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Abstract—Wireless networks have been widely utilized in
industries, where wireless links are challenged by the severe non-
stationary Rician fading channel, which requires online link qual-
ity estimation to support high quality wireless services. However,
most traditional Rician estimation approaches are designed for
channel measurements and work only with non-modulated sym-
bols. Then, the online Rician estimation usually requires a priori
aiding pilots or known modulation order to cancel the modulation
interference. This paper proposes a non-data aided method with
redundant Gaussian mixture model(GMM). The convergence
paradigm of GMM with redundant sub-components has been
analyzed, guided by which, the redundant sub-components can be
iteratively discriminated to approach the global optimization. By
further adopting the constellation constraint, the probability to
identify the redundant sub-component is significantly increased.
As a result, accurate estimation of the Rician parameters can be
achieved without additional overhead. Experiments illustrate not
only the feasibility but also the near optimal accuracy.

Index Terms—Rician Parameters, Maximum Likelihood Esti-
mation, Non-data Aided, Gaussian Mixture Model, Convergence

I. INTRODUCTION

THE wireless channel of fixed wireless link in industrial
scenario has been investigated over decades [1]–[8],

where the massive metal surfaces lead to complex fading
channels due to the severe multi-path effect. In a fixed wireless
link, at least one Line of Sight(LoS) path exists to guarantee
the reliability, while all other non-LoS multiple paths vary
according to different spatial locations. The combination ef-
fects of these homological paths are usually static over time in
typical indoor environments, but will be dynamic in industrial
environments. This is due to the fact that the moving objects
near wireless links will generate dynamic paths and perturb
the stationary scattered paths. As a result, both the specular
and scattered power of received signals will be time-varying
with specific pattern rooted in the arbitrary mobility pattern
of moving objects [7]. Such effects have been observed and
termed as the non-stationary temporal fading [2]–[7], where
the envelope of received signals from the temporal fading
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Fig. 1. The scheme of utilizing redundant sub-components based GMM for
non-data aided Rician parameter estimation in a temporal fading channel.(best
view in color)

channel usually follows the Rician distribution with time
varying nature. In such fading channel, the internal thermal
noise won’t be the only source of transmission error, as the
scattered power will also deviate I/Q symbols from expected
constellations. Considering the time varying nature of the
temporal fading channel, these Rician parameters must be
updated on-line to obtain an not only accurate but also realtime
link quality metric. Otherwise, the transceiver may take wrong
actions due to the inaccurate link quality information, resulting
degraded performances in both transmission and application
layers [9], [10]. On the other side, accurate Rician parameters
can significantly increase the link quality estimation perfor-
mance in the non-stationary industrial fading channel [7].

The estimation of Rician parameters is of considerable
interest. The early approaches are usually designed for the
measurement of static or stationary fading channel in an offline
pattern, i.e., the I/Q symbols are unique and utilized only for
the channel measurement. Nonetheless, these algorithms can-
not support online channel estimation, since the existence of
modulated symbols will interfere the estimation by discretizing
the received symbols into clusters in the constellations, as
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illustrated by the black arrows in Fig.1. As a result, the
classical moment based and phase based Rician estimation
methods cannot be directly applied, and have to work with
pilot symbols or preambles to cancel the self-interference
caused by modulated signals [11], [12], shown in Fig.1 with
the orange arrows. This method has been widely utilized and
named as data aided mode or pilot aided mode. Without any
doubt, the data-aided mode fails to utilize massive modulated
I/Q samples to achieve higher accuracy, while decreases the
efficiency of bandwidth due to increased overhead.

In recent years, many efforts have been focused on the non-
data aided Rician parameters estimation [11], [13], [14]. A
state of the art work in [15] employs the Gaussian Mixture
Model (GMM) to design a more general framework for the
Rician parameter estimation with modulation interference. In
detial, all the received I/Q symbols are fitted into a mixture
of two dimensional Gaussian distributions (termed as sub-
component in this paper, also known as Gaussian kernel).
This method can fully utilize the modulated I/Q symbols to
approach the optimized performance, but only works under
the condition that the information of modulation order in the
received packets is known a priori. This condition is neces-
sary to enable the appropriate convergence of Expectation-
Maximization (EM) algorithm for GMM. This approach is
illustrated by the blue arrows annotated with ’Aiding Modu-
lation Order’ in Fig.1. As expected, the time varying temporal
fading channel will trigger frequent adaptations in modulation
order to approach the Shannon limit, which requires frequent
exchanges of modulation order to satisfy this assumption.

