
u(k) and w(k) to x(k + 1) for any time instant k.

We use xd ∈ Rn to denote the reference control signal, and
xe(k) = x(k)−xd(k) is the tracking error. By substituting xd
into Eq. (1), one has

xe(k + 1) = f(xe(k) + xd(k), u(k), w(k))− xd(k + 1) (2)

If the preview information of the reference signal xd is
available, it can enable the control policy to act in advance
and therefore enhance performance. We consider a N time-
step preview, which means that, at time k, xd(k), xd(k + 1),
..., and xd(k+N−1) are available for controller design. Here
N ∈ N+, and N = 1 means there is no preview.

To handle preview information, we define x̄d(k) =
[xd(k)T, xd(k + 1)T, ..., xd(k +N − 1)T]T. Then one has

x̄d(k + 1) = Φ1x̄d(k) + Φ2xd(k +N) (3)

xd(k) = Φ3x̄d(k) (4)

where

Φ1 =


0 I 0 . . . 0
0 0 I . . . 0
...

... . . . . . . I
0 0 . . . 0 0

 , Φ2 =


0 . . . 0 0

0 . . . 0
...

... . . .
... 0

0 . . . 0 I


and

Φ3 =
[
I 0 . . . 0

]
Therefore, Eq. (2) can be transformed to be

xe(k + 1) = f(xe(k) + Φ3x̄d(k), u(k), w(k))− Φ3x̄d(k + 1)
(5)

x̄d(k + 1) = Φ1x̄d(k) + Φ2xd(k +N) (6)

Defining x̄(k) = [xe(k)T, x̄d(k)T]T and w̄(k) =
[w(k)T, (xd(k +N)− xd(k +N − 1))T]T, then Eqs. (3) and
(4) can be re-organized to the following compact form.

x̄(k + 1) = F (x̄(k), u(k), w̄(k)) (7)

Based on Eq. (7), we aim to design a controller to satisfy
the following inequality for any w̄ ∈ L∞:

∞∑
i=k

ρi−kR(x̄(i), u(i)) ≤ γ2
∞∑
i=k

ρi−k‖w̄(i)‖2P (8)
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Here R(x̄, u) is a user-defined reward function to reflect
control objectives, and ‖w̄‖2P , w̄TPw̄ with P ≥ 0. Also,
ρ ∈ (0, 1] denotes a user-defined discount factor, and γ > 0
denote a prescribed level of disturbance attenuation.

The system described in Eq. (7), along with Eq. (8), forms
a typical H∞ control task. With Eq. (8), we can quantitatively
describe the influence induced by a general disturbance vector
w̄ (including the unknown external disturbance and the un-
certain future reference signal) to the tracking control system.
According to Eq. (8), we consider the following performance
metric that is commonly mentioned as a state value function:

V (k) ,
∞∑
i=k

ρi−kl(x̄(i), u(i), w̄(i)) (9)

where l(x̄, u, w̄) = R(x̄, u)−γ2‖w̄‖2P is the step reward. Then
the whole control problem can be regarded as a zero-sum game
[24] between the control policy u and the unknown general
disturbance vector w̄. Specially, u aims to minimize the long-
term reward function in Eq. (9) while w̄ aims to maximize
it. We need to find an optimal control policy u∗ under the
potential worst-case w̄ (denoted by w̄∗), i.e.

u∗(k) = arg min
u
V ∗(k) (10)

and here

V ∗(k) = V ∗(x̄(k), u∗(k), w̄∗(k))

= min
u

max
w̄
{V (x̄(k), u(k), w̄(k))},∀k ∈ N+ (11)

However, the Nash equilibrium (u∗(x), w̄∗(x)) of such a
zero-sum game is almost impossible to be analytically solved
subject to an unknown, nonlinear system as in Eq. (7). In
this paper, we use DRL to solve this problem. Based on the
Bellman’s optimality principle, a vital feature of V ∗ is given in
the following discrete-time Hamilton-Jacobi-Isaacs equation.

V ∗(k) = min
u

max
w̄
{l(x̄(k), u(k), w̄(k)) + ρV ∗(k + 1)} (12)

Built upon (12), we define the so-called Q-function as follows.

Qu,w̄(x̄(k), a, d)

= l(x̄(k), a, d) +

∞∑
i=k+1

ρi−kl(x̄(k + 1), u(k + 1), w̄(k + 1))

= l(x̄(k), a, d) + ρV (k + 1)

= l(x̄(k), a, d) + ρQu,w̄(x̄(k + 1), u(k + 1), w̄(k + 1))
(13)

The function Qu,w̄(x(k), a, d) in Eq. (13) is called an
action-state value function [25]. It represents the value of the
performance metric obtained when the control action a and
disturbance d are applied at state x(k), and the control policy
u and disturbance policy w̄ are pursued thereafter. Based on
Eq. (13), we have

Qu∗,w̄∗(x̄(k), a, d) = l(x̄(k), a, d) + ρV ∗(k + 1)

= l(x̄(k), a, d) + ρQu∗,w̄∗(x̄(k + 1), u∗(k + 1), w̄∗(k + 1))
(14)

where the optimal control policy u∗ follows Eq. (10) and the
worst-case disturbance policy w̄∗ is defined by

w̄∗(k) = arg max
w̄

V ∗(k) (15)

Remark 1: By employing preview information as augmented
states and organizing the unknown external disturbance and
the uncertain future reference as a maximizing player, we
successfully reformulate the tracking control problem of the
original system (1) to a stationary zero-sum game of the sys-
tem (7). This reformulation not only addresses the challenge
associated with the nonautonomous nature of optimal tracking
control problems but also allows us to quantitatively evaluate
the influence of the general disturbance vector (i.e. w̄) to the
system, laying a backbone for the application of our PR-DRL
algorithm as introduced in the following subsection.

Remark 2: The fundamental difference between the state
value function V in (9) and the action-state value function
Qu,w̄ in (13) is that the latter allows us to employ the
measurements under arbitrary control policy a and disturbance
policy d to carry out algorithm training. This feature is
essential for the design of PR-DRL because reference signals
and disturbances cannot be manipulated in practice. In other
words, the employment of Q-function will enable our PR-
DRL algorithm to be off-policy and utilize both offline and
online data to carry out learning process, rendering enhanced
feasibility and flexibility than the on-policy adaptive dynamic
programming (ADP) methods (e.g. [26], [27]) for robust
control, which require the exact target control & disturbance
policies to be applied for data collecting and learning purposes.

B. Preview-Based Robust Deep Reinforcement Learning

We show how to evaluate Qu∗,w̄∗ , u∗ and w̄∗ via DRL in
this subsection. Our design origins from the deep deterministic
policy gradient (DDPG) [22] algorithm, which employs the
actor-critic mechanism as the main DRL framework. The
critic aims to approximate the optimal Q-function in (14)
whilst the actor aims to evaluate the optimal control policy
u∗. Furthermore, two sets of actor-critic deep neural networks
(DNNs) are employed, named a main actor-critic and a target
actor-critic, respectively. We use θu, θu

′
, θQ and θQ

′
to denote

the parameters of main actor, target actor, main critic and target
critic, respectively. Following [22], we set

θu
′
← (1− τ)θu

′
+ τθu, θQ

′
← (1− τ)θQ

′
+ τθQ (16)

where τ is a small constant. As discussed in [28] and [22],
the employment of target DNNs along with such a “soft re-
placement” strategy in (16) can enhance the learning stability.