In order to address the challenges caused by the frequently
changed modulation order in the harsh industrial environment,
this paper aims to develop a novel adaptive Rician channel
parameter estimation method without the requirement of a
priori information on the modulation order. Intuitively, the
classical EM algorithm for GMM fitting process will be best
converged only when the preset number of sub-components
matching the number of sample clusters, i.e., the modulation
order. Without this information, although the envelope may
still have the possibility to fit the ground truth, the distribution
of each sub-components will be biased and cannot be utilized
for Rician parameter estimation. As shown in Fig.1 with
red arrows, it is straightforward to make a hypothesis that
the GMM can be initialized with more than necessary sub-
components, which will be recognized and removed in the
convergent process to approach the global optimization. To
achieve this aim, this paper first analyzes and formalizes the
convergence pattern of GMM with redundant sub-components.
This paradigm has been utilized to discriminate the redundant
sub-components iteratively, which can be further strengthened
with constellation constraints. Such constraints will form a
binary classification problem with significantly increased dis-
crimination capability, convergence rate and the converged
accuracy. Then the proposed method features not only high
accuracy but also affordable implementations cost for most
wireless platforms.

The contribution of this paper can be summarized in three
folds:

• We, for the first time, reveal the convergence patterns of

GMM with redundant sub-components, which have been
formalized with a theoretical framework.

• We integrate the constellation constraints and the con-
vergence paradigm of redundant GMM to essentially
increase the discrimination capability for redundant sub-
components.

• We design a generalized non-data aided method to esti-
mate Rician parameters with extremely high performance
and affordable cost for non-stationary temporal fading
channel in industrial networks.

The rest of this paper is outlined as follows: section II
provides related works while section III discusses the problem
formulation. The paradigm of redundant components based
GMM is presented in section IV, while the constrained conver-
gence with constellations is provided in section V. Experiments
results from numerical simulations and industrial sites are
utilized to validate the proposed algorithm in section VI,
followed by the conclusion in section VII.

II. RELATED WORKS

The investigations on the fading channel in industrial sce-
narios last over decades. The early work in [1], [2] focus on the
measurement-based approaches, the results of which validate
the effectiveness of the classical propagation principle and also
propose the existence of heavy temporal fading effects. The
work in [3] examines the more general indoor propagation
channel and suggests that the channel performance varies in
different scenarios. A state of the art survey on the industrial
fading channel has been provided in [5], which confirms the
temporal fading effects and concludes that in-depth investiga-
tions on this topic are still needed.

Similarly, the estimation of the Rician K factor has been
studied over decades as well. The early approaches work with
the envelope of received signals and rely on the moment-based
estimation method, which suffers from the computational
efficiency and accuracy problems. In [16], K was estimated by
equating a function of K to a ratio of the measured first and
second-order moments of the envelope. Another closed-form
estimator for K is derived based on the second and fourth-
order moments of the envelope [12], [17], [18]. Instead of
the moment based approaches, some work [19]–[21] choose
to further utilize the phase information from I/Q symbols in
the wireless communication through the Maximum Likelihood
Estimation (MLE) or Maximum a posteriori (MAP) method
to increase the reliability and accuracy.

However, all the above estimators are usually designed for
channel measurement of static or stationary fading channel,
i.e., the I/Q stream are utilized only for channel measurement
system. Nonetheless, these algorithms can not be simply
applied into online Rician estimation system with time varying
temporal fading channel. Then, these algorithms have to
work with extra pilot symbols to cancel the self-interference
from modulation [11], [12], [18]. These data-aided methods
not only fail to utilize the huge amount of modulated I/Q
samples to improve the estimation accuracy, but also reduce
the throughput of wireless link with the overhead caused by
the additional pilot symbols.
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To improve the estimation accuracy and bandwidth effi-
ciency, many efforts have been made to waive the aiding data
in Rician parameter estimation. The Auto-Correlation Function
(ACF) was adopted in [11] to avoid the data aided requirement,
but it cannot be applied to M-ary Phase Shift Keying (M-PSK)
due to the null ACF. The fourth-order cross moment statistic
has been utilized in [13], [14] to avoid the aiding data, which
can only work in the specified Single Input Multiple Output
(SIMO) scenarios, i.e., not applicable in other common scenar-
ios, especially the industrial scenario. In [15], an estimator of
Rician factor is derived with constellation constrained GMM
method, which waives the requirement of aiding pilot symbols
but still needs prior information of modulation order. Similarly
in [22], the GMM has been employed to characterize the
temporal fading channel as well, but utilizes the inter-frame
information to decrease the iteration cost.

Recently, adaptive clustering attracts research interests [23],
[24]. The work in [23] follows the similar principle of this
paper, which assumes a large number sub-components at the
initial stage and recognizes the redundancy through message
exchanges among samples. As expected, the computation
efficiency will be a challenge, while this work proposes a
global statistics to recognize the redundancy. The work in [24]
provides a guidance to choose the optimized cluster centers.
However, both work are the data driven methods and rely on
the distance between samples, thus fail to utilize the a priori
knowledge of Gaussian distribution in Rician estimation.

III. PROBLEM FORMULATION

In most industrial deployments, the transmitted signals
will be reflected, scattered, or diffused with the surrounding
massive metal surfaces. Consequently, part of these addi-
tional signals along with the original LoS signal arrive at
the receiving antenna with different propagation delays τ ,
amplitude attenuation C, and the phase shifts ϕ. The received
combination of these homological signals will be varying over
time and distance, which is termed as the multipath fading.
Among numerous fading channels, the Rician fading with
at least one strong LoS path is most common in industrial
environment and can be modeled by [25]:

h(t) = C0e
jφ0δ(τ − τ0) +

N∑
n=1

Cne
jφnδ(τ − τn)

=

√
KΩ

K + 1
hsp(t) +

√
Ω

K + 1
hsc(t),

(1)

where hsp(t) is termed as specular component contributed by
LOS path or other strong dynamic path, while hsc(t) is termed
as scattered component representing all other scattered paths.
Ω represents the average power of the received signal, while K
represents the ratio between specular power s2 and scattered
power 2σ2.

The received signal R(t) will be mainly contributed by
the convolution between the transmitted signal S(t) and the
impulse response h(t):

R(t) = S(t) ∗ h(t) + ω(t), (2)

where ω(t) is the internal thermal noise inside the receiver
system. As shown in eq.(2), the channel fading h(t) and
noise ω(t) will degrade the quality of received symbols in
a different way. The first one is by convolution and the
later one is additive, but their resulting impacts on R(t) are
the same in the sense of deviating the received signal from
its expected ideal constellation. In particular, the scattered
power of the Rician fading channel has a similar effect as
white noise in the industrial temporal fading channel. Consider
the fact that the specular power compared with the scatter
power(i.e., the Rician parameter K) usually is much larger
than the ratio between specular power and internal thermal
noise(i.e., the SNR). It is widely accepted that the link quality
of multipath fading channel can be represented better by the
Rician parameter K, than by the received signal strength
or its variations. This is particularly true in the industrial
environment where heavy fading is not unusual.

In this context, the envelope of received signals R(t) after
Rician fading channel will follow the Rician distribution [25]:

fR(rn|s, σ) =
rn
σ2

exp (−r2n + s2

2σ2
)I0(

s · rn
σ2

), (3)

where rn is the envelope of the nth sample. Since s and σ
represent the direct observation of the fading channel, it is
reasonable to utilize Rician parameters as accurate link quality
estimations, especially the K factor. These parameters can
also be reflected in the fading signal received by the receiving
end. Nonetheless, it should be award that the internal thermal
noise ω(t) will also applied on the σ and cause estimation
error. Due to the existence of a zero order Bessel function
I0(·), the estimations of Rician parameters usually rely on the
iterative based moment statistics, which require large number
of samples and may suffer from the loss of accuracy and
reliability [26], [27].

To overcome this limitation, the phase information in the
received I/Q symbols has been further utilized to obtain a re-
liable closed form solution. The joint Power Density Function
(PDF) with both the envelope and phase can be derived from
eq.(3):

fR,Φ(rn, ϕn|s, σ, ϕ0) =

rn
2πσ2

exp (−r2n + s2 − 2rns cos (ϕn − ϕ0)

2σ2
),

(4)

where ϕn is the introduced phase of received I/Q symbols,
ϕ0 is the phase variation caused by the specular components
in the fading channel. Now, a closed form solution can be
simply obtained following the classical Maximum Likelihood
Estimation(MLE) method, which increases not only the esti-
mation accuracy but also the calculation efficiency [21].

However, the above estimation methods are proposed for the
channel measurement, which means the transmitted symbols
are unique, i.e., without modulated information. As shown
in Fig.1, once the modulation was involved, the transmitted
symbols will be distributed over constellations with various
amplitudes and phases, which will introduce unknown modu-
lation parameters in the transmitted signal S(t), i.e., am ∈ A
and ϕm ∈ Φ, into eq.(4). As a result, the closed form solution
will no longer work. A widely utilized method to against this
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problem is the employment of pilot symbols or preambles,
i.e., a limited number of symbols with a priori modulated
information, which can be used to cancel the modulation effect
in the receiver side. As expected, this method not only suffers
from low accuracy due to the limited number of pilot symbols,
but also wastes the bandwidth by the occupation of pilots.