Distinct from DDPG and other standard DRL algorithms, a
novel DNN strucutre, termed a distractor, is employed in our
design to estimate the worst-case disturbance policy, i.e. w̄∗.
We also employ a main-target DNN pair for our distractor and
use θw̄ and θw̄

′
to denote the parameters of main distractor

and target distractor, respectively. Following (16), we set

θw̄
′
← (1− τ)θw̄

′
+ τθw̄ (17)

Before providing the update laws for θu, θQ and θw̄, we
simply introduce the experience replay strategy as employed
by deep Q-network (DQN) [28] and DDPG [22]. In general,
experience replay refers to the strategy of sampling a small
batch (with size n) of past experience (in terms of transitions)
from a memory buffer M (with size m) at every learning
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Algorithm 1 Preview-Based Robust Deep Reinforcement Learning (PR-DRL) Algorithm.
Employ preview information and tracking errors as augmented system states and transform the whole tracking control problem
to a stationary zero-sum game as described by (7) and (9).
Initialize DNN parameters θu, θu

′
, θQ, θQ

′
, θw̄, θw̄

′
and other user-defined parameters.

Decide termination conditions or learning steps (i.e. K and H at here).
1: for each episode do
2: for k = 0 to K do
3: Given current state x̄(k), choose the control action a = u(x̄(k)|θu) + ε(k), where ε(k) denotes an exploration noise.
4: Apply a to the system, and observe x̄(k + 1), d, and l(x̄(k), a, d).
5: Store the transition (x̄(k), x̄(k + 1), l(x̄(k), a, d), a, d) in the memory buffer M.
6: for h = 0 to H do
7: Sample a mini batch B from M, which contains n transitions, i.e., {(x̄i, x̄+

i , li, ai, di)}, i = 1, 2, ..., n.
8: Update θQ for the main critic by minimizing the loss function L constructed by the TD-error in (18).
9: Update θw̄ for the main distrator via the policy gradient strategy as described in (20).

10: end for
11: Update θu for the main actor via the policy gradient strategy as described in (19).
12: Update the target networks’ parameters, i.e. θu

′
, θQ

′
and θw̄

′
, by the soft replacement strategy as in (16) and (17).

13: end for
14: end for

step to carry out DNN training. This design caters to the
independent and identical distribution requirement in DNN
training and therefore enhance the learning stability. We denote
the transitions in a sampled batch by {(x̄i, x̄+

i , li, ui, di)},
i = 1, 2, ...n. Here x̄i and x̄+

i denote a state and its successor
(i.e. x̄(k) and x̄(k+ 1)), respectively, and li, ai, di denote the
step reward, control input, and disturbance, respectively.

Then we are ready to propose the training laws of main
DNNs. First, the main critic is trained by the so-called tempo-
ral difference error (TD-error). The TD-error is constructed by
the essential feature of Q-function as given in (13) and (14).
For a transition (x̄i, x̄

+
i , li, ai, di), its TD-error is defined by

δi =li + ρQ′(x̄+
i , u

′(x̄+
i |θ

u′), w̄′(x̄+
i |θ

w̄′)|θQ
′
)

−Q(x̄i, ai, di|θQ)
(18)

Here Q, Q′, u′(x̄+
i |θu

′
), and w̄′(x̄+

i |θw̄
′
) are the outputs of

main critic, target critic, target actor, and target distractor,
respectively. Based on (18), at every training step, we aim to
update θQ such that the following loss function of the sampled
batch can be minimized: L = (1/n)

∑n
i=1 δ

2
i .

Based on Eqs. (10) and (15), the main actor aims to
minimize the Q-function whilst the main distractor aims to
maximize the Q-function. Their training can be carried out
by the policy gradient strategy. Particularly, for a sampled
training batch, the gradients of θu and θw̄ with respect to
Q(x̄i, u(x̄i|θu), w̄(x̄i|θw̄)) are given as follows.

∇θu =
1

n

n∑
i=1

∂Q(x̄i, u(x̄i|θu), w̄(x̄i|θw̄)|θQ)

∂θu

=
1

n

n∑
i=1

[∇uQ(x̄i, u(x̄i|θu), w̄(x̄i|θw̄)|θQ)∇θuu(x̄i|θu)]

(19)

∇θw̄ =
1

n

n∑
i=1

∂Q(x̄i, u(x̄i|θu), w̄(x̄i|θw̄)|θQ)

∂θw̄

=
1

n

n∑
i=1

[∇w̄Q(x̄i, u(x̄i|θu), w̄(x̄i|θw̄)|θQ)∇θw̄w(x̄i|θw̄)]

(20)
The update of θu and θw̄ should be driven by −∇θu and ∇θw̄ ,
respectively. Based on these preliminaries, the proposed PR-
DRL method is organized in Algorithm 1.

Remark 3: As shown in Algorithm 1, our PR-DRL method
has two major learning loops. The inner loop (lines 6-
10) updates the main critic and main distractor under an
unchanged main actor. This allows the distractor to eval-
uate the worst-case w̄(x̄|θw̄) under a fixed control policy
u(x̄|θu). After that, the outer loop (lines 11-12) updates the
main actor under the resulting critic and distractor, aiming
to search an optimal u(x̄|θu) with respect to w̄(x̄|θw̄) and
Q(x̄i, u(x̄i|θu), w̄(x̄i|θw̄)|θQ). It also updates the parameters
of target networks. Integrating these two learning loops to-
gether allows us to iteratively approximate Q∗, u∗ and w̄∗.

III. WIND-FARM POWER TRACKING VIA PR-DRL

WT h denotes a single wind turbine in a wind farm, with
h = 1, 2, 3..., q and here q is the total turbine number. The
power output (denoted by Eh) of WT h is a function of its
thrust coefficient (denoted by C ′Th

), its yaw offset (denoted by
αh, with respect to inflow wind direction) and the wind speed
at its rotor (denoted by Uh), formulized by

Eh(k) = φ(C ′Th
(k), αh(k), Uh(k)) (21)

where φ(·) is an unknown function from C ′Th
(k), αh(k), and

Uh(k) to Eh(k), and here k is the time index.
Therefore, the whole farm’s total power generation satisfies

ET (k) =

q∑
h=1

Eh(k) =

q∑
h=1

φ(C ′Th
(k), αh(k), Uh(k)) (22)
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Figure 2: The main framework and data flow of the preview-based robust DRL method.

We consider a time-varying reference power signal in a near
future, denoted by {ER(k), ER(k + 1), ..., ER(k + N − 1)}.
In ancillary services such as frequency regulation, SO requires
the farm’s total power generation to track ER(k) at every time
k, i.e. minimizing the following tracking error:

E(k) = |ET (k)− ER(k)| (23)

The controllable variables in such a power tracking task are
the thrust coefficient (i.e. C ′Th

, which is directly related to the
rotor torque and blade bitch angle [29]) and the yaw offset
(i.e. αh) of every turbine in the farm. However, since yaw
actuators usually have large time constants (i.e. long response
time) and yaw offsets can lead to large structural loads, we
only employ turbines’ thrust coefficients as control inputs and
keep their yaw angles to be zero in power tracking. But in a
case study, we will demonstrate how to combine yaw control
strategies with PR-DRL for capacity enhancement.

We illustrate a typical wind farm in Fig. 1.a (Denmark
Horns Rev Offshore Wind Farm, photo by Christian Steiness).
This figure demonstrates the aerodynamic interactions among
turbines. It shows that the wakes induced by the upstream
turbines can lead to a complicated time-delayed influence
(as wakes propagate) on downstream turbines and render the
whole farm’s power outputs difficult to control. The wind
speed Uh at the rotor of WT h is not only influenced by the
free stream wind speed (denoted by U∞) but also affected by
the control sequences of all its upstream turbines in a past

period of time. Such a complicated aerodynamic interactions,
along with time-delay and stochastic features, is very diffi-
cult to be accurately and analytically modelled. Some recent
studies employed MPC method [15], [16] to achieve wind-
farm power tracking. These elegant results directly employ
the discretized model in large-eddy simulation (LES) and
also the full-flow states to carry out controller design. We
illustrate that in Fig. 1.b (a vertical view of a nine-turbine wind
farm). Particularly, a staggered grid is employed to discretize
the whole flow field in LES. At every time step, the wind
conditions in every cell of the staggered grid are employed
by the MPC method proposed in [15], [16], allowing the
controller capture the whole-flow-field information and predict
future power generations. However, the use of such tens of
thousands of full-state-style measurements is infeasible for
practical wind farms, in addition to the drawbacks inherent
in the underlying model-based structures of MPC.