On the other side, the received I/Q symbols corresponding to
each constellation point will form a two-dimensional Gaussian
distribution under the assumption of independent identical
distribution sampling over Rician fading model. Then, all
the received symbols will consist several clusters, and can
be modeled as two-dimensional Gaussian PDFs (Probability
Density Functions). The constitution of these Gaussian PDFs
can be further modeled as a Gaussian Mixture Model (GMM).
Through the reverse of the Jacobian determinant, eq.(4) can
be expressed with a two dimension Gaussian distribution:

G(xi,n, xq,n|µi, µq, σi, σq) =

1√
2πσ2

i

exp(− (xi,n − µi)
2

2σ2
i

)
1√
2πσ2

q

exp(− (xq,n − µq)
2

2σ2
q

),

(5)
where µi and µq are contributed by the specular paths, σi

and σq are contributed by all the scattered paths, respectively.
Then, the GMM can be formulated as:

p(xn;θ) =

M∑
m=1

ωmG(xn|θm), (6)

where xn the brief of the complex baseband symbols; θm is
the brief of Gaussian parameters; M is the modulation order,
e.g. 4 for QPSK, 8 for 8-PSK and 16 for 16QAM. This can
be intuitively understand as a mixture with M Gaussian sub-
components, while ωm is the weight of each sub-component.

Under this context, the log-likelihood function of eq.(6) can
be obtained:

L = ln(P (X|θ)) =
N∑

n=1

ln(

M∑
m=1

ωmG(xn|θm)). (7)

Due to the existence of logarithm over sum, this equation
failed to be analytically solved. By applying the Jensen in-
equality, the lower bound of above equation can be obtained:

Q =

N∑
n=1

M∑
m=1

pn,mln(
ωmG(xn|θm)

pn,m
), (8)

where pn,m = ωmG(xn|θm)∑M
m=1 ωmG(xn|θm)

represents the probability
that the nth symbol belongs to the mth sub-components,which
was evaluated by applying the nth symbol, i.e., xn into each
sub-component comparing with the integrated GMM PDF. The
classical Expectation-Maximization (EM) algorithm will try to
maximize Q through MLE in M step, and calculate Q with
updated estimate θ in E step, the iterative repeat of which will
lead to the convergence of global optimal. If recall eq.(5), the
converged θ will be the equalized form of Rician parameters,
which only requires simple linear transformation.

Without any doubts, the convergence of EM algorithm is
costly, especially with high modulation order, which prevents
its practical application. In fact, when the modulation order M
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Fig. 2. The fitting results of Gaussian mixture model with different numbers
of sub-components in a two clusters scenario, i.e., M0 = 2,M = 1, 2, 3, 4

is large, the EM algorithm will usually fail to approach the
optimal, i.e., the ground truth of the solution. For example,
in 16QAM, the Degree of Freedom (DoF) or known as the
dimension of solution space will be 7 × 16 = 102. The
authors in [15] propose an efficient method to significantly
accelerate the convergence of EM algorithm by transforming
the optimal search into lower dimension solution space, which
essentially enables the implementation of GMM based method.
Although this work removes the requirement of aiding symbols
like pilot symbols or preamble, it still relies on the a priori
information of modulation order to guarantee the convergence
of EM algorithm, i.e., M , which can only be exchanged
through specific packets. Hinted by recent progress in adaptive
clustering [23], [24], we are motivated to make essential
investigation of the EM based GMM estimation and remove
this residual a priori requirements.

IV. THE CONVERGENCE PARADIGM WITH REDUNDANT
SUB-COMPONENTS BASED GMM

As discussed in section II, the motivation of this paper
is to find an efficient method to guarantee the convergence
of EM algorithm without a priori modulation order, i.e., the
cluster numbers in the constellation. It is straightforward to
initialize GMM with redundant number of sub-components,
following by the discrimination and deletion of redundant
sub-components until the ground truth. Clearly, the essential
challenge is how to distinguish the redundant sub-components,
which, to the best of authors’ knowledge, has never been
investigated before.

In Fig.2, a simple but descriptive example has been pro-
vided, where two one-dimension clusters following Gaussian
distribution 1 have been employed to generate sample data.
For easy discussion, M0 has been defined as the ground
truth of cluster numbers. These samples will be processed by

1One-dimension data was employed due to the better visualization effect,
similar effects exist in all dimensions
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classical EM algorithm with different number of preset sub-
components, i.e., M = 1, 2, 3, 4. The results have been shown
in four sub-figures, respectively. The ground truth has been
shown with red dots, while the envelope of final fitted GMM
has been shown with black dots. The fitted sub-components
have been shown with various colors. Easy to notice that the
fitting error is only significant in the scenario with M = 1,
i.e., less than the ground truth. This is reasonable that one
Gaussian distribution can never fit two Gaussian distributions.
In all other scenarios with M ≥ 2, the converged envelops
have shown satisfied fit goodness. This explains why the
discrimination of redundant sub-components has been ignored
before: the EM algorithm doesn’t need to delete the redundant
sub-components to approach a good fitted envelope.

However, the fit goodness of envelope is not enough for the
application of Rician parameters estimation. This is due to the
fact that the estimation of Rician parameter is rely on the fit
goodness of sub-component not the overall envelop, i.e., s is
linearly calculated from all µm, while σ is linearly calculated
from all Σm. With redundant sub-components shown in Fig.2,
there will be variation on each sub-components, which will
result in the significant estimation error of Rician parameters.

To better characterize this effect, the convergence progresses
over time domain have been provided in Fig.3, where the
same findings can be concluded, i.e., the likelihood will finally
approach the global optimal with M ≥ M0. Without any
doubts, when the number of sub-components in GMM is equal
to the number of clusters, i.e., M = M0, the likelihood value
can best approach the global maximum. The term of ‘best’
refers both the value and the convergence rate. Based on these
observations, the following Lemma can be formalized:

Lemma 1. Given the maximum likelihood Q can be obtained
in the EM estimation of GMM, s.t. M = M0. Then, if M >
M0, the maximum likelihood QM0 can still be approached:

lim
i→+∞

QM → max(QM0), (9)

where i is the iteration index.

Proof. First consider the scenario with M0 = 1 and M = 2,
let ∆m = M −M0 = 1.

Obviously, a solution can be found with µ1 = µ2 = µ,
Σ1 = Σ2 = Σ, and ω1 = ω2 = 1/2, which satisfies

N∑
n=1

M0∑
m=1

pn,mln(
ωmG(xn|θm)

pn,m
)

=

N∑
n=1

M0+∆m∑
m=1

pn,mln(
ωmG(xn|θm)

pn,m
).

(10)

Without loss of generality, for any ∆m ∈ N+, at least one
solution with ∀µm = µ, ∀Σm = Σ, and ∀ωm = 1/M can
satisfy eq.(10).

For the scenarios with M0 > 1, we can let the first M0−1
clusters be fitted with the same sub-components, and let the
last cluster be fitted with ∆m sub-components. Repeating the
above derivation, at least one solution can be found which can
still satisfy eq.(10).

Lemma 2. If M < M0, the approachable likelihood QM will
be less than the maximum likelihood QM0 .

Proof. If ∆m = M0 , M = 0. The likelihood QM will be 0,
which will be definitely less than max(QM0).

In the scenario with M0 = 1, the only possible ∆m = 1 =
M0, which is equal to the above derivation.

In the scenario with M0 = 2 and ∆m = 1, if eq.(10) can be
satisfied, then the following equalized derivation should hold:

KLD[p1(xn|θ1)||p2(xn|θ2)]

=

∫
G(xn|θ1)ln

G(xn|θ1)∑2
m=1 ωmG(xn|θm)

dx = 0,
(11)

where KLD refers to the Kullback-Leibler Divergence. eq.(11)
can be intuitively understand as: ∃θ1 makes a single Gaussian
distribution perfectly fitting a GMM consisted by two sub-
Gaussian distribution, which is obviously an antinomy.

Without loss of generality, for any ∆m ∈ N+ and M0 > 2,
we can let the first M0−∆m clusters be fitted with the same
sub-components, and let the last ∆M clusters be fitted with a
single Gaussian PDF. Similar as the above derivation, easy to
conclude that no solution can be found to satisfy eq.(10), yet
QM will be less than max(QM0)

With simple derivation, we can obtain the following corol-
laries, which can be utilized to guide the algorithm design.

Corollary 1. By deleting ∆m ≤M−M0 sub-components, the
re-converged likelihood Q′ will be no less than the likelihood
Q before deletion.

Proof. If ∆m ≤ M −M0, then the new M ′ ≥ M0. By ap-
plying Lemma 2, Q′ → max(QM0), while Q→ max(QM0).
Then Q′ → Q.

Corollary 2. By deleting ∆m > M −M0 sub-components,
the re-converged likelihood Q′ will be less than the likelihood
Q before deletion.

Proof. If ∆m < M −M0, then the new M ′ < M0. By ap-
plying Lemma 3, Q′ < max(QM0), while Q→ max(QM0).
Then Q′ < Q.
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With Corollary 1 and Corollary 2, the algorithm can identify
when the final convergence has been met, i.e., M = M0.
The next problem is to find the right sub-components to
delete. As shown in Fig.4, when the GMM with redundant
sub-components converges, the sub-components located in
different positions vary with different likelihoods lm:

lm ≈ qm =

N∑
n=1

pn,mln(
ωmG(xn|θm)

pn,m
). (12)

The sub-components located in the data-intensive area are
named as near-end components, and the sub-components lo-
cated in the sparse data position are named far-end compo-
nents. Intuitively, the algorithm will tend to delete far-end
components to enable fast convergence in the next iteration. As
the likelihoods of near-end components will usually be large
than far-end components, we can utilize soft-max function to
classify the sub-components as near-end components and far-
end component according to their likelihoods.

softmax(lm) =
exp (lm)∑M

m=1 exp(lm)
. (13)

In each iteration cycle, the far-end components will be
deleted, and the rest will be reorganized as a new Gaussian
mixture model for the next convergence. As this is essentially
a semi-blind deletion, such iteration will be ended until
Corollary 2 satisfied, which hints that more than necessary
sub-components have been deleted in the last iteration. With
aid from a simple buffer, the algorithm can reverse back to
the last iteration. However, as the algorithm still don’t know
the correct number to delete, we can simply delete one sub-
component in each iteration to instead. The overall iteration
will be terminated by Corollary 1 satisfied in the current
iteration cycle while Corollary 2 satisfied in the last iteration.