In this paper, we aim to carry out a pioneering study to
achieve model-free and data-driven power tracking for wind
farms by employing only the available measurements at tur-
bine rotors, including Uh and Eh. However, simply employing
real-time, instantaneous measurements will render the whole
problem to be partially-observable and non-Markovian. This
fact is illustrated by Fig. 1.b. The control action of an upstream
turbine WT i will change the wake behind it. Such a change
needs to propagate for a period of time (e.g. t1 in Fig. 1.b)
before it leads to direct influence on the power generation of
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a downstream turbine WT j . Therefore, not only the instanta-
neous measurements but also the measurements during a past
period of time (denoted by tb) should be employed to allow the
PR-DRL capture the key task-relevant information and achieve
real-time power tracking. This looking-back time tb should be
longer enough to cover potential wake-propagation time of all
upstream-downstream turbine pairs, i.e. tb = max{t1, t2, ...}.

We are ready to summarize how to mould the wind-farm
power tracking control problem into the proposed PR-DRL:

(a) Following the design in the section II, the augmented
state vector x̄(k) contains 1) the power outputs of every
turbine in the farm during [k− tb, k], i.e. [Eh(k− tb), Eh(k−
tb + 1), ..., Eh(k)], h = 1, 2, ..., q; 2) the wind speeds
measured at turbine rotors during [k − tb − 1, k − 1], i.e.
[Uh(k − tb − 1), Uh(k − tb), ..., Uh(k − 1)], h = 1, 2, ..., q;
3) the farm-level power tracking errors during [k − tb, k],
i.e. [E(k − tb), E(k − tb + 1), ..., E(k)]; 4) the changes
of free-stream wind speeds U∞ (w.r.t the expected nom-
inal wind speed) during [k − tb − 1, k − 1], denoted by
[4U∞(k − tb − 1),4U∞(k − tb), ...,4U∞(k − 1)]; 4) the
reference signals during [k − tb, k], i.e. [ER(k − tb), ER(k −
tb + 1), ..., ER(k)]; 5) the preview information of reference
signals, i.e. x̄d(k) = [ER(k), ER(k+ 1), ..., ER(k+N − 1)];
6) the thrust coefficient of all the turbines during [k − tb, k],
i.e. [C ′Th

(k− tb), C ′Th
(k− tb + 1), ..., C ′Th

(k)], h = 1, 2, ..., q.
(b) The general disturbance vector (i.e. w̄(k)) to be evalu-

ated by the distractor is constructed by: 1) the unknown change
of future reference power signal, i.e. ER(k + N) − ER(k +
N − 1); 2) the unknown change of free-stream wind speed,
i.e. 4U∞(k).

(c) The control input u(k) contains the changes of C ′Th
of

all the turbines at time k, denoted by 4C ′Th
(k).

(d) Following (8) and (9), the step reward l(k) satisfies

l(k) = a1E(k)2 − a2[ER(k +N)− ER(k +N − 1)]2

− a34U∞(k)2 + a4

q∑
h=1

[C ′Th
(k)− C ′Th

(k − 1)]2
(24)

The first term in (24) represents the tracking objective (i.e.
E(k) → 0). The second and third terms quantify the dis-
turbance attenuation requirement. The last term in (24) is a
load-related term adapted from [16]. This term evaluates the
change of thrust applied to the turbine rotor, helping make a
balance between power tracking and load mitigation. And a1,
a2, a3 and a4 are weighting constants.

(e) To effectively handle time-series information, LSTM
networks are employed in the PR-DRL. Fig. 2 shows the main
structures of our PR-DRL for wind-farm power tracking.