V. THE CONVERGENCE ACCELERATION WITH
CONSTRAINT OF CONSTELLATION TOPOLOGY

In section III, we propose the convergence paradigm of
GMM with redundant sub-components, which, in the first
time, can converge to the exact modulated clusters without
any a priori information. In this section, we will introduce
constellation topology constraints to the proposed algorithm,
which will significantly increase the convergence speed by
forcing sub-components to form a binary classification pattern
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Fig. 5. The binary classification with constellation topology constraints

in the likelihood space, i.e., the algorithm can now simply
identify the correct redundant sub-components.

Considering a transceiver pair over fading channel, the
topology of transmitted constellations will be constant in
each packet. The fading channel will only cause all the
constellations, as an indivisible whole, to scale in attenuation
s, to rotate in angle ϕ0, and to scatter with the variation
of σ in amplitude. This is due to the fact that the relative
distances and angles among constellations are constrained due
to modulation scheme. Therefore, we can use a complete
set of constellation topology, which contains all the potential
constellation diagrams in an application, to spatially constrain
the redundant sub-components of the GMM.

With some algebra, the PDF of GMM can be converted to
polar coordinates, and involve topology constraints as:

fR,Φ(rn, ϕn|s, σ, ϕ0) =

M∑
m=1

rn
2Mπσ2

exp (−r2n + ams2 − 2amrns cos (ϕn − ϕ0 − ϕm)

2σ2
),

(14)

where r2n = r2i,n + r2q,n represent the envelope of received
signal, ϕn = actan(ri,n/rq,n) is the offset angle of each
sampling point. am ∈ A and ϕm ∈ Φ is the ideal locations of
the mth cluster, which are the a priori information provided
by the complete set of constellation schemes. It is easy to
notice that eq.(14) will regulate the gradient search only in s,
σ and ϕ0. Following similar derivations, the pseudo-MLE of
parameters in the Maximization step can be easily obtained.

With eq.(14), the convergence will force the likelihoods of
sub-components to show a clear binary classification pattern.
As shown in Fig.5, only part of sub-components can approach
the data cluster, while the rest will be regulated away with
topology space A and Φ. This can be formalized as:

Lemma 3. With constellation topology constraint, the con-
verged likelihood of each sub-components will form a binary
classification pattern.

Proof. After convergence, the likelihood function can be
rewrite as:

Q =
∑
f∈F

Lf +
∑
e∈E

Le (15)

where Lf =
∑N

n=1 pn,f ln(
ωfG(xn|θf )

pn,f
) refers the far-end

components, Le =
∑N

n=1 pn,eln(
ωeG(xn|θe)

pn,e
) refers the near-

end components.
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For ∀e ∈ E, the sub-components have already approached
the clusters, i.e., µ′

e → µe, Σ′
e → Σe. Le can be approxi-

mated as:

L′
e ≈

∑
n∈e

pn,eln
ωeG(xn|θe)

pn,e
+
∑
n/∈e

0 · lnωeG(xn|θe)
pn,e

(16)

That is, the likelihood will be mainly contributed by the
approached clusters e, while the all other data samples will
contribute close to 0.

For ∀f ∈ F , due to the topology constraint, the sub-
component is away from any clusters. As a result, all pn,f
will approximate zero, i.e., L′

f → 0.
Then ∀Le > ∀Lf , Lemma proofed.

As shown in Fig.5, Lemma 3 regulates the sub-components
to form a binary classification. Then, the proposed method can
simply and accurately distinguish redundant sub-components,
which essentially reduces the complexity of proposed method,
i.e., only one additional deletion process. As shown later in
the experiment section, the iterative cycles can be significantly
reduced, which enables the wide application of proposed
method. The final algorithm has been provided below.

Algorithm 1 Constrained Redundant GMM Method
Require: complete set of constellations A and Φ, converge

threshold Th,received I/Q symbols ri,n, rq,n
Ensure: i = 1, I = 1, l0 = 0, L0 = 0

while LI − LI−1 > Th do
while li − li−1 > Th do

Calculate P in E step
Calculate s, σ, ϕ0 in M steps
li,m ← likelihood, qm
li ←

∑
li,m

i← i+ 1
end while
delete sub-components with lm < mean(lm)
LI ← li
I ← I + 1

end while
return s, σ

VI. EXPERIMENT RESULTS

A. The convergence of proposed algorithms

The intuitive results of how the proposed two methods
performing will be provided first in Fig.6 and Fig.7. The
converge process shown in Fig.6 is based on the redundant
sub-components based GMM estimation method discussed in
section III, which will be named as Redundant GMM (R-
GMM) in the following discussion. While the same time, The
converge process shown in Fig.7 is based on the constellation
topology constrained estimation method discussed in section
IV, which will be named as Constrained Redundant GMM
(CR-GMM) in the following discussion. In this experiment,
the initial number of sub-components is set to 16, and the
real data is sampled from QPSK modulation, i.e., 4 partially
overlapped clusters. In each experiment, the convergence of
likelihood as well its local enlarged curve will be shown in
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Fig. 6. The converge process with proposed R-GMM (best view in color).
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the upper area of the figure. Each important change points in
the convergence curve will be flagged with indexes, which will
be shown with constellation slices in lower figure.

As can be seen from Fig.6, for each deletion of redun-
dant sub-components after the first three convergences, the
likelihood will be re-converged to almost the same value
around -1.4. However, in the deletion flagged with index 4,
the deletion was triggered with only 4 sub-components left,
i.e., the ground truth. As the algorithm has no idea about
this, it moved forward to delete one more sub-component and
resulted in a significantly decreased likelihood. Then after the
re-convergence in the time flagged with index 5, the algorithm
enters the process of redundant sub-component correction, and
finally converged to the ground truth in index 6.
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Fig. 8. RRMSE of Rician parameter estimations with different Rician K
values in QPSK and 16QAM scenario.

The situation will be different in Fig.7, where the constel-
lation topology constraints have been involved. As predicted
by Lemma 3, the first convergence flagged with index 1
will form a clear binary classification over likelihoods of
sub-components, which is essentially different with the first
crowded convergence in Fig.6. As a result, one deletion will
lead to the ground truth, i.e., significantly decreased iterations.

B. Numerical Results

The performance of the proposed Rician parameter estima-
tion algorithms is first quantitatively evaluated by intensive
numerical experiments. In each numerical experiment, known
Rician parameters were utilized to generate a stream of
I/Q samples consisting of 127byte*8bit*16chip with various
modulation order. This frame length is chosen according
to the widely utilized IEEE 802.15.4 standard in industrial
scenarios [28]. For the comparison purpose, the main stream
Data Aided Rician parameters estimation method was also
implemented, where around 3% I/Q symbols are assumed with
known information, i.e., the preamble length of IEEE 802.15.4
packet. The results of this method are labelled as DA-pilot.
Another candidates for comparison is the ideal DA-all mode,
where all the received I/Q samples are known symbols (pilots).
Obviously, the DA-all mode is an ideal situation where all
symbols are utilized for channel measurement and no symbol
for data transmission. As a result, the results of DA-all mode
can be treated as an ideal lower bound of estimation error in
this evaluation.

In Fig.8, the Relative Root Mean Square Error (RRMSE)
performances of the Rician parameter estimation with both
proposed non-data aided methods and classical data aided
methods have presented. The results have been grouped into
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Fig. 9. RRMSE of Rician parameter estimations with different SNRs in QPSK
and 16QAM scenario.

two groups, where all the results of QPSK have been shown
in the upper sub-figure and all the results of 16QAM have
been shown in the lower sub-figure. The initial constellation
constraint of A and ϕ have been set to 64QAM in CR-
GMM, as both QPSK and 16QAM are the subsets of 64QAM.
Similarly, the initial number of sub-components in R-GMM
was set to 64 as well. In all scenarios, the proposed methods
quickly converge to the similar performance of DA-all, i.e.,
the rough lower bound. As a comparison, the mainstream
DA-pilot method shows almost 8 time higher error. There are
slightly worse performances with small K for R-GMM, which
are reasonable as the clusters in constellation will involve
large overlap. This overlap not only increases the difficulty
of convergence but also decreases the accuracy of estimation
results. In the same time, the CR-GMM has shown constant
performance in all scenarios, which is due to the involved
constellation constraint.