IV. CASE STUDIES

We employ a dynamic wind farm simulator (WFSim) de-
veloped in [29] to carry out case studies, which simulates flow
fields and wind farms via the 2D Navier-Stokes equations. We
consider a flow field with a size of 2518.8m×1558.4m . The
change of U∞ follows an Ornstein-Uhlenbeck process with
a mean wind speed of 10 m/s. A wind profile under such
a condition is illustrated in Fig. 3. Following the design in
the sections II and III, the specific DNN structures (including

neuron types and numbers) of the actor, critic and distractor
of the proposed PR-DRL in case studies are illustrated in Fig.
4. Both the actor and the distrator have five layers, and the
critic employs a six-layer DNN structure. LSTM networks
are utilized to handle time-series data, and dropout layers
are employed to avoid the vanishing gradient problem. We
set γ = 1, ρ = 0.99 and τ = 0.05. At each training step,
64 transitions (i.e. n = 64) are randomly sampled from the
memory buffer M (with a total size of 50000). In addition,
10000 offline transitions generated by WFSim are fed into
M at the beginning of the training. This offline dataset is also
employed to normalize states, disturbances, control inputs, and
step rewards by using the z-score method, making the learning
process more effective and stable. After normalization, we
set a1 = 1, a2 = 0.2, a3 = 0.2 and a4 = 0.1 to make a
balance among power tracking, disturbance attenuation and
load mitigation requirements. The minimum and maximum
values of C ′Th

are set to be 0.1 and 2, respectively. In addition,
the maximum step change of C ′Th

is 0.1.

Figure 3: Illustration of an Ornstein-Uhlenbeck wind profile.
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Figure 4: DNN structures and neuron numbers for case studies.

For comparison purposes, another two controllers for wind
farm power tracking problems are also employed in case
studies. They are:

(a) The MPC controller proposed in [15], [16] (referred
to as MPC in simulation results). This advanced wind farm
control method has strong optimizing abilities. Moreover, it is
highly compatible with the dynamic wind farm simulator em-
ployed in this section (i.e. WFSim) – it can directly employ the
inherent mathematical model of WFSim to carry out controller
design, and therefore it is not influenced by modelling errors
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and uncertainties in case studies. These important features
enable the MPC method proposed in [15], [16] to be an
excellent baseline to carry out performance comparison with
the PR-DRL method proposed in this paper.

(b) The distributed wind farm control method proposed in
[13] (referred to as DWFC in simulation results). DWFC is
another popular method for wind-farm power tracking. Its core
idea is to distribute the power tracking task of the entire wind
farm to a series of power tracking tasks of each turbine in the
farm. To pursue better performance, the reference signal for
every turbine in the farm is continuously changed based on
the instantaneous & immediate-future power estimations for
the corresponding turbines.

The state & control constraints of MPC and DWFC are set
to be the same with PR-DRL for a fair comparison. Moreover,
the power outputs in which all turbines work in the maximum
power point tracking (MPPT) mode are also illustrated in case
studies. Such a working condition is commonly referred to as
the greedy mode for wind farms [1]-[7], in which every turbine
aims to capture the possible maximum wind power based on
its local wind condition.

A. Case Study with a Prototypical Wind Farm

In this subsection, we consider a 3×3 wind farm consisting
of NREL 5MW wind turbines. The distances between two
wind turbines in the x-direction and the y-direction are 5D and
3D, respectively, and here D = 126.4m is the diameter of tur-
bines. Following [13], [15], [16], the farm is required to track a
RegD-style signal defined by: ER = Egreedy(0.8+0.3sregD).
Here Egreedy denotes the farm’s total power output under
the greedy mode with the expected mean free-stream wind
speed (10m/s); sregD is a normalized RegD signal (within±1),
which is one the most irregular reference signals in anciliary
services [13], [15], [16]. The preview step (looking-ahead step
of reference) is N = 100.

Figure 5: Illustration of wind farm and flow field (Case A).

The time step of WFsim is set to be 1s. Based on all these
setting, we choose tb = 100s for our PR-DRL. This means, at
every time step, the measurements during the last 100s are fed
into PR-DRL, allowing the algorithm to capture the key system
information and achieve power tracking. After the training,
we test the performance of our PR-DRL with the RegD-style
signal ER mentioned above under time-varying wind speeds.
An instantaneous flow field (vertical view) is shown in Fig. 5 to

Figure 6: Wind-farm power tracking performance (Case A).