In Fig.9, the experiment results of proposed algorithm
under various SNRs have been provided to validate the effect
with internal thermal noise ω. It should be noted that the
internal thermal noise is usually static within short time scale,
then the variation is in fact caused by the received signal
strength. In this experiment, the variation scale of received
signal power, i.e., from 50dBm to 68dBm, is obtained from
the field experiment shown later in section C. The power of
internal noise is set to -90dBm according to popular IEEE
802.15.4 transceivers utilized in industrial networks [28]. The
true value of K was set to 5 as a challenging scenario. The
overall performance is similar to Fig.8, where the CR-GMM
approaches the optimal DA-all method around RMSE 0.012 in
both QPSK and 16QAM scenarios. Although the performance
shows the correlation with the increased power of internal
noise, the trends are much less significant versus the Rician
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parameters, as shown in Fig.8.
The convergence performances of proposed methods with

comparisons have been provided in Fig.10. The baseline
algorithms, i.e., GMM-QPSK and GMM-16QAM, have been
assumed with known information of Modulation order. With
known modulation order, the GMM-QPSK converged faster
than the R-GMM-QPSK in all scenarios, i.e., around 70 itera-
tions for GMM-QPSK and around 140 iterations for R-GMM-
QPSK in the harsh K = 4 scenario. Obviously, this is due to
the additional deletion process in the R-GMM-QPSK. As ex-
pected, with the constellation constraint, CR-GMM converged
much faster, say around 10 iterations. Simultaneously, an
interesting phenomenon can be noticed in 16-QAM scenarios,
where GMM-16QAM converged extremely slow after almost
480 iterations. This is due to the significantly increased DoFs
in the EM solution with 16-QAM. However, the R-GMM-
16QAM converged much faster than the GMM-16QAM with
only around 90 iterations, which was not expected, especially
with additional deletion processes. If further look into the
converging process, the redundant sub-components (64 in the
experiment) will converged to only 16 clusters in R-GMM-
16QAM, while the GMM-16QAM expects 16 sub-components
converged to 16 clusters. As a result, R-GMM-16QAM will
always have at least one sub-component converged to each
clusters, leading to an even faster converge process than
GMM-16QAM with known modulation orders. Similarly, with
constellation constraint, CR-GMM-16QAM will be converged
around 40 iterations for K = 4 scenario, and only 15 iterations
for K = 13 scenario.

C. Field Results

In this subsection, the proposed algorithm has been evalu-
ated with field experiments in a rolling mill, which is around
300× 20× 10 meters large, with a moving gantry crane near
the roof. A logistical vehicle and several operators were asked
to work around the transmission link to emulate three typical
industrial working scenarios, i.e., direct link, with nearby
operators, and with nearby vehicle. In the experiments, two NI
USRP-2922 SDR transceiver platforms with omni-directional

TABLE I
THE RRMSE OF DIFFERENT ESTIMATION METHODS

Direct Person Vehicle

DA-pilot 0.0726 0.0832 0.0755

CR-GMM 0.0141 0.0161 0.0139

DA-all 0.0127 0.0143 0.0130

antennas have been deployed to form a fixed wireless link,
which enable the emulation of adaptive modulation, i.e.,
QPSK and 16-QAM in this experiment. The threshold were
shown with black lines in Fig.11. Similar as the numerical
experiments, all the received I/Q streams have been recorded
and processed by the chosen algorithms. For comparison, the
results of DA-pilot and DA-All have been provided as well.

The estimated s and σ of each frame in the selected
scenarios have been provided in Fig.11. Without any doubt,
the proposed CR-GMM method shows non-sensitivity with
the adaptive modulation scheme, and shows the closest per-
formances with DA-all in all scenarios, i.e., the near optimized
quantitative RRMSE results shown in Table 1. In detail,
0.0141 versus 0.0127 with direct link, 0.0161 versus 0.0143
with moving operators, and 0.0139 versus 0.013 with moving
vehicle. These demonstrate the applicable of proposed method
in different channel scenarios. In the same experiments, the
DA-pilot algorithm show not only bias but also high jitter in
all scenarios, which may lead to mis-understanding of the link
quality. These field experiments further validate the efficiency
of proposed method to enable its wider application.

VII. CONCLUSION AND FUTURE WORKS

In this paper, a novel non-data aided method to estimate
the Rician parameters without any a priori information has
been proposed. The problem was characterized as a GMM
estimation with unknown cluster numbers, which can be
solved with iterative deletion of redundant sub-components
until the ground truth. To satisfy this target, the convergence
paradigm with redundant sub-components based GMM has
been proposed, which has been further constrained with con-
stellation topology to increase the discrimination capability.
Both numerical experiment and field experiment demonstrate
the near optimal accuracy of the proposed algorithm with
affordable computation cost. Although the proposed R-GMM
method without constraint acceleration was intuitively to be
believed as high cost with its classification and deletion loop,
the over cost may even less than the standard GMM with
known cluster numbers in the challenging scenarios with high
DoFs. As a result, the proposed converge paradigm with
redundant sub-components based GMM is also expected to be
widely utilized by researchers in other scientific areas. We will
also investigate the closed form solution of optimal number of
sub-components in GMM, which fits in the future works.
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