Figure 7: Turbine power outputs (Case A).

illustrate the wind farm considered here and the aerodynamic
interactions among turbines (wind speed differences among
the whole flow field are indicated by color differences). The
power tracking results under PR-DRL, MPC and DWFC are
shown in Fig. 6. The wind farm power outputs of the greedy
mode under the same wind speed profile are also illustrated
in this figure. Moreover, the power outputs of every turbine in
the farm under different controllers are shown in Fig. 7. These
figures show that though DWFC has a good performance when
the reference output is lower than the greedy mode, it lacks the
ability to track a reference signal that is higher than the greedy
mode (420s-760s in this case study) and lead to significant
tracking errors. This limitation comes from the inherent design
principle of DWFC. To be specific, it only evaluates the turbine
power generations at the instantaneous time step and the
immediate future, and then uses such information to carry out
power distribution and set reference signals for every turbine
in the farm. Therefore, DWFC is “short-sighted” and lacks
the ability to carry out long-term planning and track “non-
trivial” references (e.g., a reference signal that is higher than
the greedy mode output). In contrast, PR-DRL and MPC have
better capacities and achieve high-performance power tracking
under uncertain wind conditions in this case study.

B. Case Study with a Different Wind Farm Layout

In this subsection, we test the PR-DRL’s performance with
a wind farm that has a different layout from case study A.
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Figure 8: Illustration of wind farm and flow field (Case B).

Figure 9: Wind-farm power tracking performance (Case B).

Particularly, we translate each row of turbines 0.5D in the y-
direction. Simulation results are given in Figs. 8, 9 and 10. One
can see that, under the situation that downstream turbines are
influenced by partial wakes, the PR-DRL method proposed in
this paper still has the ability to understand the system’s main
mechanism and accomplish power tracking. It also leads to a
minimum averaged tracking error among the three controllers.
These results demonstrate the adaptability of our method.

C. Case Study Considering Yaw Control Strategy

As discussed in the section III, though we employ thrust
coefficients as the main control inputs (i.e. carrying out

Figure 10: Turbine power outputs (Case B).

induction control), our method has the ability to cooperate
with yaw control strategies to enhance the capacity. In this case
study, we employ the Bayesian ascent (BA) method proposed
in [3] for yaw optimization. BA is an advanced sequential
searching method that is built upon Bayesian optimization.
It allows us to search the optimal yaw offsets and therefore
steer wakes and enlarge the whole farm’s potential maximum
power outputs. To avoid big structural loads, we set the yaw
offset searching range to be αh ∈ [−30◦, 30◦], h = 1, 2, ..., 9.
The resulting optimal yaw angles by employing BA is α =
[23.58, 17.77, 19.93, 19.40, 12.77, 15.41, 0, 0, 0] deg, and here
α = [α1, α2, ..., α9]. These yaw offsets are applied to both
PR-DRL and MPC. An illustration of the flow field and
the wind farm with these yaw offsets are given in Fig. 11.
DWFC keeps the turbine yaw angles to be zero based on its
design principle. In this case study, we consider a new power
reference: ER = Egreedy(0.8 + 0.6sregD). The simulation
results with this new power reference are shown in Figs. 11-
14. Particularly, the power outputs and tracking errors under
different controllers are given in Fig. 12. One can see that
DWFC fails to track this new power reference (which can
be occasionally much higher than the power generation under
the greedy mode) and leads to large tracking errors during
the period of 420s-850s. In comparison, PR-DRL and MPC
cooperate well with the yaw control strategy and successfully
achieve power tracking in this case study. The power outputs
and the changes of C ′T of every turbine in the farm are given
in Figs. 13 and 14, respectively.

Figure 11: Illustration of wind farm and flow field (Case C).

Figure 12: Wind-farm power tracking performance (Case C).
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Figure 13: Turbine power outputs (Case C).

Figure 14: Changes of thrust coefficients (C ′T ) in Case C.

In addition, we summarize the root mean square (RMS)
errors of all case studies in Table I. It is clear that PR-DRL
has the minimum RMS errors in all the three case studies,
showing its effectiveness, adaptability and robustness for wind-
farm power tracking tasks.

Table I: RMS errors under different controllers (MW).

Case PR-DRL MPC [15], [16] DWFC [13]

A 0.214 0.315 0.485
B 0.248 0.559 0.598
C 0.185 0.623 2.980

Remark 4: Simulation results in this section show the key
features of PR-DRL, MPC [15], [16] and DWFC [13]. Partic-
ularly, though DWFC is easy to implement, it has troubles in
handling the reference signals that are higher than the greedy
mode power outputs, leading to large tracking errors under
such circumstances. In contrast, PR-DRL and MPC have the
ability to carry out long-term planning, leading to enlarged
ranges of trackable power. They show stronger capacities and
better tracking performance than DWFC. It is noteworthy that
our PR-DRL and the MPC method in [15], [16] have quite
different features from each other. As discussed in Sec. III
and illustrated in Fig. 1.b, MPC [15], [16] utilizes the wind

conditions in every staggered-grid cell of the whole flow field
to calculate control signals. However, the use of such tens
of thousands of full-state-style measurements is infeasible in
practice (e.g., a 100×42 staggered grid with over 10000 states
are employed by MPC in case studies). Moreover, as a model-
based method, MPC suffers from inevitable modelling errors
and uncertainties in practical uses. In contrast, our PR-DRL is
model-free and data-driven. It only employs the measurements
at turbine rotors (which are easy to obtain) rather than the
whole flow field and does not rely on any underlying analytical
models.

Remark 5: Using a stand-alone turbine to achieve power
tracking commonly needs to de-rate the turbine from the
MPPT mode [9], [10], [11]. This leads to revenue loss due
to the power generation reduction but brings ancillary-service
income from the market, and an economic trade-off between
these two aspects should be considered. A recent study [30]
(which employed commercially available wind turbines to
fulfill power tracking tasks and providing ancillary services)
showed that the income from the regulation market by power
tracking fully has the potential to be greater than the induced
energy loss. Such a potential can be further enhanced when
a wind farm is employed rather than a stand-alone turbine.
Due to the strong aerodynamic couplings, de-rating upstream
turbines can mitigate wake effects and lead to the power
increase of the downstream turbines or even the whole wind
farm. Many studies [1]-[7] have shown that the greedy mode
(i.e. all turbines in the farm working in the MPPT mode)
cannot maximize the whole farm’s power generation. These
facts are also verified by the case studies in this section. As
shown in Figs. 6, 9 and 12, our method can track reference
signals that are occasionally higher than the greedy mode
power generations in all case studies, particularly in Case
C (in which even the averaged power output during the
whole simulation time span under our PR-DRL is greater
than the greedy mode). These facts enhance the feasibility and
economic profitability of using wind farms to provide ancillary
services such as SFC/AGC. But it should be emphasized that
farm-level power tracking still inevitably results in energy loss
with respect to the potentially maximum power generation that
a farm can obtain (even though the trackable power range can
be enlarged with respect to the greedy mode), and a future
in-depth economic analysis should be considered to maximize
the profit of wind-farm power tracking methods in practical
applications.

V. CONCLUSIONS

A new wind-farm power tracking control method was pro-
posed in this paper via deep reinforcement learning (DRL).
To the best of the authors’ knowledge, this is for the first time
that a data-driven model-free solution was designed for such
problems. Built upon the H∞ control theory, we developed a
novel preview-based robust DRL (PR-DRL) method to handle
preview information and achieve tracking control goals. LSTM
networks and other deep neural network structures were em-
bedded in PR-DRL to handle complex tasks with time-series
measurements and partial-observable properties. Case studies
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with a dynamic wind farm simulator showed that our PR-DRL
could excellently accomplish wind-farm power tracking tasks
under uncertain environments and strong aerodynamic inter-
actions among turbines. It could adapt to different wind farm
layouts and be integrated with yaw optimization strategies for
capacity enhancement.
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